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The following exercises are from Section 3.3 of Emily Riehl’s book Categories in context.

Exercise 1. Show that an equivalence of categories F : C → D preserves all limits and colimits that
exist in C and creates all limits and colimits that D admits.

Exercise 2. Let C,D,J be categories, with J small. Let K : J → C be a diagram in C of shape J and
let F : C → D be a functor. Define a canonical map colim FK → F (colim K). Show that the functor F
preserves colimits if and only if this canonical map is an isomorphism.

Exercise 3. Let ModR and ModS be the categories of modules over two rings R and S and let
F : ModR → ModS be a functor that is additive in the sense that F (f + g) = F (f) + F (g) if
f, g : M ⇒ N are two parallel module homomorphisms. Prove that F preserves colimits if and only
if F preserves coproducts and cokernels. Preserving cokernels means that for any ϕ : M → N , the
canonical map F (coker(ϕ))→ coker F (ϕ) is an isomorphism.
Prove that the second property is equivalent to F being “right exact”: whenever M ′ ⊆ M is a

submodule and M ′′ = M/M ′, then F (M ′) → F (M) → F (M ′′) → 0 is “exact,” that is, the map
F (M)→ F (M ′′) (induced by the quotient map M →M ′′) is surjective and its kernel is the image of
the map F (M ′)→ F (M) induced by the inclusion map M ′ →M .

Exercise 4. Let ModR and ModS be the categories of modules over two rings R and S and let B be
an R, S-bimodule. Let HomR(B, M) be the set of R-module homomorphisms B →M , with its obvious
abelian group structure. Show that (sf)(b) = f(bs) for s ∈ S, b ∈ B, f ∈ HomR(B, M) defines a
natural S-module structure on HomR(B, M), so that HomR(B,−) becomes a functor ModR →ModS .
Show that this functor preserves limits.


