
HILBERT C∗-MODULES AND CORRESPONDENCES,
CUNTZ–PIMSNER ALGEBRAS

RALF MEYER

This is an excerpt of an unfinished book project by me. It is a bit too advanced
for this course, but may be useful nevertheless, if you just ignore the things that I
did not cover in class.

1. Hilbert C∗-modules

We begin by motivating the definition of a Hilbert C∗-module. Let A and B be
C∗-algebras and let E be an A,B-bimodule. In order to be compatible with the
C∗-algebra structure on A and B, we want extra structure on E that allows us to
map Hilbert space representations of B to Hilbert space representations of A in a
natural way. This should be done by completing E ⊗B H in some “well behaved”
inner product if H is a Hilbert space with a representation ϕ : B → B(H).

There are two issues: first, we need an inner product on E ⊗BH and, secondly, we
need the homomorphism ψ : A→ End(E ⊗BH) defined by ψ(a)(x⊗ y) := (a ·x)⊗ y
to extend to a representation on the Hilbert space completion of E ⊗B H. The
concepts of a Hilbert B-module and an A,B-correspondence address these two
issues. In this section, we focus on the first issue.

Let ϕ : B → B(H) be a representation. We want to guess a formula for the inner
product on E ⊗B H. If x ∈ E , define
(1.1) |x〉 : H → E ⊗B H, y 7→ x⊗ y.
the inner product on E ⊗B H should make these operators bounded. Then the
adjoint |x〉∗ : E ⊗B H → H is defined because H is a Hilbert space. Thus we get
operators |x1〉∗|x2〉 ∈ B(H) for x1, x2 ∈ E . We write 〈x| := |x〉 for x ∈ E . We expect
the inner product on E ⊗B H to be “natural”. In particular, if U is a unitary in the
commutant B′ of B ⊆ B(H), then the induced operator id⊗B U on E ⊗B H should
also be unitary. Then

〈x1||x2〉U = 〈x1|(id⊗B U)|x2〉 = ((id⊗B U∗)|x1〉)∗|x2〉 = (|x1〉U∗)∗|x2〉
= U〈x1||x2〉.

Then 〈x1||x2〉 belongs to the bicommutant ϕ(B)′′ for all x1, x2 ∈ E because the
unital C∗-algebra ϕ(B)′ is spanned by its unitaries. Now we come to our most
restrictive assumption: we even assume 〈x1||x2〉 ∈ ϕ(B) for all x1, x2 ∈ E . If ϕ is
faithful, this gives a map

E × E → B, (x1, x2) 7→ 〈x1 |x2〉 := ϕ−1(|x1〉∗|x2〉
)
.

This B-valued inner product pins down the inner product on E ⊗B H because〈
x1 ⊗ y1

∣∣x2 ⊗ y2
〉

=
〈
|x1〉y1

∣∣ |x2〉y2
〉

=
〈
y1
∣∣ |x1〉∗|x2〉y2

〉
=
〈
y1
∣∣ϕ(〈x1 |x2〉

)
y2
〉

for all x1, x2 ∈ E , y1, y2 ∈ H and the inner product is sesquilinear.

Remark 1.1. The bicommutant ϕ(B)′′ is the closure of ϕ(B) in the strong operator
topology. If ϕ : C0(X)→ B(L2(X,µ)) is a cyclic representation of a commutative
C∗-algebra, then ϕ(B)′′ = L∞(X,µ). So assuming that an element of ϕ(B)′′ belongs
to ϕ(B) is like assuming that a measurable function is continuous.
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The B-valued inner product on E has the following properties. First, it is
linear in the second variable and conjugate-linear in the first variable. Secondly,
〈x1 ·b1 |x2 ·b2〉 = b∗1 ·〈x1 |x2〉·b2 for all x1, x2 ∈ E , b1, b2 ∈ B because |x ·b〉 = |x〉ϕ(b).
Third, 〈x1 |x2〉∗ = (|x1〉∗|x2〉)∗ = |x2〉∗|x1〉 = 〈x2 |x1〉 for all x1, x2 ∈ E . And
〈x |x〉 = |x〉∗|x〉 ≥ 0 for all x ∈ E . In addition, it is reasonable to assume |x〉 6= 0
for x 6= 0. This is equivalent to 〈x |x〉 6= 0 for x 6= 0. We turn these properties of
our construction into a definition:

Definition 1.2. Let B be a C∗-algebra. A pre-Hilbert B-module is a right
B-module E with an inner product 〈␣ | ␣〉B : E × E → B such that

(1) 〈␣ | ␣〉B is linear in the second variable;
(2) 〈x1 |x2 · b〉B = 〈x1 |x2〉B · b for all x1, x2 ∈ E , b ∈ B;
(3) 〈x1 |x2〉∗B = 〈x2 |x1〉B for all x1, x2 ∈ E ;
(4) 〈x |x〉B ≥ 0 for all x ∈ E ;
(5) 〈x |x〉B 6= 0 for x 6= 0, x ∈ E .

Conditions (1)–(3) imply that 〈␣ | ␣〉B is conjugate-linear in the first variable and
satisfies

〈x1 · b1 |x2 · b2〉B = b∗1 · 〈x1 |x2〉B · b2

for all x1, x2 ∈ E , b1, b2 ∈ B.
We will define a Hilbert B-module as a pre-Hilbert B-module that is complete in

a certain natural norm. Before we come to this, we show that the assumptions in
Definition 1.2 suffice to define inner products as above:

Proposition 1.3. Let B be a C∗-algebra, E a pre-Hilbert B-module, H a Hilbert
space, and ϕ : B → B(H) a representation. The sesquilinear extension of
(1.2) 〈x1 ⊗ y1 |x2 ⊗ y2〉 := 〈y1 |ϕ(〈x1 |x2〉B)y2〉H
for x1, x2 ∈ E, y1, y2 ∈ H is a positive semidefinite inner product on E ⊗B H. If ϕ
is faithful, then the conditions (1)–(4) in Definition 1.2 are necessary for this.

Let x ∈ E. There is a bounded operator H → E ⊗B H with |x〉y := x ⊗ y for
y ∈ H. It satisfies ∥∥|x〉∥∥ ≤ ∥∥〈x |x〉B∥∥1/2

,

with equality if ϕ is faithful. And if x1, x2 ∈ E, y ∈ H, then
|x1〉∗(x2 ⊗ y) = ϕ

(
〈x1 |x2〉B

)
y, |x1〉∗|x2〉 = ϕ

(
〈x1 |x2〉B

)
.

Proof. To simplify notation, we assume ϕ to be faithful. We are going to prove
that various properties of the inner product on E ⊗B H are equivalent to similar
properties of the B-valued inner product on E . In each case, we only need ϕ to
be faithful to go from the inner product on E ⊗B H to the B-valued inner product
on E . So the arguments below prove what is claimed in the proposition also for
non-faithful representations ϕ.

By convention, Hilbert space inner products are linear in the second and conjugate-
linear in the first variable. The formula in (1.2) well defines such a sesquilinear map
on E ⊗H if E is a pre-Hilbert module. Conversely, (1) in Definition 1.2 is necessary
for this to work. The sesquilinear map on E ⊗H descends to E ⊗B H if and only if
the following holds:

〈x1 · b⊗ y1 |x2 ⊗ y2〉 = 〈x1 ⊗ b · y1 |x2 ⊗ y2〉,
〈x1 ⊗ y1 |x2 · b⊗ y2〉 = 〈x1 ⊗ y1 |x2 ⊗ b · y2〉.

This is equivalent to
〈x1 |x2 · b〉B = 〈x1 |x2〉B · b,
〈x1 · b |x2〉B = b∗ · 〈x1 |x2〉B .
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The symmetry property 〈ξ1 | ξ2〉 = 〈ξ2 | ξ1〉 for ξ1, ξ2 ∈ E ⊗B H required for inner
products is equivalent to 〈x1 |x2〉∗B = 〈x2 |x1〉B for all x1, x2 ∈ B. Write ξ ∈ E⊗BH
as ξ =

∑n
i=1 xi ⊗ yi with xi ∈ E , yi ∈ H. What does the positivity of 〈ξ | ξ〉 ≥ 0

mean? We expand

〈ξ | ξ〉 =
n∑

i,j=1

〈
yi
∣∣ϕ(〈xi |xj〉B)yj

〉
= 〈Y |ϕn(X)Y 〉

with Y = (y1, . . . , yn) ∈ Hn and

X =
(
〈xi |xj〉B

)
i,j=1,...,n ∈Mn(B).

Since ϕ induces a faithful representation of Mn(B) on Hn, 〈ξ | ξ〉 ≥ 0 for all
ξ ∈ E ⊗BH if and only if X ≥ 0 in Mn(B) for all x1, . . . , xn ∈ E . All these positivity
conditions already follow from the case n = 1:

Lemma 1.4. If 〈x |x〉B ≥ 0 for all x ∈ E, then X ≥ 0 in Mn(B) for all x1, . . . , xn ∈
E.

Proof. Let b1, . . . , bn ∈ B. Then

0 ≤ 〈x1b1 + · · ·+ xnbn |x1b1 + · · ·+ xnbn〉B

=
n∑

i,j=1
b∗i 〈xi |xj〉Bbj =

n∑
i,j=1

b∗iXijbj .

We claim that a matrix X in Mn(B) is positive if and only if
∑n
i,j=1 b

∗
iXijbj ≥ 0 for

all b1, . . . , bn ∈ B. This is necessary because the sum is b∗ ·X · b for b the column
vector with entries bi. For sufficiency, we first show that ψn(X) ≥ 0 in B(Hn) for
any cyclic representation ψ : B → B(H). Let y0 ∈ H be the cyclic vector. Then
ψ(B)y0 ⊆ H is dense. If η ∈ (ψ(B)y0)n ⊆ Hn, then write ηi = ψ(bi)y0; we compute

〈η |ψn(X)η〉 =
n∑

i,j=1
〈y0 |ψ(b∗iXijbj)y0〉 ≥ 0.

Then ψn(X) ≥ 0 in B(Hn) because vectors of this form are dense in Hn. If B is
separable, then it has a faithful state and hence a faithful cyclic representation ψ
by the GNS-construction; then the representation ψn of Mn(B) is faithful as well,
and we are done. In general, we may decompose a faithful representation of B into
cyclic subrepresentations and apply the result to these. Thus X ≥ 0 in Mn(B) if
ψn(X) ≥ 0 for all cyclic representations ψ. �

So far, we have seen the following: if E is a pre-Hilbert module, then (1.2) defines
a positive semi-definite inner product on E ⊗B H, and the converse holds if ϕ is
faithful. Define |x1〉 : H → E ⊗BH as above, and define 〈x1| : E ⊗BH → H by linear
extension of 〈x1|(x2 ⊗ y) := ϕ(〈x1 |x2〉B)y. If x1, x2 ∈ E , y1, y2 ∈ H, then

〈|x1〉y1 |x2 ⊗ y2〉 = 〈x1 ⊗ y1 |x2 ⊗ y2〉 = 〈y1 |ϕ(〈x1 |x2〉B)y2〉 = 〈y1 | 〈x1|(x2 ⊗ y2)〉.

Hence 〈x1| = |x1〉∗. Thus |x1〉∗|x2〉 = 〈x1||x2〉 = ϕ(〈x1 |x2〉B). This implies∥∥|x1〉
∥∥ =

∥∥|x1〉∗|x1〉
∥∥1/2 =

∥∥ϕ(〈x1 |x1〉
∥∥1/2 ≤

∥∥〈x1 |x1〉B
∥∥1/2

,

with equality if ϕ is faithful. This finishes the proof of Proposition 1.3. �

Let E be a pre-Hilbert module. Then ‖〈x |x〉B‖1/2 = ‖|x〉‖ is a norm on E by
Proposition 1.3. This is nontrivial.

Definition 1.5. A Hilbert B-module is a pre-Hilbert B-module that is complete in
the norm ‖x‖ := ‖〈x |x〉B‖1/2.
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Remark 1.6. Hilbert modules over commutative unital C∗-algebras were introduced
by Kaplansky [13]. Paschke [22] generalised them to general C∗-algebras. They
became popular through the work of Rieffel [24].

Exercise 1.7. If E is only a pre-Hilbert B-module, then the completion of E in the
norm above is a Hilbert B-module.

Example 1.8. Hilbert C-modules are the same as Hilbert spaces.

Example 1.9. Any C∗-algebra B is a Hilbert module over itself for the standard
right module structure and inner product 〈x | y〉B := x∗y for x, y ∈ B.

Example 1.10. Let B be a C∗-algebra and n ∈ N. Equip Bn with the usual right
B-module structure and the inner product

(1.3)
〈
(x1, . . . , xn)

∣∣ (y1, . . . , yn)
〉
B

:=
n∑
i=1

x∗i yi.

This is a Hilbert B-module. It is complete because the norm on Bn from the inner
product lies between max{‖bi‖} and

∑
‖bi‖ and Bn is complete in any such norm.

Letting n→∞, we get a pre-Hilbert module structure on
⋃
n∈NB

n, the algebraic
direct sum of countably many copies of B. Its Hilbert module completion is

(1.4) B∞ :=
{

(bi)i∈N ∈
∏
i∈N

B :
∑
i∈N

b∗i bi converges in B
}
.

This Hilbert module is called the standard Hilbert B-module because of Kasparov’s
Stabilisation Theorem (see Section 10).

Example 1.11. More generally, the direct sum En of n copies of a Hilbert module E
is a Hilbert module with the induced right module structure and the inner product
as in (1.3). The argument is the same as for Example 1.10.

Exercise 1.12. Let E be a Hilbert B-module and let π : B � A be a surjective
∗-homomorphism. Let E0 := {x ∈ E : 〈x |x〉B ∈ kerπ} and E1 := E/E0. Show that E0
is a Hilbert module over kerπ and that E1 is a Hilbert A-module in a canonical way.

Exercise 1.13. Let X be a locally compact space. A continuous field of Hilbert
spaces is a family of Hilbert spaces (Hx)x∈X with a subspace H ⊆

∏
x∈X Hx, whose

elements are called continuous sections, such that
• H is closed under pointwise multiplication by C0(X);
• if ξ, η ∈ H, then the function x 7→ 〈ξx | ηx〉 belongs to C0(X);
• H ⊆

∏
x∈X Hx is closed in the norm ‖(ξx)x∈X‖ := sup ‖ξx‖;

• for any x ∈ X, the evaluation map H → Hx is surjective.
(Compare the concept of a continuous field of C∗-algebras.) Show that H with the
pointwise multiplication by C0(X) and the pointwise inner product is a Hilbert
C0(X)-module. Show that any Hilbert C0(X)-module is isomorphic to one of this
form for a continuous field of Hilbert spaces, which is unique up to isomorphism.
(Use Exercise 1.12 to construct the fibres Hx.)

Remark 1.14. If E is a Hilbert B-module, then 〈ξ | ξ〉 6= 0 for ξ 6= 0 in E ⊗B H
(see Proposition 5.13). It is unclear whether this still holds if E is a pre-Hilbert
B-module. Thus the nondegeneracy of the inner product on E is necessary and
almost sufficient for the inner product on E ⊗B H to be positive definite.

Remark 1.15. Let E be a B-module with a B-valued inner product that satisfies the
conditions (1)–(4) in Definition 1.2, but not (5). Then the proof of Proposition 1.3
goes through without change. But now ‖x‖ := ‖〈x |x〉‖1/2 is only a seminorm on E .
Its null space is the subset of all x ∈ E with 〈x |x〉B = 0. It follows that this is a
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right B-submodule in E . In addition, the B-valued inner product on E descends
to the quotient E/E0, and this is an honest pre-Hilbert module. Since the map
E ⊗B H → E/E0 ⊗B H induced by the quotient map preserves the inner products,
E ⊗B H and E/E0 ⊗B H have the same Hilbert space completion. Therefore, we
gain only irrelevant generality by allowing degenerate B-valued inner products.

Proposition 1.3 shows that any Hilbert module may be realised concretely through
a space of operators. This is a powerful tool to reduce statements about Hilbert
modules to statements about Hilbert space operators and their operator norms. It
is worthwhile to turn this into a definition:

Definition 1.16. Let ϕ : B → B(H) be a faithful representation. A concrete
Hilbert B-module relative to ϕ is a norm-closed subspace E ⊆ B(H,K) for a Hilbert
space K, such that Eϕ(B) ⊆ E and E∗E ⊆ ϕ(B). A concrete Hilbert B-module is
nondegenerate if EH, the closed linear span of x(y) for x ∈ E , y ∈ H, is equal to K.

If E ⊆ B(H,K) is a concrete Hilbert B-module, then the obvious right B-module
structure and the inner product 〈x1 |x2〉B := x∗1 ◦ x2 make it a Hilbert B-module.

Lemma 1.17. Any Hilbert module E is isomorphic to a concrete one.

Proof. Let ϕ : B → B(H) be any faithful representation. Let K be the completion
of E ⊗B H in the inner product (1.2). Proposition 1.3 gives an isometric linear
map E ↪→ B(H,K), x 7→ |x〉. Since E is complete, its image is norm-closed. And
|x · b〉 = |x〉ϕ(b) and |x1〉∗|x2〉 = ϕ(〈x1 |x2〉B) ∈ ϕ(B) for all x, x1, x2 ∈ E , b ∈ B.
Thus {|x〉 :x ∈ E} is a concrete Hilbert B-module, and it defines the Hilbert
B-module structure on E . �

Exercise 1.18. Let E ⊆ B(H,K) be a closed linear subspace with x1x
∗
2x3 ∈ E for

all x1, x2, x3 ∈ E (such spaces are called ternary rings of operators and were first
studied in [25]). Let B ⊆ B(H) be the closed linear span of {x∗2x3 :x2, x3 ∈ E}. Show
that B is a C∗-subalgebra of B(H) and that E is a concrete Hilbert B-module.

The triangle inequality for the norm ‖〈x |x〉B‖1/2 on a Hilbert module is usually
proven using a generalisation of the Cauchy–Schwarz inequality to Hilbert modules.
We have followed a different route. To relate the two proofs, we formulate the
Cauchy–Schwarz inequality in Proposition 1.19 and assert in Exercise 1.20 that it is
weaker than Lemma 1.4, which is a key step in our proof.

Proposition 1.19. Let E be a pre-Hilbert module and x1, x2 ∈ E. Then

〈x1 |x2〉B · 〈x1 |x2〉∗B ≤ ‖〈x2 |x2〉B‖ · 〈x1 |x1〉B
and ‖〈x1 |x2〉B‖ ≤ ‖x1‖‖x2‖. Both inequalities are called Cauchy–Schwarz inequal-
ity.

