Exercise sheet 13.

Name

 $\begin{array}{c|cccc} \mathbf{Exercise} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \boldsymbol{\Sigma} \\ \hline \mathbf{Points} & & & & & \\ \end{array}$

Exercise group (tutor's name)

Deadline: Friday, 11.2.2022, 16:00.

Please use this page as a cover sheet and enter your name and tutor in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. Dualize the definition of a *T*-algebra over a monad on a category \mathcal{C} and the adjunction between the free and forgetful functors for the category of *T*-algebras to define *T*-coalgebras over a comonad (T, η, μ) , a forgetful functor from *T*-coalgebras to \mathcal{C} and a (co)free *T*-coalgebra functor from \mathcal{C} to *T*-coalgebras that form an adjunction inducing the given comonad.

Exercise 2. For any group G, the forgetful functor from G-sets to sets admits a left adjoint, sending a set X to $G \times X$ with the translation action $g \cdot (h, x) = (g \cdot h, x)$. Prove that this adjunction is monadic; use the Monadicity Theorem.

Exercise 3. Let \mathfrak{Ab} be the category of Abelian groups and let R be a ring. Define a monad on \mathfrak{Ab} with $T(A) = R \otimes_{\mathbb{Z}} A$ for an Abelian group, using the unit and multiplication in R to define η and μ . Show that the category of T-algebras is isomorphic to the category of R-modules. Identify the Kleisli category of T with the category of free R-modules.

Exercise 4. Is the forgetful functor from the category of Abelian groups to the category of sets monadic?