Exercise sheet 1.

Name

Exercise $\begin{array}{llllll}1 & 2 & 3 & 4 & \Sigma\end{array}$
Points

Exercise group (tutor's name)
Deadline: Friday, 29.10.2021, 16:00.
Please use this page as a cover sheet and enter your name and tutor in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. Let (P, \leq) be a preorder, that is, \leq is a reflexive and transitive relation. Construct a category with object set P and with exactly one arrow $x \rightarrow y$ if $x \leq y$, and no arrow $x \rightarrow y$ otherwise; there is exactly one such category, called the category associated to the preorder. Conversely, if \mathcal{C} is a category, define a relation on its object set by $x \leq y$ if there is an arrow $x \rightarrow y$. Show that this relation is reflexive and transitive, hence a preorder. Show that \mathcal{C} is isomorphic to the category associated to this preorder if and only if for all objects x and y of \mathcal{C}, there is at most one arrow $x \rightarrow y$.

Exercise 2. Let $f: x \rightarrow y$ and $g, h: y \rightrightarrows x$ be arrows in a category with $f \circ g=\mathrm{id}_{y}$ and $h \circ f=\mathrm{id}_{x}$. Show that $g=h$; so f is an isomorphism. Conclude that an arrow has at most one inverse.

Exercise 3. Let \mathcal{C} be a category. Let $\mathcal{C}_{\text {epi }}, \mathcal{C}_{\text {mono }}$ and \mathcal{C}^{*} denote the epimorphisms, the monomorphisms, and the isomorphisms in \mathcal{C}, respectively. Show that these are closed under composition and contain the identities. That is, they form subcategories with the same objects as \mathcal{C}.

Also prove the following. Let $f: x \rightarrow y$ and $g: y \rightarrow z$ be morphisms. If $g f$ is monic, then f is monic. If $g f$ is epic, then g is epic.

Exercise 4. Let $\mathfrak{N o r}$ be the category of normed spaces with bounded linear maps as morphisms. Let $f: X \rightarrow Y$ be a morphism in $\mathfrak{N o r}$. Show that f is a monomorphism if and only if it is injective, and an epimorphism if and only if its range is dense. You may use the following without proof: if $Z \subseteq Y$ is a closed subspace, then the quotient space Y / Z with the quotient norm is again a normed space. Find a morphism f in $\mathfrak{N o r}$ that is both monic and epic, but not an isomorphism.