Proof. We may realise E ⊆ B(H,K) as a concrete Hilbert module by choosing a
faithful representation of B on a Hilbert space H and taking K := E ⊗B H. Then
〈x1 |x2〉B = x∗1x2 in B(H,H) and so

〈x1 |x2〉B · 〈x1 |x2〉∗B = x∗1x2x
∗
2x1 ≤ x∗1‖x2x

∗
2‖x1 = ‖〈x2 |x2〉B‖ · 〈x1 |x1〉B .

Then ‖〈x1 |x2〉B‖ ≤ ‖x1‖‖x2‖ follows using the C∗-identity for B. �

Exercise 1.20 (see [3]). The case n = 2 of Lemma 1.4 says that(
〈x1 |x1〉B 〈x1 |x2〉B
〈x2 |x1〉B 〈x2 |x2〉B

)
≥ 0

in M2(B) for all x1, x2 ∈ H. Show that this implies the Cauchy–Schwarz inequality.
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Remark 1.21. I am not aware of a source that uses concrete Hilbert modules
systematically to prove basic results about Hilbert modules. A more general concept
of a concrete Hilbert module is introduced in [18]. The goal in [18] is to concretely
represent Hilbert modules over the reduced crossed product C∗-algebra Aor G for a
continuous action α : G→ Aut(A) of a locally compact group G. Operators between
Hilbert A-modules are used for this purpose. So the purpose in [18] is to reduce
Hilbert modules over a complicated C∗-algebra such as Aor,αG to Hilbert modules
over a simpler C∗-algebra such as the coefficient algebra A, but not to develop the
theory of Hilbert modules from scratch.

2. Correspondences between C∗-algebras

Let E be an A,B-bimodule with a B-valued inner product that makes it a Hilbert
B-module. Let H be a Hilbert space with a representation ϕ : B → B(H). We now
change our notation slightly: we write E �B H for the algebraic tensor product. In
Section 1, we have equipped E �B H with a natural inner product. From now on,
we let E ⊗B H be the Hilbert space completion of E �B H.

The bimodule structure on E gives an algebra homomorphism
ψ : A→ End(E �B H), ψ(a)(x⊗ y) := (a · x)⊗ y.

We want this to extend to a representation of A on the completion E ⊗B H. In
particular, we want ψ(a∗) and ψ(a) for a ∈ A to be adjoints of one another. This
happens if and only if〈

(a · x1)⊗ y1
∣∣x2 ⊗ y2

〉
=
〈
x1 ⊗ y1

∣∣ (a∗ · x2)⊗ y2
〉

for all x1, x2 ∈ E , y1, y2 ∈ H. And this is equivalent to
(2.1) 〈ax1 |x2〉B = 〈x1 | a∗x2〉B
for all x1, x2 ∈ E , a ∈ A, if ϕ is faithful.

Lemma 2.1. If (2.1) holds, then the homomorphism ψ : A→ End(E �BH) extends
to a ∗-homomorphism A→ B(E ⊗B H). It is nondegenerate if A · E is norm-dense
in E.

Proof. We replace A by A+ to make it unital. Any A-module structure extends
to A+ by letting 1 ∈ A+ act by the identity map, and (2.1) still holds for a ∈ A+.
If u ∈ A+ is unitary, then 〈ux1 |ux2〉B = 〈x1 |u∗ux2〉B = 〈x1 |x2〉B. Hence the
invertible operator u �B idH on E �B H is unitary for our inner product. So it
induces a unitary operator on E ⊗B H. Any element of a unital C∗-algebra such
as A+ is a linear combination of unitaries. Therefore, for any a ∈ A+ there is a
bounded linear operator on E ⊗B H that acts by x⊗ y 7→ (ax)⊗ y on the image of
E �B H. On the pre-Hilbert space E �B H, the left action of A is multiplicative,
and (2.1) gives compatibility with inner products. This remains true on the Hilbert
space E ⊗B H. So the map A→ B(E ⊗B H) is a ∗-homomorphism. Since E �B H is
dense in E ⊗B H, A · E ⊗B H is dense in E ⊗B H if A · E is dense in E . �

Remark 2.2. If A · E is not dense in E , then there are a Hilbert space H and a
representation ϕ : B → B(H) such that (A · E)⊗B H is not dense in E ⊗B H (see
Theorem 7.14 below). Then the representation of A on E ⊗B H is degenerate.

Definition 2.3. An A,B-correspondence is a Hilbert B-module E with a nonde-
generate left A-module structure satisfying (2.1). By convention, we think of a
correspondence as an arrow from B to A and write E : A C B if E is an A,B-
correspondence.

Remark 2.4. The assumption (2.1) implies a(xb) = (ax)b for all a ∈ A, x ∈ E , b ∈ B
(see Lemma 3.2). So A,B-correspondences are A,B-bimodules.
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If S : H1 ↪→ H2 is an isometric intertwiner between two representations of B,
then idE �B S : E �B H1 ↪→ E �B H2 is an isometric A-module map. Therefore, it
extends to an isometric intertwiner

idE ⊗B S : E ⊗B H1 ↪→ E ⊗B H2

for the induced representations of A. The trick in the proof of Lemma 2.1 shows
that the same remains true for bounded intertwiners. We have shown:

Proposition 2.5. Let E be an A,B-correspondence. There are functors E ⊗B ␣
between the categories of Hilbert space representations of A and B with intertwining
unitaries, isometries, or bounded linear operators as arrows.

To construct this functor, we needed all the conditions in Definition 1.2 and
Definition 2.3 except condition (5) in Definition 1.2 and the completeness of E .
These two unnecessary conditions do not reduce generality because we may arrange
them by Hausdorff completing E .

Example 2.6. Let T′ be T as a set, but topologised as the disjoint union of T \ {1}
and the point {1}. The identity map is continuous as a map T′ → T, but not
the other way around. So C(T) ⊆ Cb(T′) = M(C0(T′)), and any Hilbert space
representation of C0(T′) determines one of C(T). Conversely, a Hilbert space
representation of C(T) extends uniquely to Borel functions on T. These are the
same as the Borel functions on T′. So we get a ∗-homomorphism on C0(T′). The
Borel functional calculus is built so that C0(T \ {1}) ⊆ C0(T′) acts in the same way
as it does as an ideal in C(T) and the characteristic function of {1} acts by the
projection to the corresponding eigenspace of the representation. This representation
of C0(T′) is nondegenerate. The usual universal representation i : Z→ C∗(Z) ∼= C(T)
also defines a representation i′ : Z→ U(C0(T′)) because of the inclusion morphism
C(T) M C0(T′). Let U be a representation of Z on a Hilbert space H. The
functional calculus for U(1) is the unique representation π of C(T) on H with
U = π∗(i). The corresponding representation π′ of C0(T′) on H satisfies U = π′∗(i′).
And it is the only representation with that property. So the representation i′ of Z
in C0(T′) has the property that any Hilbert space representation of Z is of the
form π∗(i′) for a unique representation π of C0(T′). Nevertheless, C0(T′) is not
isomorphic to the group C∗-algebra of Z.

Remark 2.7. The equivalence from the Hilbert space representation category of C(T)
to that of C(T′) in Example 2.6 does not come from any C(T′),C(T)-correspondence.
The analogy to the purely algebraic theory of Morita equivalence for rings breaks
down at this point. In the C∗-algebraic setting, the interesting concept is what
Rieffel calls “strong Morita equivalence”. Beer [4] gives many more examples of
equivalences of Hilbert space representation categories that do not come from a
C∗-correspondence.

Definition 2.8. Let A and B be C∗-algebras, let H and K be Hilbert spaces, and
let α : A → B(K) and β : B ↪→ B(H) be representations, where β is faithful. A
concrete correspondence A C B is a norm-closed subspace E ⊆ B(H,K) such that
α(a)x, xβ(b) ∈ E and x∗y ∈ β(B) for all a ∈ A, x, y ∈ E , b ∈ B, and AE = E .

A concrete correspondence is a correspondence with the obvious bimodule struc-
ture and inner product. Up to isomorphism, any correspondence is of this form:

Lemma 2.9. Any correspondence E : A C B is isomorphic to a concrete correspon-
dence, where any faithful representation β : B → B(H) may be chosen. In addition,
we may arrange that α is faithful or the concrete correspondence is nondegenerate
(as a concrete Hilbert B-module). It may be impossible to get both extra properties
together.
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Proof. Realise E as a concrete correspondence in B(H, E ⊗B H) as in the proof
of Lemma 1.17. Lemma 2.1 gives a representation α : A → B(E ⊗B H) with
α(a)(x ⊗ y) = (ax) ⊗ y for all a ∈ A, x ∈ E , y ∈ H. This identifies E with a
nondegenerate concrete A,B-correspondence in B(H, E ⊗B H). We may arrange
for α to be faithful by taking (E ⊗B H)⊕K with a faithful representation of A on K
and by realising E through the operators |x〉 ⊕ 0: H → (E ⊗B H) ⊕ K. If E = 0,
then EH = 0 and so nondegeneracy is incompatible with α being faithful. �

Example 2.10. Hilbert C-modules are the same as Hilbert spaces. A correspondence
A C C is a Hilbert space representation of A, with the usual nondegeneracy condi-
tion. A correspondence C C B is just a Hilbert B-module: the only nondegenerate
action of C is through scalar multiples of the identity map.

Example 2.11. Let f : A M B be a morphism. Then B with the right Hilbert
B-module structure from Example 1.9 and the left A-module structure defined by
a · b := f(a)b is an A,B-correspondence because

〈a · b1 | b2〉 := (f(a)b1)∗b2 = b∗1(f(a)∗b2) = 〈b1 | a∗ · b2〉
for all a ∈ A, b1, b2 ∈ B.

3. Adjointable and compact operators on Hilbert modules

A representation of a C∗-algebra A on a Hilbert spaceH is the same as a morphism
A M K(H). We are going to introduce a C∗-algebra of compact operators on a
Hilbert module so that the same is true for representations on Hilbert modules,
that is, for correspondences. First we describe the analogue of the C∗-algebra of
bounded operators on a Hilbert space. For Hilbert module operators, the existence
of an adjoint is not automatic (see Example 3.4 below). Since we want a C∗-algebra
of operators, we only allow operators that are adjointable in the following sense:

Definition 3.1. Let E1 and E2 be Hilbert B-modules. A map f : E1 → E2 is
adjointable if there is a map f∗ : E2 → E1, called its adjoint, with 〈x | f(y)〉 =
〈f∗(x) | y〉 for all x ∈ E2, y ∈ E1. Let B(E1, E2) be the set of adjointable operators
from E1 to E2.

Lemma 3.2. If f is an adjointable operator then f and f∗ are bounded, linear
B-module homomorphisms.

Proof. Let x1, x2, y ∈ E , b ∈ B and λ ∈ C. Then

〈y | f(x1 + λx2b)〉 = 〈f∗y |x1 + λx2b〉
= 〈f∗y |x1〉+ λ〈f∗y |x2〉b = 〈y | f(x1) + λf(x2)b〉.

That is, f is linear and B-linear. We use the Closed Graph Theorem to show that f
is bounded: it suffices to prove that its graph is closed. Let xn → x and f(xn)→ y
in E and let z ∈ E . Then

‖〈y − f(x) | z〉‖ = lim ‖〈f(xn − x) | z〉‖
= lim ‖〈xn − x | f∗z〉‖ ≤ lim ‖xn − x‖ · ‖f∗z‖ = 0.

This implies ‖f(x)− y‖ = 0 and then f(x) = y. �

Proposition 3.3. The adjointable operators form a unital C∗-algebra B(E) with
the operator norm ‖f‖ := sup{‖f(x)‖ :x ∈ E , ‖x‖ = 1}.

Proof. If f1, f2 are adjointable operators and λ1, λ2 ∈ C, then λ1f1 + λ2f2 is
adjointable with adjoint λ1f

∗
1 +λ2f

∗
2 , and f1f2 is adjointable with adjoint f∗2 f∗1 . If f

is adjointable, then so is f∗ with f∗∗ = f . The identity operator is its own adjoint.
Thus B(E) is a unital ∗-algebra. The operator norm on B(E) is submultiplicative.
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If x, y ∈ E , then ‖〈y |x〉‖ ≤ ‖x‖ · ‖y‖ because of the Cauchy–Schwarz inequality in
Proposition 1.19. Taking y = ‖x‖−1/2 · x shows that

‖x‖ = sup{‖〈y |x〉‖ : y ∈ E , ‖y‖ ≤ 1}.
This implies
‖f‖ := sup{‖f(x)‖ :x ∈ E , ‖x‖ ≤ 1} = sup{‖〈y | f(x)〉‖ :x, y ∈ E , ‖x‖, ‖y‖ ≤ 1}.

This symmetric expression for the operator norm of f implies ‖f‖ = ‖f∗‖. Since the
operator norm is submultiplicative, this implies ‖f∗f‖ ≤ ‖f∗‖ · ‖f‖ = ‖f‖2. The
following computation gives the other half of the C∗-identity:
‖f∗f‖ = sup{‖〈y | f∗fx〉‖} = sup{‖〈fy | fx〉‖} ≥ sup{‖〈fx | fx〉‖} = ‖f‖2.

Here the suprema run over x, y ∈ E with ‖x‖, ‖y‖ ≤ 1 as above.
Finally, we prove that B(E) is complete. If (fn) is a Cauchy sequence, then so is

(f∗n) because ‖f‖ = ‖f∗‖. Hence both (fn) and (f∗n) converge to linear operators f
and f∗, respectively. By the Cauchy–Schwarz inequality, 〈x | fny〉 and 〈f∗nx | y〉 are
also Cauchy sequences, which converge to 〈x | fy〉 and 〈f∗x | y〉, respectively. Then

〈x | fy〉 = lim 〈x | fny〉 = lim 〈f∗nx | y〉 = 〈f∗x | y〉.
That is, f∗ is adjoint to f . Hence lim fn = f in B(E), proving completeness. �

There are bounded B-module homomorphisms that are not adjointable:

Example 3.4. Let B = C[0, 1], E1 = C0(0, 1], E2 = B with the obvious Hilbert
B-module structures. The inclusion map ι : E1 ↪→ E2 is a bounded linear B-module
homomorphism, even isometric; but it has no adjoint. To see this, assume that
ι∗ : E2 → E1 were an adjoint; let ξ ∈ E1 be the function x 7→ x; then

x = evx(〈ξ | 1〉B) = evx(〈ι(ξ) | 1〉) = evx(〈ξ | ι∗(1)〉) = x · (ι∗1)(x);
thus (ι∗1)(x) = 1 for all x 6= 0, which contradicts ι∗1 ∈ C0(0, 1].

To get an example with E1 = E2, take E := E1 ⊕ E2 and the operator
T : E → E , T (x1, x2) := (0, x1).

Definition 3.5. Let F be a closed B-submodule of a Hilbert B-module E . The
orthogonal complement of F is the set

F⊥ := {y ∈ E : 〈x | y〉 = 0 for all x ∈ F}.
We call F complementable if F + F⊥ = E .

Exercise 3.6. Show that any closed B-submodule F of a Hilbert module is a Hilbert
B-module in its own right, such that the embedding F ↪→ E is isometric. Show
that F⊥ is a closed B-submodule of E with F ∩F⊥ = {0}. Show that the embedding
F ↪→ E is adjointable if and only if F is complementable.

Definition 3.7. Let E be a pre-Hilbert B-module. For x ∈ E , define
〈x| : E → B, z 7→ 〈x | z〉B ,
|x〉 : B → E , b 7→ x · b.

Remark 3.8. This notation clashes with the definition of |x〉 in (1.1), which we
shall not use any more from now on. This confusion is not so bad because the two
uses of the notation |x〉 are very closely related. Let ϕ : B → B(H) be a faithful
representation. Then B ⊗B H ∼= H when we view B as a Hilbert B-module as in
Example 1.9. The operators 〈x| : E → B and |x〉 : B → E in Definition 3.7 induce
operators

|x〉 ⊗B 1: H ∼= B ⊗B H ↔ E ⊗B H : 〈x| ⊗B 1
(compare Theorem 3.16). These are the operators |x〉∗ and |x〉 as in (1.1).
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Lemma 3.9. With the notation la(b) := a · b, the following formulas hold:

|λ1x1 + λ2x2〉 = λ1|x1〉+ λ2|x2〉, 〈λ1x1 + λ2x2| = λ1〈x1|+ λ2〈x2|,
|x · a〉 = |x〉la, 〈x · a| = la∗〈x|,
|T (x)〉 = T |x〉, 〈T (x)| = 〈x|T ∗,
|x〉∗ = 〈x|, 〈x1||x2〉 = l〈x1 | x2〉B .

Proof. All claims are direct computations. As a sample, we check |x〉∗ = 〈x|:〈
y
∣∣ |x〉b〉

B
=
〈
y
∣∣xb〉

B
=
〈
y
∣∣x〉

B
b =

〈
〈x | y〉B

∣∣ b〉 =
〈
〈x|y

∣∣ b〉
B
. �

Definition 3.10. For Hilbert B-modules E and F , let K(E ,F) ⊆ B(E ,F) be the
closed linear span of the operators |x〉〈y| with x ∈ F , y ∈ E . Let K(E) := K(E , E).

By Lemma 3.9, K(E) is a two-sided ∗-ideal in B(E).

Example 3.11. If B = C, then E and F are Hilbert spaces; the operators of the
form |x〉〈y| are the rank-one operators. Taking the linear span yields the finite-rank
operators. Hence K(E ,F) is the closure of the space of finite-rank operators.

Proposition 3.12 ([5, Lemme 1.3]). For any x ∈ E there is y ∈ E with x =
y〈y | y〉B = |y〉〈y|y.

Proof. Realise E as a concrete Hilbert module E ⊆ B(H,K) by Lemma 2.9. Thus
y〈y | y〉B = yy∗y for all y ∈ E ⊆ B(H,K). For ε > 0, x · (x∗x + ε)−1/3 exists
and belongs to E · B+ = E because x∗x + ε is an invertible element in the unital
C∗-algebra B+. The net x · (x∗x + ε)−1/3 for ε ↘ 0 is norm-Cauchy; hence it
converges to some y ∈ E . This satisfies

yy∗y = lim
ε↘0

x · (x∗x+ ε)−1/3 · (x∗x+ ε)−1/3 · x∗x · (x∗x+ ε)−1/3 = x. �

Corollary 3.13. A Hilbert B-module E is nondegenerate as a right B-module.
The right B-module structure on E extends uniquely to aM(B)-module structure.
This module structure together with the given B-valued inner product, viewed as
beingM(B)-valued, is a HilbertM(B)-module structure on E. There are the same
adjointable and compact operators on E as a Hilbert B- and as a Hilbert M(B)-
module.

