Exercise sheet 13.

Name

Exercise group (tutor's name)

Deadline: Monday, 8.7.2024, 10:00.

Please use this page as a cover sheet and enter your name and tutor in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. (This exercise describes a common source of C^{*}-correspondences. Actually, the exercise shows that these are even Hilbert bimodules, which is a bit more.) Let B be a C^{*}-algebra with a continuous circle action β . For $n \in \mathbb{Z}$, let

$$B_n := \{ b \in B : \beta_z(b) = z^n b \text{ for all } z \in \mathbb{T} \}.$$

- 1. Show that $B_0 \subseteq B$ is a C^{*}-subalgebra.
- 2. Show that B_n is a B_0 - B_0 -correspondence with the bimodule structure by multiplication in B and the inner product $\langle \xi | \eta \rangle \coloneqq \xi^* \eta$.
- 3. Fix $n \in \mathbb{Z}$. Show that the closed linear span of $\xi \eta^*$ for $\xi, \eta \in B_n$ is a closed ideal in B_0 , which we denote by I_n .
- 4. Show that $\xi\eta^*$ for $\xi, \eta \in B_n$ acts on B_n by a rank-one operator. Deduce that the left action of B_0 on B_n restricts to an isomorphism from I_n onto the C^{*}-algebra of compact operators on B_n .
- 5. Show that for $n, k \in \mathbb{Z}$ there is an isometric B_0 -bimodule map

$$B_n \otimes_{B_0} B_k \to B_{n+k}, \qquad \xi \otimes \eta \mapsto \xi \cdot \eta.$$

- 6. Now specialise to the case where $B = C^*(A, \alpha)$ for an automorphism α of a C*-algebra A, equipped with its canonical gauge action. Show that the maps $B_n \otimes_{B_0} B_k \to B_{n+k}$ are unitary for all $n, k \in \mathbb{Z}$.
- 7. Now specialise to the case where B is the Toeplitz C^{*}-algebra of a C^{*}-correspondence, equipped with its gauge action. Show that the map $B_n \otimes_{B_0} B_k \to B_{n+k}$ is unitary if n, k have the same sign, but not if they have different sign.
- 8. Now specialise to the case where B is the Cuntz–Pimsner algebra of a C^{*}-correspondence. Can you find some necessary or sufficient criteria for the map $B_n \otimes_{B_0} B_k \to B_{n+k}$ to be unitary?

Exercise 2. Let V be a discrete set. Let $A = C_0(V)$ and let \mathcal{E} be an A-A-correspondence. Let $\varphi: A \to \mathbb{B}(\mathcal{E})$ be the left action. (This exercise classifies the A-A-correspondences.)

- 1. For each $v \in V$, let $\chi_v \in C_0(V)$ be the characteristic function of $\{v\}$ and let $\mathcal{E}_v \coloneqq \mathcal{E} \cdot \chi_v \subseteq \mathcal{E}$. Show that this becomes a Hilbert space with the inner product $\langle \xi | \eta \rangle_v \coloneqq \langle \xi | \eta \rangle_{C_0(V)}(v)$.
- 2. Show that \mathcal{E} is the C₀-direct sum of the Hilbert spaces \mathcal{E}_v for $v \in V$:

$$\mathcal{E} = \left\{ (\xi_v)_{v \in V} \in \prod_{v \in V} \mathcal{E}_v : (v \mapsto ||\xi_v||) \in \mathcal{C}_0(V) \right\}.$$

- 3. Let $a_{w,v}$ be the dimension of $\chi_w \cdot \mathcal{E} \cdot \chi_v = \chi_w \mathcal{E}_v$. (You may assume that the Hilbert spaces \mathcal{E}_v are all separable if you do not feel familiar with uncountable cardinalities.) Show that two A-A-correspondences are isomorphic if and only if they produce the same dimensions $a_{w,v}$ for all $w, v \in V$.
- 4. Show that $\varphi(\chi_w) \in \mathbb{B}(\mathcal{E})$ is in $\mathbb{K}(\mathcal{E})$ if and only if the cardinality $\sum_{v \in V} a_{w,v}$ is finite.
- 5. Show that the ideal $(\operatorname{Ker} \varphi)^{\perp} \cap \varphi^{-1}(\mathbb{K}(\mathcal{E})) \subseteq C_0(V)$ is $C_0(V_{\operatorname{reg}})$, where

$$V_{\text{reg}} \coloneqq \bigg\{ v \in V : 0 < \sum_{v \in V} a_{w,v} < \infty \bigg\}.$$