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Exercise 1. (This is another important example of multiplier algebras. The result remains true for Hilbert
modules over arbitrary C∗-algebras. Feel free to prove the more general statement.) Let H be a Hilbert
space. Prove that B(H) is naturally isomorphic to the multiplier algebra of K(H).

Exercise 2. (This exercise is a way to discover the concept of a conditional expectation onto a
C∗-subalgebra.) Let B ⊆ A be a C∗-subalgebra and let E : A→ B be a map. Which properties must E
satisfy, so that A with the obvious right B-module structure and the scalar product 〈x | y〉 := E(x∗y)
becomes a pre-Hilbert B-module and the inclusion B ↪→ A becomes an isometry?

Exercise 3. (This exercise describes Hilbert modules in a way that does not require the C∗-algebra
of coefficients.) Let E ⊆ B(H,K) be a closed linear subspace with x1x

∗
2x3 ∈ E for all x1, x2, x3 ∈ E

(such spaces are called ternary rings of operators). Let B ⊆ B(H) be the closed linear span of
{x∗2x3 :x2, x3 ∈ E}. Show that B is a C∗-subalgebra of B(H) and that E is a concrete Hilbert B-module.

Exercise 4. Show that any closed B-submodule F of a Hilbert module is a Hilbert B-module in its
own right, such that the embedding F ↪→ E is isometric. Show that

F⊥ := {ξ ∈ F : ξ ∈ E , 〈ξ | η〉 = 0 for all η ∈ F}

is a closed B-submodule of E with F ∩ F⊥ = {0}. Show that the embedding F ↪→ E is adjointable if
and only if F is complementable.