Proof. Proposition 3.12 implies E = E · B, that is, B is a nondegenerate right
module. Realise E as a concrete Hilbert module in B(H,K) by Lemma 2.9. The
representation β extends to M(B). This is a faithful representation of M(B)
because B is an essential ideal in it. And

E ·M(B) = E ·B · M(B) = E ·B = E .

So E is also a concrete HilbertM(B)-module. Here the inner product is the same,
and the right module structure is extended in the unique way to M(B). The
definitions of the adjointable and compact operators on E only use the inner product.
Since this is the same, the adjointable and compact operators on E as a Hilbert
B-module or a HilbertM(B)-module are the same. �

Exercise 3.14. View a C∗-algebra B as a Hilbert module over itself as in Exam-
ple 1.9. Then B(B) =M(B) and K(B) ∼= B.

The element y in Proposition 3.12 becomes unique under a mild extra condition:

Exercise 3.15. For any x ∈ E there is a unique y in the closure of x ·B ⊆ E with
x = y〈y | y〉B = |y〉〈y|y.
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Theorem 3.16. If E ⊆ B(H,K) is a concrete Hilbert B-module, then
K(E) ∼= closed linear span of {x1x

∗
2 ∈ B(K) :x1, x2 ∈ E}.

If E ⊆ B(H,K) is a nondegenerate concrete Hilbert B-module, then
B(E) ∼= {T ∈ B(K) :Tx, T ∗x ∈ E for all x ∈ E}.

Proof. Let K1 ⊆ K be the closed linear span of x(y) for x ∈ E , y ∈ H. Let K0 be
the orthogonal complement of K1. The representation of K(E) will be constructed
to be 0 on K0. So it is equivalent to a representation on K1. We only consider a
representation of B(E) if K = K1. Hence we may assume without loss of generality
that K = K1. Then we identify E ⊗B H ∼= K through x⊗ y 7→ x(y).

We may view E as a correspondence A = B(E) C B. The proof of Lemma 2.1
gives a unital representation α : B(E) → B(K) with α(T )x(y) = (Tx)(y) for all
T ∈ B(E), x ∈ E , y ∈ H. Then α(T )x = Tx in B(H,K). Since α(T ∗)x = T ∗x, the
image α(B(E)) is contained in the space of operators T ∈ B(K) with Tx, T ∗x ∈ E
for all x ∈ E . Conversely, if T ∈ B(K) satisfies Tx, T ∗x ∈ E for all x ∈ E , then
x 7→ Tx and x 7→ T ∗x define bounded linear operators on E , which are adjoints of
each other because x∗1(Tx2) = (T ∗x1)∗x2 for all x1, x2 ∈ E ⊆ B(H,K). Hence there
is a unique T̂ ∈ B(E) with ᾱ(T̂ )x = Tx for all x ∈ E . If K = K1, as we assumed,
then this implies ᾱ(T̂ ) = T . This proves the description of B(E).

The ideal K(E) / B(E) is spanned by |x1〉〈x2| ∈ K(E) for x1, x2 ∈ E . This operator
acts on K by α

(
|x1〉〈x2|

)
x3(y) :=

(
|x1〉〈x2|x3

)
(y) = x1x

∗
2x3(y) for all x3 ∈ E , y ∈ H.

Thus α
(
|x1〉〈x2|

)
= x1x

∗
2. Hence the isomorphism α maps K(E) onto the closed

linear span of the operators x1x
∗
2 for x1, x2 ∈ E ⊆ B(H,K). �

Corollary 3.17. M(K(E)) = B(E).
Proof. Lemma 3.9 shows that K(E) is a two-sided ∗-ideal in B(E). It is essential
because for T ∈ B(E), T = 0 if and only if Tx = 0 for all x ∈ E , if and only
if T |x〉〈y| = 0 for all x, y ∈ E . This gives an injective ∗-homomorphism B(E) ↪→
M(K(E)). Realise E andK(E) concretely as in Theorem 3.16. We chooseK = E⊗BH,
so that the representation of K(E) on K is nondegenerate. Then the representation
of K(E) extends to a representation ᾱ : M(K(E))→ B(K).

Proposition 3.12 implies E = K(E)E . Therefore, if T ∈M(K(E)), then ᾱ(T )E =
ᾱ(T )K(E)E ⊆ K(E)E = E and, similarly, ᾱ(T )∗E ⊆ E . Thus ᾱ(M(K(E))) is
contained in the image of B(E) in B(K). Thus the canonical ∗-homomorphism
B(E) ↪→M(K(E)) is surjective as well. �

A hereditary subalgebra in a C∗-algebra is a C∗-subalgebra B ⊆ A such that
0 ≤ a ≤ b with b ∈ B, a ∈ A implies a ∈ B. This is equivalent to BAB ⊆ B by
[21, Theorem 3.2.2]. Always BAB ⊇ B because B ⊆ A and B3 = B.
Theorem 3.18. Let E be a Hilbert module and F ⊆ E a Hilbert submodule. There
is an injective ∗-homomorphism K(F) ↪→ K(E) that maps |x〉〈y| ∈ K(F) to |x〉〈y| ∈
K(E). Its range is a hereditary subalgebra of K(E), and any hereditary subalgebra
of K(E) is of this form for a unique Hilbert submodule F ⊆ E.
Proof. Realise E as a concrete Hilbert module in B(H,K) with respect to some
faithful representation β : B ↪→ B(H). Theorem 3.16 identifies K(E) with the
C∗-subalgebra of B(K) that is spanned by operators of the form x1x

∗
2 for x1, x2 ∈ E .

The image of F ⊆ E in B(H,K) is a concrete Hilbert B-module. Thus Theo-
rem 3.16 identifies K(F) with the C∗-subalgebra of B(K) spanned by operators of
the form x1x

∗
2 for x1, x2 ∈ F . These belong to the image of K(E). So we get an injec-

tive ∗-homomorphism K(F) ↪→ K(E). The image satisfies K(F) ·K(E) ·K(F) ⊆ K(F)
because

(x1x
∗
2)(x3x

∗
4)(x5x

∗
6) = x1〈x2 |x3〉B(x6〈x5 |x4〉B)∗ ∈ K(F)
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for x1, x2, x5, x6 ∈ F , x3, x4 ∈ E . Thus K(F) is a hereditary subalgebra in K(E).
Conversely, let D ⊆ K(E) be hereditary. Let F := D · E ⊆ E . This is a Hilbert

submodule. The image of K(F) in K(E) is spanned by (d1x1)(d2x2)∗ = d1x1x
∗
2d
∗
2

for x1, x2 ∈ E , d1, d2 ∈ D. These elements span D ·K(E) ·D, which is equal to D
because D is hereditary. Thus K(F) = D. If F ⊆ E , then K(F) · E = F by
Proposition 3.12. Hence the maps F 7→ K(F) and D 7→ D · E are inverse to each
other. �

Example 3.19. Consider a C∗-algebra B as a Hilbert module over itself. Then
Hilbert submodules in B are just closed right ideals. Theorem 3.18 gives the well
known bijection between right ideals F in B and hereditary subalgebras D ⊆ B. It
maps F 7→ K(F), which is the closed linear span of R ·R∗, and it maps D to D ·B.

Finally, we return to the definition of a correspondence E : A C B between two
C∗-algebras in Definition 2.3. The condition 〈aξ | η〉B = 〈ξ | a∗η〉B for the left action
says that it is a ∗-homomorphism to the C∗-algebra B(E) of adjointable operators.
Corollary 3.17 identifies B(E) ∼= M(K(E)). The following lemma shows that a
∗-homomorphism A→ B(E) satisfies A · E = E if and only if it is nondegenerate as
a ∗-homomorphism toM(K(E)):

Lemma 3.20. Let E be a Hilbert B-module, ϕ : A → B(E) a ∗-homomorphism.
Then A · E = E if and only if A ·K(E) = K(E). So a correspondence A C B is the
same as a Hilbert B-module E with a morphism A M K(E).

Proof. If A · E = E , then the operators of the form a|x〉〈y| = |ax〉〈y| also span a
dense subspace in K(E), so A ·K(E) = K(E). Conversely, by Proposition 3.12, any
element of E has the form |y〉〈y|y = y〈y | y〉. Thus E is a nondegenerate K(E)-module.
Hence A ·K(E) = K(E) implies A · E = A ·K(E)E = K(E)E = E . �

4. Composition of correspondences

Let E : A C B and F : B C C be correspondences. The algebraic tensor product
E �B F is an A,C-bimodule via a(x⊗ y)c = ax⊗ yc. We define a C-valued inner
product on E �B F by
(4.1) 〈x1 ⊗ y1 |x2 ⊗ y2〉 = 〈y1 | 〈x1 |x2〉By2〉C
for x1, x2 ∈ E , y1, y2 ∈ F , exactly as in (1.2). We compute

〈x1 ⊗ y1 |x2b⊗ y2〉 = 〈x1 ⊗ y1 |x2 ⊗ by2〉
for all x1, x2 ∈ E , b ∈ B, y1, y2 ∈ F , and similarly in the first variable. Thus the
inner product descends to the balanced tensor product E �B F .

Lemma 4.1. Equation (4.1) defines a positive semidefinite inner product on E�BF .
Thus the completion in this inner product gives a Hilbert C-module, which we denote
by E ⊗B F . There is a unique nondegenerate ∗-homomorphism A→ B(E ⊗B F) with
a · (x⊗ y) = (ax)⊗ y for all a ∈ A, x ∈ E, y ∈ F .

The lemma follows immediately when we realise all correspondences concretely:

Proposition 4.2. Let A, B, C be C∗-algebras, let E : A C B, F : B C C be
correspondences, let H be a Hilbert space, and let γ : C ↪→ B(H) be a faithful
representation. There are Hilbert spaces K and L with faithful representations

B
β
↪→ B(K), A

α
↪→ B(L), E ε

↪→ B(K,L), F
ϕ
↪→ B(H,K)

such that
α(a)ε(x)β(b) = ε(axb), ε(x1)∗ε(x2) = β(〈x1 |x2〉B),
β(b)ϕ(y)γ(c) = ϕ(byc), ϕ(y1)∗ϕ(x2) = γ(〈y1 | y2〉C)
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for all a ∈ A, x, x1, x2 ∈ E, b ∈ B, y, y1, y2 ∈ F , c ∈ C. Given maps α, β, γ, ϕ, ε as
above – but not necessarily faithful – the map

ψ : E �B F → B(H,L), x⊗ y 7→ ε(x)ϕ(y),

extends to an isometric A,C-bimodule isomorphism from E �B F onto a subspace
of B(H,L), which completes to a concrete correspondence A C C.

Proof. By Lemma 2.9, there is an isomorphism ϕ0 : F ↪→ B(H,K0) from F onto a
concrete correspondence B C C with respect to a faithful representation β0 : B ↪→
B(K0) and the given faithful representation γ : C ↪→ B(H). Applying Lemma 2.9
to E and the homomorphism β gives a concrete realisation ε : E ↪→ B(K,L) of the
correspondence E with a faithful representation α : A ↪→ B(L).

Next, we compute

α(a)ψ(x⊗ y)γ(c) = α(a)ε(x)ϕ(y)γ(c) = ε(ax)ϕ(yc) = ψ(ax⊗ yc),
ψ(x1 ⊗ y1)∗ψ(x2 ⊗ y2) = ϕ(y1)∗ε(x1)∗ε(x2)ϕ(y2) = ϕ(y1)∗β(〈x1 |x2〉B)ϕ(y2)

= ϕ(y1)∗ϕ(〈x1 |x2〉By2) = 〈y1 | 〈x1 |x2〉B · y2〉C .

Thus ψ extends to an isometric linear map E �B F ↪→ B(H,L). The norm closure
of E �B F is a concrete correspondence A C C. This implies Lemma 4.1. �

Example 4.3. Correspondences B C C are the same as Hilbert space representations
of B (see Example 1.8). The functor between the Hilbert space representations of
B and A induced by a correspondence that we used to motivate the definition of
correspondences is a special case of the composition of correspondences. Similarly,
composition with a correspondence A C B gives a functor from the category of
Hilbert A-modules to the category of Hilbert B-modules.

As with bimodules between rings, the composition of correspondences is only
associative and unital up to canonical isomorphisms:

Lemma 4.4. Let E : A C B, F : B C C, and G : C C D be correspondences.
Then there are natural isomorphisms of correspondences

(E ⊗B F)⊗C G ∼= E ⊗B (F ⊗C G), (x⊗ y)⊗ z 7→ x⊗ (y ⊗ z),
E ⊗B B ∼= E , x⊗ b 7→ x · b,
A⊗A E ∼= E , a⊗ x 7→ a · x.

Proof. The three maps above are defined on vectors that span the respective Hilbert
modules. Direct computations show that they are bimodule maps and preserve the
inner products. Hence they extend to isometric linear maps on the completions.
Since these extensions have dense range, they are unitary. �

4.1. The correspondence bicategory. We have now learnt enough about cor-
respondences to turn them into a bicategory. Its objects are C∗-algebras, arrows
B → A are correspondences E : A C B, and 2-arrows are correspondence maps, that
is, A,B-bimodule maps i : E1 ↪→ E2 with 〈i(x) | i(y)〉B = 〈x | y〉B for all x, y ∈ E1.
The composition of arrows is the tensor product ⊗B. The unit arrow on A is the
identity correspondence: A with the usual bimodule structure and the inner product
〈x | y〉A = x∗y for x, y ∈ A (see Example 1.9). The vertical composition of 2-arrows
is the composition of correspondence maps E1 ↪→ E2 ↪→ E3. This is associative, and
the identity map on a correspondence is a unit 2-arrow for the vertical composition.

Definition 4.5. Let A and B be C∗-algebras. Let Corr(A,B) be the category with
correspondences A C B as objects and correspondence maps as arrows.
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Let E1, E2 : A C B and F1,F2 : B C C be pairs of parallel composable correspon-
dences. Two correspondence maps i : E1 ↪→ E2 and j : F ↪→ F2 induce an isometric
bimodule map i�B j : E1 �B F ↪→ E2 �B F2, x⊗ y 7→ i(x)⊗ j(y). This extends to
a correspondence map i ⊗B j : E1 ⊗B F ↪→ E2 ⊗B F2. This defines the horizontal
composition of i and j. The tensor products for correspondences and correspondence
maps define a bifunctor

⊗B : Corr(A,B)× Corr(B,C)→ Corr(A,C),
that is, the horizontal and vertical compositions of 2-arrows commute and preserve
unit 2-arrows. Lemma 4.4 gives invertible 2-arrows
lE : A⊗A E ∼= E , rE : E ⊗B B ∼= E , ass : (E ⊗B F⊗C)G ∼= E ⊗B (F ⊗C G)

in Corr. They are natural with respect to correspondence maps because they are
defined in terms of inner products and bimodule structures. Direct computations,
which are the same as for Rings, show that the relevant diagrams commute. We
have shown:

Theorem 4.6. Corr is a bicategory.

The isomorphisms of correspondences are exactly the invertible 2-arrows in Corr,
and restricting to invertible 2-arrows in a bicategory always gives another bicategory.
Previous articles on the correspondence bicategory only deal with this subbicategory
of Corr. There are, however, some applications that require the non-invertible
2-arrows introduced here. One involves representations of ∗-algebras by unbounded
operators in [19]. The other, to Fell bundles over inverse semigroups, is explained
below in Section 7.

Remark 4.7. Why do we require the left action in a correspondence to be non-
degenerate? Otherwise, the left unit for composition would no longer work:
A ⊗A E ∼= A · E 6= E if the left A-action on E is degenerate. Assuming nonde-
generacy for correspondences is almost no restriction: if A→ B(E) is degenerate,
then we may replace E by the Hilbert submodule A · E ⊆ E ; this with the restriction
of the left action of A becomes a correspondence.

Remark 4.8. The isomorphism classes of arrows in a bicategory always form a
category. This category shadow of Corr is considered by Echterhoff, Kaliszewski,
Quigg and Raeburn in [8].

Landsman [16] has introduced several bicategories to unify the concepts of Morita
equivalence for rings, C∗-algebras, von Neumann algebras, Lie groupoids, symplectic
groupoids, and integrable Poisson manifolds. He calls C∗-correspondences “Hilbert
bimodules”, and his bicategory differs from ours in having all adjointable bimodule
maps as 2-arrows.

4.2. Proper, full and faithful correspondences.

Definition 4.9. Let A and B be C∗-algebras. A correspondence E : A C B is full
if 〈E | E〉B, the closed two-sided ideal generated by the inner products 〈ξ | η〉 with
ξ, η ∈ E , is equal to B; it is proper if the left action is a ∗-homomorphism A→ K(E),
and faithful if the left action is an injective ∗-homomorphism A→ B(E).

For any Hilbert B-module E , the closed linear span I := 〈E | E〉B is a closed
∗-ideal in B. Restricting the right module structure on E to I, E becomes a full
Hilbert I-module. Conversely, any full Hilbert I-module for an ideal I / B is of this
form for a unique Hilbert B-module structure on E by Corollary 3.13.

Lemma 4.10. Let H and K be Hilbert spaces and let β : B ↪→ B(H) and α : A→
B(K) be representations, with β faithful. Let E ⊆ B(H,K) be a nondegenerate
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concrete correspondence A C B. Then E is full if and only if E∗ · E = β(B); proper
if and only if α(A) ⊆ EE∗; and faithful if and only if α is faithful.

Here E∗ · E and E · E∗ denote the closed linear spans of products x∗y or yx∗ for
x, y ∈ E , respectively.

Proof. The B-valued inner product on E is 〈x | y〉 = β−1(x∗y). So E∗ · E = β(B)
if and only E is full. Theorem 3.16 realises K(E) faithfully on K. Since x(y) for
x ∈ E , y ∈ H generate K, an operator T on K is determined by its composites Tx
for x ∈ E . Hence E is proper if and only if the image of A in B(K) is contained in
the image of K(E) in B(K). By Theorem 3.16, this means that α(A) ⊆ E · E∗.

