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The following exercises are about functors. The relevant reading material is Section 1.3 from Emily
Riehl’s book Category Theory in Context.

Exercise 1. Find an example of a functor F : C → D for which the objects and morphisms in the
image do not define a subcategory of D.

Exercise 2. Let F : D → C and G : E → C be functors. Show that there is a category – called the
comma category F ↓ G – which has

• as objects, triples (d ∈ D, e ∈ E, f : Fd→ Ge ∈ C);

• as morphisms (d, e, f)→ (d′, e′, f ′), a pair of morphisms h : d→ d′ and k : e→ e′ such that the
following square commutes:
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Exercise 3. What is a functor between two groups, viewed as categories?
What is a functor between two preorders, viewed as categories?

Exercise 4. Functoriality sometimes depends on the categories that are chosen. Consider three
standard constructions from group theory. Let G be a group. Its centre is

Z(G) = {h ∈ G : hg = gh for all g ∈ G}.

Its commutator subgroup [G, G] ⊆ G is the subgroup generated by all “commutators” ghg−1h−1,
g, h ∈ G. (This subgroup is normal, and is the smallest normal subgroup N so that G/N is Abelian.)
Its automorphism group Aut(G) is the group of all group isomorphisms from G to itself. Let

Groups ⊇ Groupsepi ⊇ Groups∗

be the categories of groups with all group homomorphisms, surjective group homomorphisms, and
bijective group homomorphisms as arrows. For each of the three constructions Z(G), [G, G], Aut(G),
does it come from a functor Groups→ Groups, Groupsepi → Groups, or Groups∗ → Groups?
(A group homomorphism is an epimorphism in Groups if and only if it is surjective. The proof of

this theorem is due to Otto Schthere exists no homomorphism from Z toreier and uses amalgamated
free products of groups. You need not prove this!)


