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The following exercises are about naturality and natural transformations. The relevant reading
material is Section 1.4 from Emily Riehl’s book Category Theory in Context.

Exercise 1. What is a natural transformation between a parallel pair of functors between groups,
regarded as one-object categories?

What is a natural transformation between a parallel pair of functors between preorders, regarded as
categories?

Exercise 2. Fix a field K. A bilinear form is a finite-dimensional K-vector space V with a nondegenerate
bilinear map V × V → K; nondegeneracy means that f(v, w) = 0 for all v ∈ V implies w = 0 and
f(v, w) = 0 for all w ∈ V implies v = 0. Let (V, b) and (W, c) be bilinear forms. A map f : (V, b)→ (W, c)
is a linear map V → W with c(f(x), f(y)) = b(x, y) for all x, y ∈ V . Let B be the category with
bilinear forms as objects, the above maps as arrows, and the obvious product and units. For a bilinear
form (V, b), define a linear map V → V ∗ by mapping v ∈ V to the functional V → K, w 7→ b(v, w).
This map is injective because b is nondegenerate and hence an isomorphism.

Lift the map (V, b) 7→ V ∗ to a covariant functor B → B, in such a way that the isomorphisms V ∼= V ∗

described above become a natural isomorphism (V, b) ∼= (V ∗, b∗) between the identity functor and the
“covariant dual space functor” on B. Thus you have to describe a canonical bilinear form b∗ on V ∗

and how a map (V, b)→ (W, c) induces a map (V ∗, b∗)→ (W ∗, c∗), in a functorial way, such that the
isomorphisms (V, b) ∼= (V ∗, b∗) are natural. Is there more than one way to do this?

Exercise 3. Describe the centres of the categories of sets and of R-modules for a given ring R. Recall
that the centre is the set of all natural transformations from the identity functor to itself. (For this
exercise, the centre is just a set.)

Exercise 4. Let C andD be small categories. Show that the functors C → D and natural transformations
between such functors are the objects and arrows of a category DC. That is, describe a natural way
to compose natural transformations F ⇒ G ⇒ H between three functors F, G, H from C to D and
show that your composition is associative and describe its units. Show that the isomorphisms in this
category are the natural isomorphisms, and describe the inverse natural isomorphism Φ−1 : G⇒ F of
a natural isomorphism Φ: F ⇒ G.