Let α be faithful and let a ∈ A. If aE = 0, then α(a)x = 0 for all x ∈ E .
Hence α(a)x(y) = 0 for all x ∈ E , y ∈ H. This implies α(a) = 0 and hence a = 0.
Conversely, if α is not faithful, then there is a ∈ A with a 6= 0 and α(a) = 0. Hence
α(a)x = a · x = 0 for all x ∈ E , showing that a · E = 0 because E → B(H,K) is
faithful. �

Proposition 4.11. Let E : A C B and F : B C C be correspondences. If both E
and F are proper, full or faithful, then so is E ⊗B F .

Proof. We describe E ⊗B F concretely as in Proposition 4.2, and use the notation
there. If E and F are full, then ε(E)∗ε(E) = β(B) and ϕ(F)∗ϕ(F) = γ(C) by
Lemma 4.10. And β(B)ϕ(F) = ϕ(F) because B · F = F . Hence

ψ(E ⊗B F)∗ψ(E ⊗B F) = ϕ(F)∗ε(E)∗ε(E)ϕ(F)
= ϕ(F)∗β(B)ϕ(F) = ϕ(F)∗ϕ(F) = γ(C).

Thus E ⊗B F is full by Lemma 4.10.
If E and F are proper, then ε(E)ε(E)∗ ⊇ α(A) and ϕ(F)ϕ(F)∗ ⊇ β(B) by

Lemma 4.10, and ε(E)β(B) = ε(E) because E ·B = E . Hence

ψ(E ⊗B F)ψ(E ⊗B F)∗ = ε(E)ϕ(F)ϕ(F)∗ε(E)∗

⊇ ε(E)β(B)ε(E)∗ = ε(E)ε(E)∗ ⊇ α(A).

Thus E ⊗B F is proper by Lemma 4.10.
If F and E are faithful, then the representations β and α are faithful by

Lemma 4.10. Then E ⊗B F is faithful. �

Thus the full, the proper and the faithful correspondences form subbicategories
in Corr, denoted Corrfull and Corrprop, Corrfaith, respectively. Intersections such as
Corrfull ∩ Corrprop are also subbicategories of Corr.

One reason why proper correspondences are important is that they induce maps
on K-theory, even in bivariant KK. A second reason are the results on Cuntz–
Pimsner algebras of single endomorphisms and product systems in [1, 2], which only
work for proper correspondences.

4.3. Morphisms and ∗-homomorphisms as correspondences. A morphism
f : A M B yields a correspondence Bf by Example 2.11. What are the 2-arrows
Bf ⇒ Bg in Corr? We shall first study invertible 2-arrows. Since B(B) =M(B) by
Exercise 3.14, an isomorphism of right Hilbert B-modules Bf ∼= Bg is just a unitary
multiplier of B. A unitary u ∈ U(B) gives an isomorphism of correspondences
Bf ∼= Bg if and only if u(f(a)b) = g(a)u(b) for all a ∈ A, b ∈ B. Thus isomorphisms
of correspondences Bf

'−→ Bg are the same as 2-arrows f ⇒ g in C∗(2).
Of course, the vertical composition of 2-arrows is also the same. The following

lemma clarifies how the compositions of arrows in C∗(2) and Corr are related.
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Lemma 4.12. Let f : A→M(B) and g : B →M(C) be morphisms. Then

µf,g : Bf ⊗B Cg
'−→ Cg◦f , b⊗ c 7→ g(b) · c,

is an isomorphism of correspondences. If u : f1 ⇒ f2 and v : g1 ⇒ g2 are 2-arrows
in C∗(2), then the following diagram of correspondence isomorphisms commutes:

Bf1 ⊗B Cg1 Cg1◦f1

Bf2 ⊗B Cg2 Cg2◦f2

µf1,g1

u⊗Bv v•u
µf2,g2

Proof. The map µf,g is an isometry of right Hilbert C-modules. Its range is dense
because g is nondegenerate. It is left A-linear: f(a) · b ⊗ c 7→ g(f(a) · b) · c =
g ◦ f(a) · (g(b) · c). Thus it is an isomorphism of correspondences. The commuting
diagram is trivial to check. �

The identity map on B gives the unit correspondence on B. Thus the identity
map on objects, the map f 7→ Bf on arrows, the map u 7→ u on 2-arrows, the
multiplication maps µf,g above, and the identity map λ : BidB

→ B provide a strictly
unital homomorphism from the opposite of the bicategory C∗(2) to Corr. The order
of multiplication is reversed because of our convention that an A,B-correspondence
is an arrow from B to A.

The correspondences of the form Bf for morphisms f do not quite form a
subbicategory because the composite Bf ⊗B Cg is only isomorphic to Cg◦f . A
correspondence E : A C B is isomorphic to one of the form Bf if and only if E ∼= B
as a Hilbert B-module. By Lemma 4.12, there is a subbicategory of Corr that has
correspondences of this form as arrows and isomorphisms of correspondences as
2-arrows. The homomorphism C∗(2)op → Corr′ is surjective on objects and, for each
pair of C∗-algebras A,B, the functor C∗(2)(A,B)→ Corr′(A,B) is an equivalence
of categories; here we use that an isomorphism of correspondences Bf

'−→ Bg is the
same as a unitary inM(B) = B(B) that intertwines f and g. Hence the functor
C∗(2)op → Corr′ is an equivalence of bicategories.

The correspondence Bf associated to a morphism f : A M B is always full. It is
proper or faithful if and only if the morphism f is proper or faithful, respectively.
Here we use that K(A) = A if A is viewed as a right Hilbert A-module.

The bicategory Corr also has non-invertible 2-arrows Bf ⇒ Bg. A 2-arrow
i : Bf ↪→ Bg is a linear map i : B → B such that i(b1)b2 = i(b1b2) and i(b1)∗i(b2) =
b∗1b2 for all b1, b2 ∈ B and i(f(a)b) = g(a)i(b) for all a ∈ A, b ∈ B. The image
i(B) ⊆ B is a right ideal in B. If i(B) = B, then i is a unitary intertwiner between
f and g. If B is unital, then i(1) is a projection in M(B) with i(B) = i(1) · B,
so i(B) is automatically complementable. Hence the following lemma always applies
if B is unital:

Lemma 4.13. The 2-arrows Bf ⇒ Bg in Corr where the right ideal i(B) ⊆ B is
complementable are in bijection with isometries i ∈M(B) such that g(A) commutes
with the range projection ii∗ and f(a) = i∗g(a)i for all a ∈ A.

Proof. If the right ideal i(B) is complementable, then i is adjointable, its adjoint
being the orthogonal projection to i(B). Conversely, if i is adjointable, then i is an
isometry inM(B), and ii∗ is an orthogonal projection onto i(B), so that i(B) is
complementable.

The intertwining condition says that if(a) = g(a)i for all a ∈ A. Hence i∗if(a) =
i∗g(a)i and g(a)ii∗ = if(a)i∗ = ii∗if(a)i∗ = ii∗g(a)ii∗ for all a ∈ A. The second
equation for a∗ gives ii∗g(a) = ii∗g(a)ii∗ as well. So the projection ii∗ commutes
with g(A). Conversely, if i ∈ M(B) is an isometry whose range projection ii∗
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commutes with g(A), then f(a) := i∗g(a)i is a morphism f : A M B. And i gives
a 2-arrow i : Bf ⇒ Bg with complementable image. �

Example 4.14. Let f : A → B be a ∗-homomorphism, possibly degenerate. We
may still construct a correspondence: let Bf := f(A)B ⊆ B. This is a right ideal
in B and hence a Hilbert B-submodule of B. The left A-action defined using f is
nondegenerate on this submodule. Hence Bf is a correspondence A C B.

Exercise 4.15. The correspondence Bf for a ∗-homomorphism f : A→ B is always
proper. It is full if and only if f(A) ⊆ B is not contained in any proper ideal
in B. A correspondence E : A C B is isomorphic to Bf for some ∗-homomorphism
f : A→ B if and only if E is proper and there is an isometric embedding of Hilbert
B-modules E ↪→ B.

We may also view a possibly degenerate ∗-homomorphism A→ B as a proper
morphism A→ B′ for a hereditary subalgebra B′ ⊆ B. Then B′ ·B ⊆ B is a right
ideal and B′ = K(B′ ·B) (see Example 3.19). Thus the proper morphism A→ B′

leads to the same correspondence as in Example 4.14.

Lemma 4.16. Let f : A→ B and g : B → C be ∗-homomorphisms. Then there is
an isomorphism of correspondences

Bf ⊗B Cg → Cg◦f , b⊗ c 7→ g(b)c.

Proof. The map above is isometric and compatible with the left A-module structure.
If b ∈ f(A)B, c ∈ g(B)C, then g(b)c ∈ gf(A)g(B)C. We have gf(A)g(B)C ⊆
gf(A)C because g(B)C ⊆ C and gf(A)g(B)C ⊇ gf(A)C because gf(A)g(B) ⊇
g(f(A))g(f(A)) ⊇ gf(A). Hence the map Bf ⊗BCg → Cg◦f is also surjective. Then
it is unitary. �

As for C∗(2), Lemma 4.16 shows that f 7→ Bf is part of a homomorphism from
the opposite of the category C∗+, viewed as a bicategory, to Corr. Working in Corr
gives 2-categorical enrichments of C∗+, where the 2-arrows f ⇒ g for f, g : A ⇒ B
are all or merely the invertible 2-arrows Bf ⇒ Bg in Corr. These 2-arrows seem
unnatural, however, unless we work in the setting of C∗-correspondences.

5. Sums and tensor products of correspondences

Let (Ei)i∈I be a set of Hilbert B-modules. We define their orthogonal direct sum⊕
i∈I Ei as the completion of the algebraic direct sum with respect to the B-valued

inner product
〈(xi)i∈I | (yi)i∈I〉B :=

∑
i∈I
〈xi | yi〉B .

This inner product is again positive definite and hence turns the algebraic direct sum
into a pre-Hilbert B-module. A special case of this are the Hilbert B-modules Bn
for n ∈ N ∪ {∞} in Example 1.10 and the Hilbert B-modules En in Example 1.11.

Let (Ai)i∈I be C∗-algebras. Define
⊕

i∈I Ai to be the C0-direct sum, consisting
of all families (ai)i∈I ∈

∏
i∈I Ai with ‖ai‖i∈I ∈ C0(I).

Proposition 5.1. Let Ai for i ∈ I and B be C∗-algebras. Then there are equivalences
of categories

Corr

(⊕
i∈I

Ai, B

)
∼=
∏
i∈I

Corr(Ai, B),

Corr

(
B,
⊕
i∈I

Ai

)
∼=
∏
i∈I

Corr(B,Ai).
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That is,
⊕

i∈I Ai is both a product and a coproduct of the set of objects (Ai)i∈I
in the correspondence bicategory.

Proof. Given correspondences Ei : Ai C B, we may form the Hilbert B-module⊕
i∈I Ei and equip it with a nondegenerate left action of

⊕
i∈I Ai to get a correspon-

dence
⊕

i∈I Ai C B. Embeddings of correspondences Ei ↪→ E ′i may be put together
to an embedding of correspondences

⊕
i∈I Ei ↪→

⊕
i∈I E ′i . This defines a functor∏

i∈I
Corr(Ai, B)→ Corr

(⊕
i∈I

Ai, B

)
.

We are going to prove that the functor above is essentially surjective. Let
E :
⊕

i∈I Ai C B be a correspondence. Since the left action is nondegenerate, it
extends to an action of the multiplier algebra. A multiplier of

⊕
i∈I Ai restricts to

a multiplier of Ai for each i ∈ I. This defines a map from the multiplier algebra
to the C∗-algebraic product

∏
i∈IM(Ai), which consists of all uniformly bounded

families ai ∈M(Ai). This map is easily seen to be an isomorphism. In particular,
M
(⊕

i∈I Ai
)
contains orthogonal projections pi onto the ith summand with strict

convergence
∑
i∈I pi = 1. These act by orthogonal projections on E . Let Ei := piE

be their images; these are Hilbert submodules on which Ai acts nondegenerately,
respectively. Thus Ei : Ai C B. And

∑
i∈I pi = 1 implies

∑
i∈I Ei = E . Thus E

belongs to the essential range of our functor.
Any

⊕
Ai, B-correspondence map

⊕
Ei ↪→

⊕
E ′i commutes with the left action

of the multiplier algebra and hence with the projections pi. So it comes from a
family of correspondence maps on the summands Ei; that is, our functor is fully
faithful. Hence it is an equivalence of categories.

Now consider a family of correspondences Ei : B C Ai. Let
⊕

i∈I Ei be the set of
all families (ξi)i∈I with ‖ξi‖ ∈ C0(I). This is a Hilbert module over

⊕
i∈I Ai by the

pointwise operations. The left actions of B on the summands Ei give a nondegenerate
left action of B on

⊕
i∈I Ei. Thus we get a correspondence B C

⊕
i∈I Ai. This

construction is natural for embeddings of correspondences, that is, there is a functor∏
i∈I

Corr(B,Ai)→ Corr

(
B,
⊕
i∈I

Ai

)
.

Take E : B C
⊕

i∈I Ai. For each i ∈ I, Ei := E ·Ai ⊆ E is a B,Ai-correspondence
for the ideal Ai /

⊕
j∈I Aj . Since these ideals are orthogonal, E ∼=

⊕
i∈I Ei. Thus E

belongs to the essential range of our functor. Since the above decomposition is
natural, our functor is fully faithful. �

Now let E and F be Hilbert modules over different C∗-algebras B and C, re-
spectively. We are going to define an exterior product Hilbert module E ⊗ F over
B ⊗ C, where B ⊗ C is a C∗-tensor product of B and C. This should be the
completion of the algebraic tensor product E ⊗alg F , equipped with the obvious
right B ⊗alg C-module structure and the B ⊗alg C-valued inner product defined by

〈x1 ⊗ y1 |x2 ⊗ y2〉 := 〈x1 |x2〉B ⊗ 〈y1 | y2〉C
for x1, x2 ∈ E , y1, y2 ∈ F . This is C- and B ⊗alg C-linear in the second variable and
satisfies 〈x2 ⊗ y2 |x1 ⊗ y1〉 = 〈x1 ⊗ y1 |x2 ⊗ y2〉∗.

Lemma 5.2. The inner product above is positive definite, that is, 〈ξ | ξ〉 ≥ 0 in
B ⊗ C for all ξ ∈ E ⊗alg F . If the norm on B ⊗ C is a cross norm, then the inner
product satisfies 〈ξ | ξ〉 6= 0 for ξ 6= 0.

Proof. Let π : B ⊗ C ↪→ B(H) be a faithful Hilbert space representation. This
representation is of the form π(b ⊗ c) = πB(b) · πC(c), where πB and πC are
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representations of B and C on H with commuting ranges. Let K := E ⊗πB
H and

represent E by operators H → K as in Lemma 1.17.
If u ∈M(C) is unitary, then πC(u) is an automorphism of the correspondence

(H, πB) : B C C and so 1⊗πC(u) ∈ U(E⊗πB
H). This acts by x⊗η 7→ x⊗πC(u)η for

x ∈ E , η ∈ H. Since any element ofM(C) is a linear combination of unitaries, there
are well-defined bounded linear operators on K that act on elementary tensors by
x⊗ η 7→ x⊗ πC(c)η for x ∈ E , η ∈ H, c ∈ C. This defines a unital ∗-homomorphism
π′C : M(C) → B(K), which restricts to a nondegenerate ∗-homomorphism on C
because πC(C)H = H.

Realise F concretely as operators K → L := F ⊗π′
C
K = F ⊗π′

C
(E ⊗πB

H)
(compare Lemma 1.17). Now x ∈ E and y ∈ F give an operator yx : H → K → L,
mapping η 7→ y ⊗ x⊗ η for each η ∈ H. We compute

(y1x1)∗(y2x2) = x∗1π
′
C(y∗1y2)x2 = πC(y∗1y2)πB(x∗1x2) = π(〈x1 ⊗ y1 |x2 ⊗ y2〉)

for all x1, x2 ∈ E , y1, y2 ∈ F . Hence the map x ⊗ y 7→ yx represents the inner
product on E ⊗alg F in a way that makes its positivity manifest.

Now assume the C∗-norm on B⊗C to be a cross norm, that is, ‖b⊗c‖ = ‖b‖·‖c‖ for
all b ∈ B, c ∈ C. Then it dominates the spatial C∗-tensor product norm by Takesaki’s
Theorem (see [6, Theorem 3.4.8]). Let πB and πC be faithful representations of
B and C on Hilbert spaces H1 and H2, respectively. The tensor product Hilbert
space H = H1 ⊗H2 with the representation π(b⊗ c) = πB(b)⊗ πC(c) is a faithful
representation of the spatial tensor product by [6, Theorem 3.3.11]. Then π is also
a representation of B ⊗ C. Let K1 := E ⊗B H1 and K2 := F ⊗C H2. Represent
E and F concretely in B(Hj ,Kj) for j = 1, 2, respectively. Then E ⊗alg F with
its pre-Hilbert module structure over the spatial tensor product is represented
concretely by operators H1 ⊗H2 → K1 ⊗K2. This representation of the algebraic
tensor product is easily seen to be faithful. This implies that the B ⊗ C-valued
inner product on E ⊗alg F is nondegenerate. �

Example 5.3. If E is a Hilbert B-module and H is a Hilbert space, then there is a
tensor product Hilbert B-module E ⊗H because B ⊗C ∼= B. This gives the Hilbert
modules in Example 1.10: B ⊗Cn = Bn and B ⊗ `2N ∼= B∞. The following lemma
about such Hilbert modules is sometimes useful if H = L2(X,µ).
Lemma 5.4. Let B be a C∗-algebra and E a Hilbert B-module. Let X be a locally
compact space and let µ be a Radon measure on X. Then the exterior product Hilbert
B-module L2(X,µ)⊗E is canonically isomorphic to the completion of Cc(X, E), the
space of continuous, compactly supported functions X → E, with the right B-module
structure by pointwise multiplication and the inner product

〈f1 | f2〉B :=
∫
X

f1(x)∗f2(x) dµ(x).

Proof. The subspace Cc(X) is dense in L2(X,µ). Therefore, the algebraic tensor
product Cc(X)⊗alg E is dense in L2(X,µ)⊗ E . Define ι : Cc(X)⊗alg E → Cc(X, E)
by ι(f ⊗ a)(x) := f(x) · a. The map ι has dense range by a partition of unity
argument. More precisely, if K ⊆ X is compact and f ∈ Cc(X, E) is supported
in K, then there is a sequence (fn)n∈N with fn ∈ Cc(X) ⊗alg E and supp fn ⊆ K
for all n ∈ N and lim ‖f − fn‖∞ = 0. The inner product on L2(X,µ)⊗E , restricted
to Cc(X)⊗alg E , is given by the formula

〈f1 ⊗ a1 | f2 ⊗ a2〉 =
∫
X

f1(x)f2(x)a∗1a2 dµ =
∫
X

ι(f1 ⊗ a1)∗ι(f2 ⊗ a) dµ.

