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The following exercises are from Sections 1.5 and 1.6 of Emily Riehl’s book Category theory in
context.

Exercise 1. Let F : C → D be a fully faithful functor and let ϕ ∈ C(x, y) for x, y ∈ C0. Show that ϕ is
an isomorphism if F (ϕ) is an isomorphism (“F reflects isomorphisms”). Show that if x, y ∈ C0 are such
that F (x) and F (y) are isomorphic objects in D, then x and y are isomorphic objects in C (“F creates
isomorphisms”).

Exercise 2. Consider the functors Ab → Group (inclusion), Ring → Ab (forgetting the multiplication),
Ring → Group (taking the group of units), Field → Ring (inclusion). Determine which of these functors
are full, which are faithful, and which are essentially surjective. Do any define an equivalence of
categories?

Exercise 3. Let C be a category.

1. Show that all terminal objects in C are isomorphic.

2. Show that all initial objects in C are isomorphic.

3. Show that any map from a terminal object to an initial object is an isomorphism. (So either
terminal objects and initial objects in C are the same, or there is no such map.)

Exercise 4. Prove that faithful functors reflect monomorphisms; that is, if F : C → D is a faithful
functor and g : x → y is an arrow such that F (g) is a monomorphism, then g is a monomorphism.
Similarly, prove that faithful functors reflect epimorphisms. Conclude that if (C, U) is a concrete
category, then a map is a monomorphism if it is an injective map between the underlying sets, and an
epimorphism if it is a surjective map between the underlying sets. (The converse is wrong.)


