Exercise sheet 9.

Name

 $\frac{\text{Exercise } 1 \quad 2 \quad 3 \quad 4 \quad \Sigma}{\text{Points}}$

Exercise group (tutor's name)

Deadline: Friday, 14.1.2021, 16:00.

Please use this page as a cover sheet and enter your name and tutor in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. Let \mathcal{C} and \mathcal{D} be categories and let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ be functors. Show that a collection of isomorphisms $\mathcal{D}(Fc, d) \cong \mathcal{C}(c, Gd)$, $f^{\#} \mapsto f^{\flat}$, for all $c \in \mathcal{C}^{0}$, $d \in \mathcal{D}^{0}$ is natural – and hence an adjunction – if and only if for any objects $c, c' \in \mathcal{C}^{0}$, $d, d' \in \mathcal{D}^{0}$ and any morphisms $f^{\#}: Fc \to d$, $g^{\#}: Fc' \to d'$, $h: c \to c', k: d \to d'$, the left-hand square below commutes in \mathcal{D} if and only if the right-hand transposed square below commutes in \mathcal{C} :

$$\begin{array}{cccc} Fc & \xrightarrow{f^{\#}} d & c & \xrightarrow{f^{\flat}} Gd \\ \downarrow Fh & \downarrow k & \downarrow h & \downarrow Gk \\ Fc' & \xrightarrow{g^{\#}} d' & c' & \xrightarrow{g^{\flat}} Gd' \end{array}$$

Exercise 2. Construct left and right adjoint functors for the functor $\mathfrak{Cat} \to \mathfrak{Set}$ that maps a category to its set of objects, and prove the adjointness.

Exercise 3. Let R be a ring and let $U: \mathfrak{Mod}_R \to \mathfrak{Ab}$ be the forgetful functor to Abelian groups. Show that the functor $R \otimes_{\mathbb{Z}} -: \mathfrak{Ab} \to \mathfrak{Mod}_R$ is adjoint to U by describing the unit and counit and checking the triangle identities.

Exercise 4. Let \mathcal{C} and \mathcal{D} be categories and let F and G be adjoint functors, with unit $\eta: \operatorname{id}_{\mathcal{C}} \Rightarrow GF$ and counit $\varepsilon: FG \Rightarrow \operatorname{id}_{\mathcal{D}}$. Let $\mathcal{C}_1 \subseteq \mathcal{C}$ be the full subcategory whose objects are all $c \in \mathcal{C}^0$ for which η_c is an isomorphism, and let $\mathcal{D}_1 \subseteq \mathcal{D}$ be the full subcategory whose objects are all $d \in \mathcal{D}^0$ for which ε_d is an isomorphism. Show that $F(\mathcal{C}_1) \subseteq \mathcal{D}_1$ and $G(\mathcal{D}_1) \subseteq \mathcal{C}_1$ and that these restrictions $\mathcal{C}_1 \leftrightarrow \mathcal{D}_1$ are equivalences of categories that are inverse to each other.