Since all expressions here are sesquilinear, this extends from elementary tensors to
all elements of Cc(X)⊗alg E . That is, ι restricted to Cc(X)⊗alg E is an isometric
linear map for the inner products defined on Cc(X, E) and L2(X,µ)⊗ E .
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If f ∈ Cc(X, E) and (fn)n∈N are as above, then a computation shows that
the sequence (fn)n∈N is a Cauchy sequence for the norm on the Hilbert module
L2(X,µ) ⊗ E . Mapping f to the limit of this Cauchy sequence defines a map
ι : Cc(X, E) → L2(X,µ)⊗ E that is still isometric. Since ι(Cc(X)⊗alg E) is dense
in L2(X,µ)⊗ E , it follows that L2(X,µ)⊗ E is the completion of Cc(X, E) in the
inner product defined in the statement of the lemma. �

Exercise 5.5. In the situation of Lemma 5.4, let L2(X,A)2 be the space of all
measurable functions f : X → A for which

∫
X
‖f(x)‖2 dµ is finite. Show that the

isometric embedding Cc(X,A)→ L2(X)⊗A extends to an embedding of L2(X,A)2
into L2(X)⊗A with dense range.

Remark 5.6. It is not true that elements of the Hilbert module L2(X,µ)⊗A may
be represented by measurable functions X → A. Only a dense set of elements in
L2(X,µ) ⊗ A has this property. There may, however, be nets in L2(X,µ) ⊗alg A
or Cc(X,A) that converge in the Hilbert module norm of L2(X,µ)⊗A and whose
values at x ∈ X fail to converge for almost all x ∈ X. This makes it a bit tricky
to define adjointable operators on L2(X,µ)⊗A. The best way is usually to define
them first as operators on Cc(X,A) or L2(X,A)2 or a similar dense subspace of
functions X → A, then to check boundedness for the Hilbert module norm, and
then to extend to L2(X,µ)⊗A (compare Lemma 5.9).

Proposition 5.7. Let E and F be correspondences A C B and D C C. Then
E ⊗alg F completes to a C∗-correspondence between the maximal tensor products
A ⊗max D and B ⊗max C and to a C∗-correspondence between the spatial tensor
products A⊗min D and B ⊗min C.

Proof. Equip E ⊗algF with the obvious left actions of A and D. The same argument
as in the proof of Lemma 2.1 shows that these left actions extend to (nondegenerate)
representations of A and D on the Hilbert B ⊗ C-module completion E ⊗ F . These
representations have commuting ranges and hence give a representation of the
maximal tensor product A ⊗max D. Thus the completion of E ⊗alg F becomes a
concrete correspondence A⊗max D C B ⊗max C.

For the spatial C∗-tensor product B ⊗min C, we may realise E ⊗ F concretely as
in the last paragraph of the proof of Lemma 5.2. The induced representations of A
on K1 and of B on K2 combine to a representation of A⊗min D on K1 ⊗K2. Thus
E ⊗alg F becomes a concrete correspondence A⊗min D C B ⊗min C. �

For any C∗-completion B ⊗ C, embeddings E1 ↪→ E2 and F1 ↪→ F2 induce an
embedding E1 ⊗ E2 ↪→ F1 ⊗F2. Thus the exterior product gives a functor

⊗ : Corr(A,B)× Corr(D,C)→ Corr(A⊗D,B ⊗ C)

for all C∗-algebras A,B,C,D, any C∗-tensor product B ⊗ C, and a suitable tensor
product A⊗D depending on B ⊗ C. In particular, ⊗ may be ⊗max or ⊗min both
times.

Theorem 5.8. Both the maximal and spatial tensor products define strictly unital
bicategory homomorphisms Corr× Corr→ Corr.

Proof. We have already seen that both exterior products give functors

Corr(A,B)×Corr(D,C)→ Corr(A⊗maxD,B⊗maxC), Corr(A⊗minD,B⊗minC).

Let E1 : B1 C B2, E2 : B2 C B3, F1 : C1 C C2 and F2 : C2 C C3. Then there is a
canonical isomorphism

(E1 ⊗F1)⊗B2⊗C2 (E2 ⊗F2) ∼= (E1 ⊗B2 E2)⊗ (F1 ⊗C2 F2);
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here the C∗-tensor norms on Bi ⊗Ci may be ⊗max everywhere or ⊗min everywhere,
or they may be another suitably compatible choice. The exterior product of two
identity correspondences is again an identity correspondence. We have described
the data for a homomorphism of bicategories. It is easy to check the coherence
conditions for a homomorphism. �

Both the maximal and the spatial tensor products turn C∗-algebras into a
symmetric monoidal category. That is, there are natural isomorphisms

(A⊗maxB)⊗maxC ∼= A⊗max (B⊗maxC), A⊗maxB ∼= B⊗maxA, A⊗maxC ∼= A,

which satisfy the coherence conditions for a symmetric monoidal category, and
similarly for ⊗min. It follows from Proposition 5.1 that the direct sum of C∗-algebras
embeds in a bicategory homomorphism on Corr. The tensor product is infinitely
distributive over the maximal and spatial tensor products, that is, there are natural
isomorphisms of C∗-algebras⊕

i∈I
(A⊗max Bi) ∼= A⊗max

⊕
i∈I

Bi,
⊕
i∈I

(A⊗min Bi) ∼= A⊗min
⊕
i∈I

Bi.

All these natural C∗-algebra isomorphisms seem nicely compatible with the bi-
category structure on Corr. I guess that the direct sum and the spatial and the
maximal tensor product each make the correspondence bicategory into a monoidal
bicategory, which is a tricategory with one object (see [10]). I have not yet needed
this higher structure and therefore have not tried to check the coherence conditions
for a tricategory in [10].

As a first application of the exterior product, we prove that the reduced crossed
product for a group action does not depend on the choice of a faithful representation
of A. A similar argument shows that the spatial C∗-tensor product does not
depend on the faithful representations of the tensor factors. In fact, we shall define
the reduced crossed product for twisted actions of locally compact groups in a
representation-free way using a Hilbert module over the coefficient algebra instead
of Hilbert space representations.

Lemma 5.9. Let G be a locally compact group, let A be a C∗-algebra, and let
α : G → Aut(A) and u : G × G → U(A) form a Borel twisted action of G on A.
There are a nondegenerate ∗-homomorphism % : A → B(L2(G) ⊗ A) and a Borel
map V : G→ U(L2(G)⊗A) defined by %(a)(f)(x) := αx−1(a) ·f(x) and (Vgf)(x) :=
u∗x−1,gf(g−1x)) for all f ∈ L2(G,A)2, g, x ∈ G, a ∈ A. The pair (%, V ) is a
covariant representation of the twisted action of G on A.

Proof. It is clear that %(a) for a ∈M(A) defines a bounded linear map on L2(G,A)2
and that Vg defines an isometric linear map on L2(G,A)2. The space L2(G,A)2 is
isomorphic to a dense subspace of L2(G)⊗A by Exercise 5.5. Easy computations
shows that Vg for g ∈ G and %(u) for u ∈ U(A) are unitary operators for the inner
product of L2(G) ⊗ A. Therefore, these operators defined initially on L2(G,A)2
extend uniquely to unitary operators on L2(G) ⊗ A. Since unitaries spanM(A),
it follows that %(a) extends to an adjointable operator on L2(G)⊗A for all a ∈ A.
The map % : A→ B(L2(G)⊗A) is easily seen to be a ∗-homomorphism. We check
the covariance condition:

(%(αg(a))Vgf)(x) = αx−1(αg(a)) · u∗x−1,g · f(g−1x)
= u∗x−1,g · αx−1g(a) · f(g−1x) = (Vg%(a)f)(x)
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for all g, x ∈ G, a ∈ A, f ∈ L2(G,A)2; this implies %(αg(a))Vg = Vg%(a) in
B(L2(G)⊗A) for all g ∈ G. We integrate the covariant pair (%, V ) to a ∗-homomor-
phism ψ : L1(G,A)→ B(L2(G)⊗A). Here

(ψ(f)h)(x) =
∫
G

αx−1(f(g)) · u∗x−1,g · h(g−1x) dg

for f ∈ L1(G,A) h ∈ L2(G,A)2, x ∈ G. If α is a continuous group action, then it is
easy to prove that the representation % is nondegenerate. If α is only Borel, then
we omit this argument. Using the approximate unit in the crossed product Banach
algebra L1(G,A), it is not hard to see that ψ is nondegenerate. And this implies
that % is nondegenerate. �

Definition 5.10. The covariant representation of (A,G, α, u) on L2(G) ⊗ A in
Lemma 5.9 is called the regular representation. It integrates to a nondegenerate
representation Aoα,u G→ B(L2(G)⊗ A). We define the reduced crossed product
A or,α,u G to be the image of this representation. Equivalently, it is the norm
closure of the image of the Banach algebra crossed product L1(G,A) in the norm of
B(L2(G)⊗A).

Remark 5.11. The representation L1(G,A)→ B(L2(G)⊗A) obtained from the reg-
ular covariant representation is always faithful. Therefore, L1(G,A) maps faithfully
into the reduced crossed product.

Now let π : A→ B(H) be a faithful representation of A on a Hilbert space. Let
K := (L2(G)⊗A)⊗A H.

The map (L2(G)⊗algA)⊗algH → L2(G)⊗algH, (f⊗a)⊗ξ 7→ f⊗π(a)ξ, is isometric
for the inner product on (L2(G)⊗A)⊗AH and the usual Hilbert space tensor product
L2(G)⊗H. It also has dense range because all representations are nondegenerate
by convention. This identifies K ∼= L2(G)⊗H = L2(G,H). Theorem 3.16 identifies
B(L2(G) ⊗ A) isometrically with a C∗-subalgebra of B(L2(G,H)). The covariant
representation (%, V ) on L2(G)⊗A induces a covariant representation (%′, V ′) on
the Hilbert space L2(G,H), which is given by essentially the same formulas as
(%, V ). Namely, (%′(a)f)(x) = π(αx−1(a)) · f(x) and (Vgf)(x) := u∗x−1,gf(g−1x) for
all f ∈ L2(G,H), g, x ∈ G, a ∈ A. The covariant representation (%′, V ′) integrates
to a representation Aoα,u G→ B(L2(G,H)). The image of this representation is
contained in B(L2(G)⊗A). So the operator norm on L2(G,H) and on the Hilbert
module L2(G) ⊗ A give the same C∗-seminorm on A oα,u G. Therefore, we may
equivalently define Aoα,uG using the covariant representation (%′, V ′) on L2(G,H).
This is the usual definition of the reduced crossed product. It has the advantage of
using only Hilbert space representations. It has the disadvantage that it needs a
faithful representation of A as input data. It is nontrivial to prove that the reduced
norm on L1(G,A) does not depend on this choice.

As another application of the exterior product, we prove that the inner product
on E ⊗B H is nondegenerate if E is a Hilbert module and H a Hilbert space; this
was claimed in Remark 1.14.

Example 5.12. Wemay view Cn as a correspondenceMn(C) C C. Therefore, if F is a
correspondence B C C, then Fn = Cn⊗F is a correspondence Mn(B) = Mn⊗B C

C ⊗ C = C (see Example 1.11). Since Cn : Mn(C) C C is an equivalence, there
is the inverse equivalence (Cn)∗ : C C Mn(C). Therefore, if E is a correspondence
A C B, then En ∼= (Cn)∗ ⊗ E is a correspondence A C Mn(B). The inner product
of two vectors (xi), (yi) is the matrix with entries 〈xi | yj〉B . The positivity of this
inner product for all n ∈ N is exactly Lemma 1.4. Since the exterior tensor product
is compatible with the composition of correspondences, En ⊗Mn(B) Fn ∼= E ⊗B F .
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Proposition 5.13 (see [15, Proposition 4.5]). Let E : A C B and F : B C C be
correspondences. The inner product on E �B F is nondegenerate.

Proof. Write ξ ∈ E ⊗ F as ξ =
∑n
i=1 x1 ⊗ y1 with ~x := (x1, . . . , xn) ∈ En and

~y := (y1, . . . , yn) ∈ Fn. View En and Fn as correspondences En : A C Mn(B) and
Fn : Mn(B) C C. Then

〈ξ | ξ〉 =
n∑

i,j=1

〈
yi
∣∣ 〈xi |xj〉Byj〉C =

〈
~y
∣∣ 〈~x | ~x〉Mn(B)~y

〉
C

=
〈
〈~x | ~x〉1/2

Mn(B)~y
∣∣ 〈~x | ~x〉1/2

Mn(B)~y
〉
C
.

Thus 〈ξ | ξ〉 = 0 implies 〈~x | ~x〉1/2
Mn(B)~y = 0. Proposition 3.12 gives z ∈ En with ~x =

z〈z | z〉Mn(B). That is, z = (z1, . . . , zn) and xi =
∑n
j=1 zj〈zj | zi〉B for i = 1, . . . , n.

Then 〈~x | ~x〉Mn(B) = 〈z | z〉3Mn(B) and hence 〈z | z〉Mn(B)~y = 0 because

〈〈z | z〉~y | 〈z | z〉~y〉 = 〈〈~x | ~x〉1/3~y | 〈~x | ~x〉1/3~y〉 = 〈〈~x | ~x〉1/6~y | 〈~x | ~x〉1/2~y〉 = 0.

The equation 〈z | z〉Mn(B)~y = 0 says
∑n
i=1 〈zj | zi〉Byi = 0 for j = 1, . . . , n. Thus

n∑
i=1

xi ⊗ yi =
n∑

i,j=1
zj〈zj | zi〉B ⊗ yi =

n∑
i,j=1

zj〈zj | zi〉B ⊗ yi − zj ⊗ 〈zj | zi〉Byi.

Since 〈zj | zi〉B ∈ B, this shows that every element in the null-space of the inner
product is a linear combination of terms of the form xb ⊗ y − x ⊗ by with x ∈ E ,
b ∈ B, η ∈ F . �

6. Morita–Rieffel equivalence

We are going to describe the equivalences in the correspondence bicategory. These
are, by definition, the Morita–Rieffel equivalences. As a first step, we describe a
candidate for the inverse of an equivalence.

Definition 6.1. Let E be a Hilbert B-module. Let E∗ := K(E , B) with the right
K(E)-module structure by composition and with the inner product 〈T |S〉 := T ∗◦S ∈
K(E). This is a Hilbert K(E)-module. (The norm is the operator norm from B(E),
so that E∗ is complete.)

Lemma 6.2. The operators |x〉 and 〈x| are compact for all x ∈ E. The maps

E '−→ K(B, E), x 7→ |x〉,

E '−→ K(E , B), x 7→ 〈x|,

are isometric isomorphisms of Banach spaces, where E denotes the conjugate Banach
space of E.

Proof. The space K(B, E) is the closed linear span of the operators |x〉〈a|, b 7→ x·a∗·b,
for all x ∈ E , a, b ∈ B. Since |x〉〈a| = |xa∗〉 and E ·B = E by Corollary 3.13, |x〉 is
compact for x ∈ E and the map x 7→ |x〉 is an isomorphism E '−→ K(B, E). This is
isometric by the C∗-property of the norm. Then the adjoint operators 〈x| = |x〉∗
are compact as well and give an isomorphism E ∼= K(E , B). �

Thus we could also have defined E∗ as the conjugate Banach space with the
K(E)-module structure x · T = T ∗(x) and the inner product 〈x | y〉K(E) = |y〉〈x| for
x, y ∈ E , T ∈ K(E).
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Exercise 6.3. Let E1 and E2 be Hilbert B-modules. View E∗1 as a correspondence
B C K(E1); view E2 as a correspondence K(E2) C B, and view K(E1, E2) as a
correspondence K(E2) C K(E1) (see also Exercise 7.17). Prove

K(E1, E2) ∼= E2 ⊗B E∗1 .

Theorem 6.4. A correspondence E : A C B is an equivalence if and only if
• E is a full Hilbert B-module;
• the left action α : A→ B(E) is an isomorphism onto K(E).

In this case, the inverse of E is E∗ with the inner product 〈x | y〉A := α−1(|x〉〈y|) for
x, y ∈ E and the B,A-module structure b · T · a := bTα(a), and the correspondence
isomorphisms E ⊗B E∗ ∼= A and E∗ ⊗A E ∼= B are induced by the inner products on
E∗ and E, respectively.

This theorem is equivalent to [8, Proposition 2.6].

Proof. First assume that E is a full Hilbert module and that the left action is an
isomorphism A

'−→ K(E). Then E∗ becomes a correspondence E∗ : B C A as in the
statement of the theorem. We claim that there is an isomorphism of correspondences

µ : E ⊗B E∗ → A, x⊗ ξ 7→ α−1(|x〉 ◦ ξ).
This formula well-defines an isometric map because〈
|x1〉 ◦ ξ1

∣∣ |x2〉 ◦ ξ2
〉
A

= α−1(ξ∗1〈x1 |x2〉Bξ2)
=
〈
ξ1
∣∣ 〈x1 |x2〉Bξ2

〉
A

= 〈x1 ⊗ ξ1 |x2 ⊗ ξ2〉A.

Since 〈y| ∈ E∗ for all y ∈ E and α is an isomorphism, µ(E ⊗B E∗) 3 α−1(|x〉〈y|)
for x, y ∈ E , which is dense in A. Hence µ is an isomorphism of correspondences
E ⊗B E∗ ∼= A. Similarly, we define a map

µ′ : E∗ ⊗A E → B, ξ ⊗ x 7→ ξ(x).
It is isometric because

〈ξ ⊗ x | ξ ⊗ x〉B = 〈x | (ξ∗ξ)(x)〉B = 〈ξ(x) | ξ(x)〉B .
The range of µ′ contains the closed linear span of 〈y|(x) = 〈y |x〉B for all x, y ∈ E .
Since E is full, µ′ is surjective. Hence E∗ ⊗A E ∼= B. Thus E is an equivalence in the
correspondence bicategory if E is full and α is an isomorphism onto K(E).

Conversely, assume that E is an equivalence in the correspondence bicategory.
Let F be a correspondence B C A with E ⊗B F ∼= A and F ⊗A E ∼= B. Then E is
full because

B = 〈B |B〉B = 〈F ⊗A E |F ⊗A E〉B = 〈E | 〈F |F〉AE〉B ⊆ 〈E | E〉B .
When we view E as a correspondence K(E) C B, it becomes an equivalence
in Corr. We compose E : A C B with the equivalence E∗ : B C B′ := K(E). This
gives an equivalence E ⊗B E∗ : A C B′ in Corr as a product of two equivalences.
The multiplication map µ above identifies E ⊗B E∗ ∼= K(E), and the left action
of A becomes left multiplication with α(a). Thus the equivalence A C B′ is the
correspondence K(E)α associated to the morphism α : A M K(E).

The inverse correspondence F ′ : B′ C A must satisfy F ′ ⊗A B′ ∼= B′ and
B′ ⊗B′ F ′ ∼= A as correspondences. The canonical isomorphism B′ ⊗B′ F ′ ∼= F ′
in Lemma 4.4 shows that F ′ ∼= A as a Hilbert A-module, with B′ acting by some
morphism β : B′ M A. The correspondences associated to the composite morphisms
β ◦α and α◦β are isomorphic to the identity correspondences by assumption. These
isomorphisms say that there are u ∈ U(A), v ∈ U(B) with β ◦α = Adu, α◦β = Adv.
Then α is both right and left invertible in the morphism category. Then α is a
∗-isomorphism A ∼= B′ = K(E). �
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Definition 6.5. Two C∗-algebras A and B are Morita–Rieffel equivalent if there is
a full Hilbert B-module E with K(E) ∼= A.

Corollary 6.6. Morita–Rieffel equivalence for C∗-algebras is an equivalence relation.

Proof. This follows from Theorem 6.4. �

The proof of Theorem 6.4 used the following example:

Example 6.7. A full correspondence E : A C B gives an equivalence from K(E) to B.
The left action of A on K(E) gives a morphism A M K(E). The correspondence E is
the composite of the morphism A M K(E) and the equivalence K(E) ' B. Similarly,
a full and proper correspondence E decomposes into a proper morphism A→ K(E)
and a Morita–Rieffel equivalence.

Theorem 6.4 implies that all equivalences in Corr are full, proper and faithful and
hence equivalences in the subbicategory of full, proper and faithful correspondences.

We are going to formulate Morita–Rieffel equivalence more symmetrically in
Section 7. This alternative formulation makes it easy to prove that Morita–Rieffel
equivalent C∗-algebras have isomorphic ideal lattices. Theorem 6.4 shows that
Morita–Rieffel equivalences are proper correspondences.

Remark 6.8. Proper correspondences induce maps on K-theory, and isomorphic
proper correspondences induce the same map on K-theory. Since a Morita–Rieffel
equivalence is an equivalence in the bicategory of proper correspondences, it induces
an isomorphism on K-theory. For σ-unital C∗-algebras, this follows also from the
Brown–Green–Rieffel Theorem below (Theorem 10.8).

7. Hilbert bimodules

Let E : A C B be a Morita–Rieffel equivalence. The left action on E is through
an isomorphism α : A '−→ K(E). Thus there is an A-valued inner product

〈〈x | y〉〉A := α−1(|x〉〈y|)
for x, y ∈ E . This inner product and the left A-module structure α turn E into a left
Hilbert A-module. That is, the A-valued inner product is linear in the first variable,
〈〈a · x1 |x2〉〉A = a · 〈〈x1 |x2〉〉A for all a ∈ A, x1, x2 ∈ E , and it satisfies analogues of
(3)–(5) in Definition 1.2. In addition, the left and right Hilbert module structures
are compatible in the following sense:

(1) E is an A,B-bimodule;
(2) 〈〈x | y〉〉Az = x〈y | z〉B for all x, y, z ∈ E .

Definition 7.1. Let A and B be C∗-algebras. A Hilbert A,B-bimodule is a set E
with a left Hilbert A-module and a right Hilbert B-module structure, subject to the
two compatibility conditions above.

Proposition 7.2. A correspondence E carries a Hilbert bimodule structure if and
only if there is an ideal I / A such that the left action α : A → B(E) restricts to
an isomorphism from I onto K(E). The correspondence pins down this ideal and
the left inner product, and I = 〈〈E | E〉〉A. A correspondence embedding between two
Hilbert bimodules is automatically a Hilbert bimodule map.

Proof. Let E be a Hilbert bimodule. Let I := 〈〈E | E〉〉 / A. Since

〈〈x1 |x2〉〉Ax3 = x1〈x2 |x3〉B = |x1〉〈x2|x3

for all x1, x2, x3 ∈ E and the operators of the form |x1〉〈x2| span K(E), the left
action maps the ideal I onto K(E). If a ∈ A satifies α(a) = 0, then a〈〈x1 |x2〉〉A =
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〈〈ax1 |x2〉〉A = 0 for all x1, x2 ∈ E , so that a · I = 0. Thus α|I is injective, and then
it maps I isomorphically onto K(E).

Conversely, if I / A and α|I : I '−→ K(E) is an isomorphism, then 〈〈x1 |x2〉〉 :=
α|−1
I (|x1〉〈x2|) for x1, x2 ∈ E defines a left I-valued inner product that turns E into

a Hilbert A,B-bimodule because I / A.
If I ′ / A is another ideal with α(I ′) = K(E), then α(I · I ′) = K(E) ·K(E) = K(E)

as well. Since α|I is an isomorphism onto K(E), I · I ′ cannot be smaller than I.
Thus I is the minimal ideal that α maps onto K(E), and the only one on which this
happens isomorphically. Thus the underlying correspondence determines I.

Let E ′ be another Hilbert A,B-bimodule with the same underlying correspondence
as E and with left A-valued inner product 〈〈x | y〉〉′A. Then

α(〈〈x | y〉〉′A)z = x · 〈y | z〉B = α(〈〈x | y〉〉A)z
for all x, y, z ∈ E . Since I = 〈〈E | E〉〉′A as well and the restriction of α to I is faithful,
our two left inner products are equal. So the left inner product is unique.

Let E1 and E2 be two Hilbert bimodules and let i : E1 ↪→ E2 be an embedding
of correspondences. Then 〈〈iξ | iη〉〉A and 〈〈ξ | η〉〉A are two left inner products on E1
that make it a Hilbert bimodule. Hence they are equal. So i is automatically a
Hilbert bimodule map. �

If α|I : I '−→ K(E), then α is the morphism A→ B(E) ∼=M(K(E)) associated to
the ideal inclusion K(E) ∼= I / A.

Theorem 7.3. A Hilbert A,B-bimodule is the same as a Morita–Rieffel equivalence
between ideals I / A and J / B, namely, I := 〈〈E | E〉〉A and J := 〈E | E〉B.

Proof. Let E be a Hilbert A,B-bimodule and let I := 〈〈E | E〉〉A / A and J :=
〈E | E〉B / B. We may view E as a full Hilbert J-module, and α|I is an isomorphism
onto K(E) by Proposition 7.2. Thus E is a Morita–Rieffel equivalence from J to I
by Theorem 6.4. Conversely, if I / A and J / B are ideals and E is a Morita–
Rieffel equivalence between I and J , then the bimodule structure on E extends to an
A,B-bimodule structure that gives a Hilbert A,B-bimodule by Corollary 3.13. �

Theorem 7.3 suggests to view Hilbert bimodules as partial Morita–Rieffel equiva-
lences. This generalises the concept of a partial automorphism of a C∗-algebra A,
which is an isomorphism between two ideals in A (see [9]).

Theorem 7.4. A correspondence is a Morita–Rieffel equivalence if and only if it
comes from a Hilbert bimodule where both inner products are full, if and only if it
comes from a Hilbert bimodule and is full, proper and faithful.

Proof. We have seen at the beginning of this section that a Morita–Rieffel equivalence
E : A C B carries a left inner product. Conversely, let E : A C B be a Hilbert
bimodule and assume that the left and right inner products are full. Then A =
〈〈E | E〉〉A acts through an isomorphism onto K(E) by Proposition 7.2. Thus E is an
equivalence by Theorem 6.4.

Let E : A C B be a Hilbert bimodule and I := 〈〈E | E〉〉A, J := 〈E | E〉B . Being an
equivalence says that J = B and I = A. The condition J = B says that E is full.
The left action is through an isomorphism I

'−→ K(E). Being proper means that
α(A) ⊆ α(I) = K(E). If α is also faithful, then this implies A = I. Conversely, if
I = A, then E is proper and faithful. �

Theorem 7.5. Let E : A C B be a Hilbert bimodule. The following classes of
objects form isomorphic lattices:

(1) ideals in A contained in 〈〈E | E〉〉A;
(2) ideals in B contained in 〈E | E〉B;
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(3) Hilbert A,B-subbimodules of E.
The bijections map I / 〈〈E | E〉〉A and J / 〈E | E〉B to the Hilbert subbimodules I · E
and E · J , respectively, and a Hilbert subbimodule F of E to the ideals 〈〈F |F〉〉A
and 〈F |F〉B, respectively. Thus F ⊆ E is a Morita–Rieffel equivalence between the
ideals in A and B associated to it.

Proof. Let F ⊆ E be a Hilbert subbimodule. We define ideals r(F) := 〈〈F |F〉〉A /
〈〈E | E〉〉A and s(F) := 〈F |F〉B / 〈E | E〉B. Then F is a Morita–Rieffel equivalence
between r(F) and s(F) by Theorem 7.4. Conversely, let I / 〈〈E | E〉〉 be an ideal.
Then EI := I · E is a Hilbert subbimodule with r(EI) = I∗〈〈E | E〉〉AI = I. If F is
another Hilbert subbimodule with r(F) = I, then

I · E = 〈〈F |F〉〉A · E = F · 〈F | E〉B ⊆ F = I · F ⊆ I · E .
Hence I · E is the unique Hilbert subbimodule with r(F) = I. Thus r is bijective.
A symmetric argument shows that s is bijective with inverse J 7→ E · J . All our
constructions preserve inclusions, so they are lattice isomorphisms. �

Corollary 7.6. Morita–Rieffel equivalent C∗-algebras have isomorphic ideal lattices.

Proof. A Morita–Rieffel equivalence is a Hilbert bimodule with 〈〈E | E〉〉A = A and
〈E | E〉B = B. Hence the isomorphism between the first two items in Theorem 7.5 is
a lattice isomorphism I(A) ∼= I(B). �

Corollary 7.7. Morita–Rieffel equivalent C∗-algebras have isomorphic centres.

Proof. This follows from the isomorphism of ideal lattices and the Dauns–Hofmann
Theorem. �

Corollary 7.8. Let E and F be Hilbert A,B-bimodules and let i : E ↪→ F be a
correspondence map. Then F · 〈E | E〉B = 〈〈E | E〉〉A · F and i is a unitary operator
from E onto this Hilbert submodule of F . The map i is an isomorphism if and only
if 〈E | E〉B = 〈F |F〉B if and only if 〈〈E | E〉〉A = 〈〈F |F〉〉A.

Proof. The image of i is a Hilbert subbimodule in F . Theorem 7.5 shows that i(E) =
I · F = F · J with I := 〈〈i(E) | i(E)〉〉A = 〈〈E | E〉〉A and J := 〈i(E) | i(E)〉B = 〈E | E〉B .
Since a surjective isometry is unitary, i is unitary onto this Hilbert subbimodule. And
i(E) = F if and only if 〈E | E〉B = 〈F |F〉B , if and only if 〈〈E | E〉〉A = 〈〈F |F〉〉A. �

Corollary 7.9. Let E and F be Hilbert A,B- and B,C-bimodules. Then the
correspondence E ⊗B F has a unique Hilbert A,C-bimodule structure.

Proof. By Theorem 7.3, E is an equivalence from J1 := 〈E | E〉B / B to I :=
〈〈E | E〉〉A / A, and F is one from K := 〈F |F〉C / C to J2 := 〈〈F |F〉〉B / B. Then
F = J2 · F ∼= J2 ⊗B F and E = E · J1 = E ⊗B J1 by Proposition 3.12. Hence

E ⊗B F ∼= E ⊗B J1 ⊗B J2 ⊗B F = E ⊗B (J1 · J2)⊗B F
= E · (J1J2)⊗B (J1J2) · F .

The subspaces E · (J1J2) and (J1J2) · F are Morita–Rieffel equivalences from J1J2
to I ′ and from K ′ to J1J2 for some ideals I ′ / I and K ′ / K by Theorem 7.5. Hence
E ⊗B F is a Morita–Rieffel equivalence from K ′ / C to I ′ / A and thus comes from
a Hilbert A,C-bimodule by Theorem 7.3. �

Hence the Hilbert bimodules as arrows also give a subbicategory of Corr, which
we denote by Corr∗. By Proposition 7.2, correspondence embeddings and Hilbert
bimodule embeddings between two Hilbert bimodules are the same.

We have found four independent properties of correspondences that each define
a subbicategory, namely, being proper, full, faithful or a Hilbert bimodule. The
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Morita–Rieffel equivalences are exactly those correspondences with all four properties
by Theorem 7.4.

Definition 7.10. Let Â for a C∗-algebra denote the set of unitary equivalence
classes of irreducible representations of A. If I ∈ I(A), let Î := {[π] ∈ Â :π|I 6= 0}.
There is a topology on Â whose open subsets are exactly those of the form Î for
I ∈ I(A), and the map I 7→ Î is a lattice isomorphism from I(A) onto the open
subsets of Â.

Theorem 7.11. A Morita–Rieffel equivalence E between two C∗-algebras A and B
induces a homeomorphism Ê : B̂ → Â. It maps [π] ∈ B̂ to the unitary equivalence
class of the induced representation of A on E ⊗B π.

Proof. Any A,B-correspondence E induces a functor E ⊗B ␣: Rep(B)→ Rep(A).
By general bicategory theory, this functor is an equivalence if E is an equivalence.
Therefore, a Morita–Rieffel equivalence maps irreducible representations to irre-
ducible representations and preserves unitary equivalence classes of irreducible
representations. Thus it induces a bijection B̂ → Â. This is a homeomorphism for
the topology defined above by Corollary 7.6. �

Corollary 7.12. A Morita–Rieffel equivalence E between two C∗-algebras A and B
induces a homeomorphism Prim(A) ∼= Prim(B).

Proof. Prim(A) is the T0-quotient of Â. That is, it is the quotient by the equivalence
relation that identifies points that cannot be distinguished by open subsets. �

Example 7.13. Morita–Rieffel equivalence is not compatible with adding unit ele-
ments. We provide an example of Morita–Rieffel equivalent C∗-algebras A and B
such that A+ and B+ are not Morita–Rieffel equivalent.

Let A = C, B = K(`2N). These are Morita–Rieffel equivalent via E = `2N. Since
A+ ∼= C⊕ C and B+ = K(`2N)+ ⊆ B(`2N) have different centres, they cannot be
Morita–Rieffel equivalent.

Theorem 7.14. Let E be a Hilbert module over a C∗-algebra B. Let F ( E be a
proper closed Hilbert submodule. There is an irreducible Hilbert space representation
% : B → B(H) with F ⊗% H ( E ⊗% H.

Proof. Let K := K(E) and let R := K(E ,F). This is a proper right ideal in K
because F ( E . By [7, Theorem 2.9.5], there is a pure state ω on K that vanishes
on R. Let %′ : K → B(H′) be the irreducible GNS-representation of K associated
to ω. Then %′(R)(H′) 6= H′ because every element of %′(R)(H′) is orthogonal to the
cyclic vector of the GNS-representation by construction.

Let I := 〈E | E〉 / B. Thus E is a Morita–Rieffel equivalence between K and I.
By Theorem 7.11, [ϕ] 7→ [E ⊗I ϕ] is a homeomorphism from Î to K̂. So there is
an irreducible representation ϕ of I with [E ⊗I ϕ] = [%′]. Since ϕ is nondegenerate,
it extends uniquely to a representation % of B, which is still irreducible. And
E ⊗% H = E ⊗ϕ H = %′ and F ⊗% H = F ⊗ϕ H. We claim that F ⊗% H ( E ⊗% H
for this representation.

The operator |ξ〉〈η| for ξ, η ∈ E acts on E ⊗% H by

ζ ⊗ τ 7→ ξ〈η | ζ〉 ⊗ τ

for ζ ∈ E , τ ∈ H. Since K(F ,F) acts nondegenerately on F , we have R(E) = F .
Hence R ⊆ K maps E⊗%H onto the subspace F⊗%H. By construction of %′ ∼= E⊗%H,
this is not the whole space. So F ⊗% H ( E ⊗% H. �
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Any irreducible representation of B is unitarily equivalent to the GNS-represen-
tation for a pure state; so we may as well assume that the representation % above
comes from a pure state.

Remark 7.15. Theorem 7.14 was proven by [23, Proposition 1.16]. Kaad and
Lesch [11] proved a weaker result and formulated Theorem 7.14 as a conjecture.
They acknowledge the previous work of Pierrot in [12].

Exercise 7.16. The left and right inner products on a Hilbert A,B-bimodule E
induce the same norm, that is, ‖〈〈x |x〉〉A‖ = ‖〈x |x〉B‖ for all x ∈ E. (Use Theo-
rem 3.16.)

Exercise 7.17. Show that K(E1, E2) for two Hilbert B-modules E1 and E2 is a
Hilbert K(E2),K(E1)-bimodule; use left and right composition, the left inner product
〈〈x1 |x2〉〉 := x1x

∗
2, and the right inner product 〈x1 |x2〉 := x∗1x2. This is a Morita–

Rieffel equivalence between K(E1) and K(E2) if and only if 〈E1 | E1〉B = 〈E2 | E2〉B.

Exercise 7.18. Let A and B be C∗-algebras. Let E be a Hilbert A,B-bimodule with
left inner product 〈〈ξ | η〉〉A and right inner product 〈ξ | η〉B. Show that there is a
C∗-algebra with underlying vector space A⊕B ⊕ E ⊕ E∗, multiplication

(a1, b1, ξ1, η1) · (a2, b2, ξ2, η2)
:= (a1a2 + 〈〈ξ1 | η2〉〉A, b1b2 + 〈η1 | ξ2〉B , a1ξ2 + ξ1b2, a

∗
2η1 + η2b

∗
1)

and involution (a, b, ξ, η)∗ := (a∗, b∗, η, ξ) for ai ∈ A, bi ∈ B ξi, ηi ∈ E = E∗. This
C∗-algebra L is called linking algebra. Show that P (a, b, ξ, η) := (a, 0, ξ, 0) is a
projection inM(L) with A = PLP and B = P⊥LP⊥ for P⊥ = 1− P . That is, A
and B are complementary corners in L. When are P and P⊥ full?

Exercise 7.19. Let X and Y be locally compact spaces. Describe a Hilbert module E
over C0(Y ) through a continuous field (Hy)y∈Y of Hilbert spaces as in Exercise 1.13.

(1) Show that K(E) is commutative if and only if all fibres Hy are at most
1-dimensional.

(2) Show that a continuous field of Hilbert spaces with finite-dimensional fibres
is locally trivial, hence a vector bundle.

(3) Conclude that if E is a full Hilbert C0(X),C0(Y )-bimodule, then the un-
derlying right Hilbert module is the space Γ0(Y, L) of C0-sections of a
1-dimensional vector bundle L � Y ; such a vector bundle is called a
complex line bundle.

(4) Describe a full Hilbert C0(X),C0(Y )-bimodule as Γ0(Y, L) as in (3). Show
that the left action of C0(X) on Γ0(Y,L) must be of the form (f · s)(y) =
f(ϕ(y)) · s(y) for a unique homeomorphism ϕ : Y '−→ X.

(5) Conversely, any pair (L,ϕ) where L is a complex line bundle over Y and
ϕ : Y '−→ X is a homeomorphism defines a full Hilbert bimodule over C0(X)
and C0(Y ).

(6) Show that the full Hilbert bimodules associated to pairs (L1, ϕ1) and (L2, ϕ2)
are isomorphic if and only if L1 ∼= L2 as vector bundles and ϕ1 = ϕ2. And
the Hilbert bimodule isomorphisms are in bijection with the vector bundle
isomorphisms L1 ∼= L2.

8. Hilbert bimodules form a higher inverse category

The partial ∗-isomorphisms between C∗-algebras form an inverse category in the
following sense:
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Definition 8.1 ([14]). An inverse category is a category C such that for each t ∈ C
there is a unique u ∈ C with tut = t and utu = u; this unique element is denoted t∗.
An endomorphism e of C is idempotent if e2 = e. Let E(C) = {e ∈ C : e2 = e}.

We are going to exhibit similar properties for the bicategory of Hilbert bimod-
ules Corr∗. First we briefly recall some basic properties and examples of inverse
categries and their actions (see also [17]).

Example 8.2. Let X be a topological space. A partial homeomorphism of X is a
homeomorphism f : U '−→ V between two open subsets U, V ⊆ X. We compose
partial maps by f ◦ g(x) := f(g(x)) for all x ∈ X such that g(x) and f(g(x)) are
defined. This gives a partial homeomorphism if f and g are partial homeomorphisms.
A partial homeomorphism f : U → V has a partial inverse f∗ : V → U . Inspection
shows that this is the unique partial homeomorphism on X with ff∗f = f and
f∗ff∗ = f∗. Thus the partial homeomorphisms of X form an inverse semigroup,
which we denote by I(X). An inverse semigroup action on X is a homomorphism
from an inverse semigroup to I(X).

A partial homeomorphism on X is idempotent if and only if it is the identity map
on some open subset of X. The composite of two such partial identity maps is the
identity map on the intersection of their domains. Thus the idempotent elements
in I(X) form a commutative subsemigroup, which is isomorphic to the set O(X) of
open subsets of X with the associative multiplication ∩.

Example 8.3. Let A and B be C∗-algebras. A partial isomorphism from A to B
is a ∗-isomorphism between ideals in A and B. Partial isomorphisms with the
composition of partial maps form an inverse category.

Theorem 8.4. Let C be an inverse category. Then there is a family of sets Xy

for y ∈ C and a faithful action of C by partial bijections between these. This action
maps each arrow t : y → z in C to a partial bijection t∗ : Xy → Xz in a functorial
way, such that t∗ = u∗ implies t = u. In particular, any inverse semigroup embeds
into the inverse semigroup of partial bijections of some set.

The theorem implies that inverse categories must inherit various algebraic proper-
ties of I(X). In fact, the proof consists mostly in showing that any inverse category
has these properties:

Proposition 8.5. Let C be an inverse category.
(1) (t∗)∗ = t for all t ∈ C.
(2) Idempotent endomorphisms in C are self-adjoint and form a commutative

subcategory.
(3) (tu)∗ = u∗t∗ for all t, u ∈ C.
(4) If e ∈ E(C) and t ∈ C are composable, then tet∗ ∈ E(C).

Proof. Statement (1) holds because t satisfies the conditions tt∗t = t and t∗tt∗ = t∗,
and these characterise (t∗)∗ uniquely. If e ∈ E(C), then eee = e, and this uniquely
determines e∗; thus e = e∗.

Let e, f ∈ E(C) be composable. There is a unique g ∈ C with (ef)g(ef) = ef and
g(ef)g = g, namely, g = (ef)∗; then also (ef)(fge)(ef) = ef and (fge)(ef)(fge) =
fge; so f(ef)∗e = (ef)∗ by the uniqueness of the adjoint in C. Then (ef)∗(ef)∗ =
f(ef)∗ef(ef)∗e = f(ef)∗e = (ef)∗, that is, (ef)∗ is also idempotent. Hence
(ef)∗ = ef . So ef is idempotent. By symmetry, fe is idempotent as well. Now
(ef)(fe)(ef) = efef = ef and (fe)(ef)(fe) = fefe = fe. Then fe = (ef)∗ = ef .
This finishes the proof of (2).

Let e ∈ E(C) and t ∈ C be composable. Then tet∗tet∗ = tt∗tet∗ = tet∗ by
commuting the idempotent elements e and tt∗. This proves (4). If t, u ∈ C, then
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t∗u∗utt∗u∗ = t∗tt∗u∗uu∗ = t∗u∗ and utt∗u∗ut = uu∗u∗tt∗t = ut by commuting the
idempotents u∗u and tt∗. Thus t∗u∗ = (ut)∗, proving (3). �

Proof of Theorem 8.4. This is proved like Cayley’s Theorem, by constructing a
faithful action of an inverse category C on its arrow set by partial bijections. Let
Cy := {t ∈ C : r(t) = y} for y ∈ C0. Each t ∈ C yields a map Cs(t) → Cr(t), u 7→ t · u.
We will restrict these maps to partial bijections as required for an inverse semigroup
action. The main issue is to find the right domain

Dt := {t∗tu :u ∈ Cs(t)} ⊆ Cs(t).

Then u ∈ Dt if and only if t∗tu = u because t∗t ∈ E(C). We claim that the
left multiplication map t 7→ tu restricts to a bijection αt : Dt → Dt∗ with inverse
αt∗ : Dt∗ → Dt. We compute tu = tt∗tu ∈ Dt∗ for all u ∈ Dt. So αt(Dt) ⊆ Dt∗ .
And also αt∗αt(u) = t∗tu = u for all u ∈ Dt. By symmetry, αt∗(Dt∗) ⊆ Dt and
αtαt∗(u) = u for all u ∈ Dt∗ . Thus αt is a partial homeomorphism with partial
inverse αt∗ as asserted.

Let t, u ∈ C. We claim that αt ◦αu = αtu. It is clear that αtαu(v) = tuv = αtu(v)
whenever both sides are defined. An element v ∈ C belongs to the domain of
αtαu if and only if u∗uv = v and t∗t(uv) = uv; it belongs to the domain of αtu
if and only if v = (tu)∗(tu)v. If u∗uv = v and t∗t(uv) = uv, then (tu)∗(tu)v =
u∗t∗t(uv) = u∗uv = v by Proposition 8.5.(2). Conversely, if v = (tu)∗(tu)v, then
u∗uv = u∗uu∗t∗tuv = u∗t∗tuv = v and t∗tuv = t∗tuu∗t∗tuv = t∗tt∗tuu∗uv = uv by
Proposition 8.5.(2). �

Definition 8.6. Let C be an inverse category. If t, u ∈ C, then we write t ≤ u if
s(t) = s(u) and t = ut∗t.

Exercise 8.7. Show that t, u ∈ C satisfy t ≤ u if and only if t∗ ≤ u∗, if and only if
there is an idempotent element e ∈ E(C) with r(e) = s(u) and t = u · e. Show that if
t, u, v, w ∈ C satisfy t ≤ u, v ≤ w and s(t) = s(u) = r(v) = r(w), then t · v ≤ u · w.
Show that ≤ is a partial order on C.

Any Hilbert bimodule E : A C B has a canonical “adjoint” E∗ : B C A, namely,
the conjugate vector space of E with left and right Hilbert module structures
exchanged. We are going to explore the properties of this involution on the bicate-
gory Corr∗ of Hilbert bimodules.

Theorem 8.8. Let E be a Hilbert A,B-bimodule for two C∗-algebras A and B.
There are natural Hilbert bimodule isomorphisms

E ⊗B E∗ ∼= 〈〈E | E〉〉A, E∗ ⊗A E ∼= 〈E | E〉B .

These induce isomorphisms

µ : E ⊗B E∗ ⊗A E ∼= E , µ∗ : E∗ ⊗A E ⊗B E∗ ∼= E∗

such that

µ⊗B idE∗ = idE ⊗B µ∗ : E ⊗B E∗ ⊗A E ⊗B E∗ ∼= E ⊗B E∗,
µ∗ ⊗A idE = idE∗ ⊗A µ : E∗ ⊗A E ⊗B E∗ ⊗A E ∼= E∗ ⊗A E .

Proof. By Theorem 7.3, E is a Morita–Rieffel equivalence between I := 〈〈E | E〉〉A / A
and J := 〈E | E〉B / B. Theorem 6.4 says that the left and right inner products on E
induce correspondence isomorphisms µEE∗ : E ⊗B E∗

'−→ I and µE∗E : E∗ ⊗A E
'−→ J .

The right and left multiplication maps induce isomorphisms µEI : E ⊗B I
'−→ E and
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µJE : J ⊗A E
'−→ E by Proposition 3.12, and similarly for E∗. This gives commuting

diagrams of correspondence isomorphisms

E ⊗B E∗ ⊗A E E ⊗B J

I ⊗A E E

idE⊗BµE∗E

µEE∗⊗AidE µEJ

µIE

E∗ ⊗A E ⊗B E∗ E∗ ⊗A I

J ⊗B E∗ E∗

idE∗⊗AµEE∗

µE∗E⊗B idE∗ µE∗I

µJE∗

because x1 · 〈x2 |x3〉B = 〈〈x1 |x2〉〉A · x3 for x1, x3, x3 ∈ E , and similarly for E∗,
with the inner products 〈x∗1 |x∗2〉A = 〈〈x1 |x2〉〉A and 〈〈x∗1 |x∗2〉〉B = 〈x1 |x2〉B on E∗.
These are the isomorphisms µ and µ∗ in the statement of the theorem.

The isomorphisms µEE∗◦(µ⊗B idE∗) and µEE∗◦(idE⊗Bµ∗) from E⊗BE∗⊗AE⊗BE∗
to I both map x1 ⊗ x∗2 ⊗ x3 ⊗ x∗4 to 〈〈x1 |x2〉〉A · 〈〈x3 |x4〉〉A. Since µEE∗ is an
isomorphism, this implies µ⊗B idE∗ = idE ⊗B µ∗. Similarly, µ∗ ⊗A idE = idE∗ ⊗A
µ. �

Theorem 8.9. Let A,B,C be C∗-algebras. Let E : A C B and F : A C C be
correspondences and let G be a Hilbert B,C-bimodule. If 〈E | E〉B ⊆ 〈〈G | G〉〉B, then
there is a natural bijection between the sets of 2-arrows E⊗BG → F and E → F⊗CG∗.
This preserves invertibility of 2-arrows if and only if 〈F |F〉C ⊆ 〈G | G〉C .

Proof. Let i : E ⊗B G ↪→ F be a correspondence map. Then so is i ⊗ idG∗ : E ⊗B
G ⊗C G∗ ↪→ F ⊗B G∗. The left inner product induces an isomorphism µGG∗ : G ⊗C
G∗ '−→ 〈〈G | G〉〉B. If 〈E | E〉B ⊆ 〈〈G | G〉〉B, then E is a nondegenerate right module
over the ideal 〈〈G | G〉〉B, so that E ⊗B G ⊗C G∗ ∼= E by the multiplication map
x⊗ y ⊗ z∗ 7→ x〈〈y | z〉〉B. Thus i induces a correspondence map i[ : E ↪→ F ⊗B G∗,
defined by i[(x · 〈〈y | z〉〉B) = i(x⊗ y)⊗ z∗. If i is an isomorphism, so is i[.

Conversely, let j : E ↪→ F ⊗C G∗ be a correspondence map. Then so is j ⊗B
idG : E ⊗B G ↪→ F ⊗C G∗ ⊗B G. The right inner product induces an isomorphism
µG∗G : G∗ ⊗B G

'−→ 〈G | G〉C / C. We get a correspondence map F ⊗C G∗ ⊗B G ∼=
F · 〈G | G〉C ↪→ F , x ⊗ y∗ ⊗ z 7→ x〈y | z〉B, and j induces a correspondence map
j# : E ⊗B G ↪→ F . If j is an isomorphism, then j# is one if and only if the
embedding F ⊗C G∗ ⊗B G ↪→ F is an isomorphism. As above, this happens if and
only if 〈F |F〉C ⊆ 〈G | G〉C .

The following commuting diagram shows that (i[)# = i:

E ⊗B G ⊗C G∗ ⊗B G F ⊗C G∗ ⊗B G

E ⊗B G F

i⊗C idG∗⊗BG

∼=idE⊗Bµ idF⊗CµG∗,Gi[⊗B idG

i

Here µ : G ⊗C G∗ ⊗B G → G is as in Theorem 8.8. The square and the upper left
triangle commute because µ(x1⊗x∗2⊗x3) = x1〈x2 |x3〉 = 〈〈x1 |x2〉〉x3. Since the left
vertical map is an isomorphism, this implies that the lower right triangle commutes;
that is, (i[)# = i. Similarly, the following diagram commutes and gives (j#)[ = j:

E ⊗B G ⊗C G∗ F ⊗C G∗ ⊗B G ⊗C G∗

E F ⊗C G∗

j⊗B idG⊗CG∗

idE⊗BµG,G∗ ∼= j#⊗C idG∗ idF⊗Cµ∼=

j

Hence the constructions above are bijections inverse to each other. �

Theorem 8.10. Let A,B,C be C∗-algebras. Let E : B C C and F : A C C be
correspondences and let G be a Hilbert A,B-bimodule. If 〈G | G〉B · E = E, then there
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is a natural bijection between the sets of 2-arrows G ⊗B E → F and E → G∗ ⊗B F .
This preserves invertibility of 2-arrows if and only if 〈〈G | G〉〉AF = F .

Proof. Let i : G ⊗B E ↪→ F be a correspondence map. Then so is idG∗ ⊗A i : G∗ ⊗A
G ⊗B E ↪→ G∗ ⊗A F . Since 〈G | G〉E = E , the map G∗ ⊗A G ⊗B E → E , x∗1 ⊗
x2 7→ y 7→ 〈x1 |x2〉By, is an isomorphism. Hence i induces a correspondence map
i[ : E ↪→ G∗ ⊗A F , which is an isomorphism of correspondences if and only if i is
one.

Conversely, let j : E ↪→ G∗ ⊗A F be an embedding of correspondences. It induces
an embedding of correspondences idG ⊗A j : G ⊗A E ↪→ G ⊗A G∗ ⊗A F . The map
x1⊗x∗2⊗y 7→ 〈〈x1 |x2〉〉By for x1, x2 ∈ G, y ∈ F defines a correspondence embedding
G ⊗A G∗⊗AF ↪→ F , which is an isomorphism if and only if 〈〈G | G〉〉AF = F . Thus j
induces an embedding of correspondences j# : G⊗AE ↪→ F , which is an isomorphism
if and only if j is an isomorphism and 〈〈G | G〉〉AF = F . Diagrams similar to those
in the proof of Theorem 8.9 imply (i[)# = i and (j#)[ = j for all i and j, so our
two constructions are bijections inverse to each other. �

Theorem 8.11. Let E and F be a Hilbert A,B-bimodule and a Hilbert B,A-bimodule
with E ⊗B F ⊗A E ∼= E and F ⊗A E ⊗B F ∼= F . There is a unique isomorphism
ϕ : F ∼= E∗ such that the composite map

(8.1) E ∼= E ⊗B F ⊗A E ∼= E ⊗B E∗ ⊗A E ∼= E

is the identity map.

In a bicategory, we cannot expect that for an arrow t there is a unique arrow t∗

with tt∗t ∼= t and t∗tt∗ ∼= t∗. Theorem 8.11 asserts the next best thing: a canonical
isomorphism between any two arrows t∗ with this property.

Proof. Denote the natural isomorphisms in the statement by λ : E ⊗B F ⊗A E
'−→ E

and λ∗ : F ⊗A E ⊗B F
'−→ F . There is a natural isomorphism

(8.2) 〈E | E〉 · F · 〈〈E | E〉〉 ∼= E∗ ⊗A E ⊗B F ⊗A E ⊗B E∗

idE∗⊗Aλ⊗B idE∗−−−−−−−−−−−→∼=
E∗ ⊗A E ⊗B E∗ ∼= E∗.

Thus E∗ ⊆ F . Then 〈〈E | E〉〉 ⊆ 〈F |F〉 and 〈E | E〉 ⊆ 〈〈F |F〉〉. The same argument
with the other isomorphism F⊗A E ⊗BF ∼= F gives 〈〈F |F〉〉 ⊆ 〈E | E〉 and 〈F |F〉 ⊆
〈〈E | E〉〉. These four inclusions together say that 〈〈F |F〉〉 = 〈E | E〉 and 〈F |F〉 =
〈〈E | E〉〉. Thus 〈E | E〉 · F · 〈〈E | E〉〉 = F , and (8.2) is an isomorphism F ∼= E∗.

Theorem 8.9 and Theorem 8.10 give bijections between the sets of Hilbert
bimodule isomorphisms

E ⊗B F ⊗A E ∼= E , E ⊗B F ∼= E ⊗A E∗, F ∼= E∗ ⊗B E ⊗A E∗.

Since E∗⊗B E ⊗A E∗ ∼= E∗, there is a unique isomorphism F '−→ E∗ that corresponds
to the given isomorphism E ⊗B F ⊗A E

'−→ E . This is also the unique isomorphism
for which the composite map in (8.1) is the identity map. (In fact, this unique
isomorphism F ∼= E∗ is the one constructed above.) �

Proposition 8.5 describes some important general properties of inverse semigroups.
Properties (1) and (3) are obvious for Hilbert bimodules, but the other properties
are not. The following theorem and exercises provide analogous statements for
Hilbert bimodules. The mere existence of certain isomorphisms follows already
because isomorphism classes of Hilbert bimodules form an inverse category. More
work is needed, however, to pin down these isomorphisms.
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Theorem 8.12. Let E : A C A be a Hilbert bimodule with an isomorphism λ : E ⊗A
E ∼= E. There is a unique isomorphism from E onto the ideal I := 〈E | E〉A = 〈〈E | E〉〉A
in A that intertwines λ and the multiplication map I ⊗A I ∼= I. This map is
associative.

If λi : Ei ⊗A Ei → Ei for i = 1, 2 are two Hilbert bimodule isomorphisms, then
there is a unique isomorphism σ : E1 ⊗A E2

'−→ E2 ⊗A E1 such that the following
diagram commutes:

E1 ⊗A E2 ⊗A E1 E1 ⊗A E1 ⊗A E2 E1 ⊗A E2

E2 ⊗A E1 ⊗A E1 E2 ⊗A E1

id⊗σ−1

σ⊗id

λ1⊗id

σ

id⊗λ1

The same isomorphism σ also makes the following diagram commute:

E2 ⊗A E1 ⊗A E2 E2 ⊗A E2 ⊗A E1 E2 ⊗A E1

E1 ⊗A E2 ⊗A E2 E1 ⊗A E2

id⊗σ

σ−1⊗id

λ2⊗id

id⊗λ2

σ

So E1 ⊗A E2 ⊗A E1 ⊗A E2 ∼= E1 ⊗A E2.

Proof. The isomorphism λ induces an isomorphism E ⊗A E ⊗A E ∼= E . Hence
E = F satisfies the conditions in Theorem 8.11 which characterise E∗. This gives an
isomorphism E ∼= E∗. Hence λ gives isomorphisms

〈〈E | E〉〉A ∼= E∗ ⊗A E ∼= E ∼= E ⊗A E∗ ∼= 〈E | E〉A.

If two ideals in A are isomorphic as right Hilbert modules (or correspondences),
then they are conjugate by a unitary, hence equal. Thus 〈E | E〉 = 〈〈E | E〉〉, and E is
isomorphic as a correspondence to this ideal equipped with the canonical Hilbert
A-bimodule structure. So we may assume without loss of generality that E = I for
an ideal I, with the canonical Hilbert bimodule structure.

The map λ : I ⊗A I → I is of the form λ(a1 ⊗ a2) = ua1a2 for some u ∈ U(I).
Since λ is a bimodule map, u must be central. An isomorphism from I onto an ideal
in I can only be of the form I → I, a 7→ va, for some central unitary multiplier v
of I. The isomorphism coming from v intertwines λ above and the multiplication
map on I if and only if (va1) · (va2) = vua1a2 for all a1, a2 ∈ I. Since u and v are
both central, this is equivalent to u = v. Hence this is the unique isomorphism on I
that intertwines λ and the usual multiplication on A.

Since 〈〈I | I〉〉A = I = 〈I | I〉A and the multiplication I ⊗A I → I is associative,
the same must hold for E and λ; that is, λ ◦ (idE ⊗ λ) = λ ◦ (λ⊗ idE).

Let λi : Ei ⊗A Ei
'−→ Ei for i = 1, 2 be as above. Identify Ei ∼= Ji for ideals Ji / A

with the canonical bimodule structure, so that λi becomes the multiplication map.
The multiplication map in A is a Hilbert bimodule isomorphism A⊗A A ∼= A. On
the Hilbert subbimodule J1 ⊗A J2, this restricts to an isometric embedding into A.
By Corollary 7.8, this is an isomorphism onto J1 · 〈J2 | J2〉A = J1 · J2 = J1 ∩ J2.
Similarly, J2 ⊗A J1 ∼= J1 ∩ J2. This gives an isomorphism E1 ⊗A E2 ∼= E2 ⊗A E1. It
makes the two diagrams in the theorem commute.

Another isomorphism σ : J1 ⊗A J2
'−→ J2 ⊗A J1 must be of the form σ′(x) = u · x

for a central unitary multipler u of J1 ∩ J2 / A. This unitary also commutes with
the images ofM(A) andM(Ji) for i = 1, 2. In the two diagrams above for σ′, one
isomorphism contains the unitary uu∗, the other only u or only u∗. Hence either
diagram for σ′ commutes if and only if u = 1. Thus σ is unique as desired. �
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Exercise 8.13. Let E be a Hilbert A-bimodule and let λ : E ⊗A E
'−→ E be an isomor-

phism. There is a unique isomorphism E∗ ∼= E so that the composite isomorphism

E ⊗A E ⊗A E ∼= E ⊗A E∗ ⊗A E
∼=−→
µ
E

is λ ◦ (idE ⊗ λ) = λ ◦ (λ⊗ idE).

Exercise 8.14. Let F be a Hilbert A,B-bimodule, E a Hilbert A-bimodule, and
G := F∗ ⊗A E ⊗A F . Given an isomorphism λ : E ⊗A E

'−→ E, construct a canonical
isomorphism G ⊗B G

'−→ G.

Theorem 8.11 does not characterise Hilbert bimodules among correspondences.
That is, there are correspondences E : A C B for which there is F with E⊗BF⊗AE ∼=
E and F ⊗A E ⊗B F ∼= F , but which are not Hilbert bimodules:

Example 8.15. Let A = K(`2N)+ and B = C, let u : B → A be the unit map and
ε : A→ B the augmentation map. These are unital ∗-homomorphisms, which we
may view as correspondences. Since ε◦u = idB , we have ε◦u◦ε = ε and u◦ε◦u = u.
We claim that ε is the only correspondence A C B with this property, so that we
have found the desired counterexample.

A correspondence E : A C B is a Hilbert space H with a unital representation %
of A. A correspondence B C A is simply a Hilbert A-module. An isomorphism
u ⊗A E ⊗C u ∼= u of correspondences B C A means that H ⊗C A ∼= A as a
Hilbert A-module. We have K(A) = A and K(H ⊗C A) ∼= K(H) ⊗ A. These are
only isomorphic if H has dimension 1, and then A must act on H = C by the
augmentation character. So E is isomorphic to the correspondence associated to ε.

9. Polar decomposition

We are going to generalise the polar decomposition to operators on Hilbert
modules. It is a useful tool to get unitary operators from non-unitary ones. It will
be used to prove Kasparov’s Stabilisation Theorem.

First let V : H1 → H2 be an operator between Hilbert spaces. Then V = U |V |,
where U is a partial isometry and |V | = (V ∗V )1/2. This decomposition is natural;
therefore, when we view V and U as operators on H1 ⊕ H2, then the partial
isometry U belongs to the double commutant of V . But it need not belong to the
multiplier algebra of the C∗-algebra generated by V . Since B(B) ∼= M(B) for a
C∗-algebra B by Exercise 3.14, we cannot expect the polar decomposition to work
for general adjointable operators between Hilbert modules.

Theorem 9.1. Let B be a C∗-algebra, let E1 and E2 be Hilbert B-modules, and let
x : E1 → E2 be an adjointable operator. If x and x∗ have dense range, then there is
a unique unitary operator U : E1 → E2 with x = U |x|. There is a partial isometry
U : E1 → E2 with x = U |x|, U(E1) = x(E1), and U∗(E2) = x∗(E2) if and only if the
ranges of x and x∗ are complementable, and then U is unique.

Proof. We copy the construction of the polar decomposition for Hilbert space
operators. We want to define U |x|(ξ) := x(ξ) for all ξ ∈ E . We compute

‖x(ξ)‖2 = 〈x(ξ) |x(ξ)〉 = 〈ξ |x∗x(ξ)〉 = 〈ξ | |x|2(ξ)〉
= 〈|x|(ξ) | |x|(ξ)〉 = ‖|x|(ξ)‖2.

Thus U is a well-defined, isometric map from |x|(E1) to x(E1). It extends to an
isometry between the closures U : x(E1) '−→ |x|(E1). Let U and U∗ be zero on the
orthogonal complements of x(E1) and |x|(E1), respectively. If the submodules x(E1)
and |x|(E1) are complementable, then these extensions of U and U∗ are defined
everywhere; they are adjoints of each other, and UU∗U = U , U∗UU∗ = U∗, that
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is, U is a partial isometry E1 → E2. It is unitary if and only if both x and |x| have
dense range.

Next we check that |x|(E1) = x∗(E2). Since |x| is positive, it may be obtained by
functional calculus from |x|α for any α > 0. Therefore, |x|(E1) = |x|α(E1) for any
α > 0. Hence

|x|(E1) = |x|2(E1) = x∗x(E1) ⊆ x∗(E2).
We may write x∗ = (x∗x)1/4y = |x|1/2y for some y ∈ B(E2, E1) – this is possible in
any C∗-algebra, such as B(E1 ⊕ E2). Hence x∗(E2) ⊆ |x|1/2(E1) = |x|(E1).

If U : E1 → E2 is a partial isometry, then UU∗ and U∗U are projections onto
U(E1) and U∗(E2), respectively, so these are complementable submodules. The
condition x = U |x| determines U on |x|(E1), and the condition U∗(E2) = x∗(E2)
forces U to vanish on the complement of x∗(E2). Thus U is unique. �

Exercise 9.2. Let E be a Hilbert module and let F be a countably generated Hilbert
submodule. Show that there is a compact operator x on E with x(E) = F .

Hence operators without polar decomposition exist whenever there are Hilbert
submodules that are not complementable.

10. Kasparov’s Stabilisation Theorem

Let B be a C∗-algebra.

Definition 10.1. A Hilbert B-module E is countably generated if there is a countable
subset S ⊆ E such that the linear span of S ·B is dense in E .

If the C∗-algebra B is separable, then E is countably generated if and only if E is
separable.

Theorem 10.2 (Kasparov’s Stabilisation Theorem). If E is a countably generated
Hilbert B-module, then B∞ ∼= B∞ ⊕ E.

This theorem justifies calling the Hilbert module B∞ defined in (1.4) the standard
Hilbert B-module.

By definition, B∞ is the closure of
∑
n∈NB with respect to the norm from the

inner product
〈(an) | (bn)〉 =

∑
n∈N

a∗nbn.

Thus (bn) ∈ B∞ if and only if
∑
n∈N b

∗
nbn is norm-convergent, that is, for all ε > 0

there is N ∈ N with ‖
∑M
N b∗nbn‖ ≤ ε for all M ≥ N . This condition is strictly

weaker than
∑
‖bn‖2 <∞.

Let us compare the stabilisation theorem with Swan’s Theorem for a compact
space. It says that for any vector bundle E over X, there is a vector bundle Ẽ
such that Ẽ ⊕ E is trivial, that is, isomorphic to the vector bundle X × Cn for
some n ∈ N. We cannot expect an isomorphism E ⊕ (X × Cn) ∼= (X × Cn) for
nontrivial X, of course. But we get

X × C∞ ∼= (E ⊕ Ẽ)⊕ (E ⊕ Ẽ) + · · ·
∼= E ⊕ (Ẽ ⊕ E)⊕ (Ẽ ⊕ E) + · · ·
∼= E ⊕X × C∞.

Taking sections and completing to Hilbert modules gives Kasparov’s Stabilisation
Theorem for the Hilbert modules of sections of vector bundles. The above trick
is known as an Eilenberg swindle. It is a variant of the Hilbert hotel. As the
comparison with Swan’s Theorem shows, it is crucial that B∞ has infinite rank.
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Proof of Theorem 10.2. The idea of the proof, which goes back to [20], is to construct
an adjointable operator x : B∞ → E ⊕ B∞ such that x and x∗ have dense range.
Then the polar decomposition of x (Theorem 9.1) provides a unitary B∞ → E⊕B∞.

We pick a sequence (ξn) generating E . By assumption, the map B∞ → E ,
(bn) 7→

∑
ξnbn, has dense range. Without further assumptions, this map may be

unbounded. Even if it were adjointable, its adjoint would not have dense range
because then we would get E ∼= B∞, which cannot be true in general. We must
make our operator more complicated.

We may assume without loss of generality that ‖ξn‖ ≤ 1 for all n ∈ N and that each
vector ξn is repeated infinitely often in the sequence because N×N ∼= N. We define an
operator x : B∞ → E⊕B∞ by sending B∞ 3 bnδn 7→ (2−nξnbn, 4−nbnδn) ∈ E⊕B∞.
The projection of x to E is the operator

(2−n|ξn〉)n∈N : B∞ → E , (bn)→
∑
n∈N

2−nξnbn,

which is compact and hence adjointable. The projection of x to B∞ is the diagonal
operator with diagonal entries 4−n, which is also adjointable.

We claim that x has dense range. By construction, 2−n · (ξnb, 2−nbδn) is in the
range of x for all n ∈ N, b ∈ B. We may omit the factor 2−n. Since each ξn is
repeated infinitely often, we get (ξnb, 2−mbδm) in the range for infinitely many m;
letting m→∞, we get (ξnb, 0) in the closed range for all n ∈ N, b ∈ B. Then the
closed range also contains 2−nbδn and hence bδn. Since the sequence (ξn) generates E ,
the closed range of x is all of E ⊕B∞.

The adjoint of x maps bδn 7→ 4−nbδn. Hence x∗ has dense range as well. Now
the polar decomposition of X in Theorem 9.1 produces the required unitary. �

Definition 10.3. A C∗-algebra B is σ-unital if it has a countable approximate
unit.

Any C∗-algebra contains an approximate unit, but this is a net in general. Being
σ-unital ensures that we may take this net to be a sequence.

Lemma 10.4. A C∗-algebra B is σ-unital if and only if it contains a strictly
positive element: a ∈ B+ with ϕ(a) > 0 for any state ϕ on B.

Proof. Let (en) be an approximate unit. Then limϕ(en) = 1 for any state ϕ. Hence∑
2−nen is strictly positive.
Conversely, let a ∈ B+ be strictly positive. Choose an increasing sequence (fn)

of functions R+ → [0, 1] with fn(0) = 0 for all n ∈ N and fn(t)↗ 1 uniformly for
t ≥ ε for all ε > 0. Then (fn(a)) is an increasing sequence of positive elements
in B. Since lim fn(t)t = t uniformly for t ∈ R+, lim fn(a) · a = a in norm and
hence lim fn(a) · b = b in norm if b = ab′ for some b′ ∈ B. The set of elements b
with norm-convergence lim fn(a) · b = b is norm-closed because (fn(a)) is uniformly
bounded. If the closure of a ·B were not dense in B, then there would be a state
vanishing on this right ideal, contradicting the strict positivity of a. Hence a ·B is
dense in B, and the convergence lim fn(a) · b = b works for all b ∈ B. �

Exercise 10.5. Let E be a Hilbert module over a C∗-algebra B. A positive element
of K(E) is strictly positive if and only if it has dense range as an operator on E.
The Hilbert module E is countably generated if and only if the C∗-algebra K(E) is
σ-unital.

Like B∞, we may also define E∞ for a Hilbert module E : equip the algebraic
direct sum

∑
n∈N E with the inner product 〈(ξn) | (ηn)〉B :=

∑
n∈N 〈ξn | ηn〉B and

complete to a Hilbert B-module. Equivalently, E∞ ∼= E ⊗ `2(N).
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Theorem 10.6. Let E be a full, countably generated Hilbert module over a σ-unital
C∗-algebra B. Then B∞ ∼= E∞.

Proof. Kasparov’s Stabilisation Theorem yields B∞ ∼= B∞ ⊕ E∞ because E∞ is
still countably generated if E is. Recall that E∗ := K(E , B) is a Hilbert module
over K(E). We have K(E∗) ∼= B because E∗ is full. Since E and E∗ give a Morita–
Rieffel equivalence between B and K(E), we have E⊗BE∗ ∼= K(E) and E∗⊗K(E)E ∼= B.
Since B is assumed σ-unital, E∗ is countably generated by Exercise 10.5. Hence so
is (E∗)∞. Thus Kasparov’s Stabilisation Theorem gives

(E∗)∞ ⊕K(E)∞ ∼= K(E)∞.
Now we tensor this isomorphism with the correspondence E : K(E) C B on the
right. Since E∗ ⊗K(E) E ∼= B and K(E)⊗K(E) E ∼= E , we get an isomorphism

B∞ ⊕ E∞ ∼= E∞.
Finally, we combine this with B∞ ∼= B∞ ⊕ E∞. �

Definition 10.7. Two C∗-algebras A and B are stably isomorphic if A⊗K(`2(N)) ∼=
B ⊗K(`2(N)).

Theorem 10.8 (Brown–Green–Rieffel). Two σ-unital C∗-algebras are Morita–
Rieffel equivalent if and only if they are stably isomorphic.

Proof. We have K(E∞) ∼= K(E) ⊗ K(`2N) for any Hilbert B-module E and, in
particular, K(B∞) ∼= K(B) ⊗ K(`2N). Hence a stable isomorphism between A
and B is equivalent to an isomorphism K(A∞) ∼= K(B∞). Since A is Morita–Rieffel
equivalent to K(A∞) and Morita–Rieffel equivalence is an equivalence relation,
stable isomorphism implies Morita–Rieffel equivalence.

Conversely, if A and B are Morita–Rieffel equivalent, then A ∼= K(E) for a full
Hilbert B-module E . Theorem 10.6 shows E∞ ∼= B∞ as Hilbert B-modules. Hence

A⊗K(`2N) ∼= K(E∞) ∼= K(B∞) ∼= B ⊗K(`2N). �

A Morita–Rieffel equivalence bimodule E between A and B induces a ∗-isomor-
phism

A⊗K ∼= K(E∞) ∼= K(B∞) ∼= B ⊗K,
where K := K(`2N). Here the isomorphisms A⊗K ∼= K(E∞) and B⊗K ∼= K(B∞) are
canonical. The isomorphism K(E∞) ∼= K(B∞) depends on the choice of the Hilbert
module isomorphism E∞ ∼= B∞. Two different isomorphisms E∞ ∼= B∞ differ by
a unitary u ∈ B(B∞) ∼=M(B ⊗K). Hence the ∗-isomorphism A⊗K→ B ⊗K is
unique up to composition with an inner automorphism Adu.

As an application, consider a Morita–Rieffel equivalence E from a C∗-algebra A
to itself. Then E induces a ∗-automorphism α of A⊗K. Since α is unique up to
inner automorphisms, the resulting covariance algebra (A⊗K) oα Z is unique up
to isomorphism. This suggests that there should be a covariance algebra AoE Z
with (A⊗K) oα Z ∼= (AoE Z)⊗K.

How much can we say about non-invertible correspondences?
Let E : A C B be a correspondence. Let I := 〈E | E〉B / B be the ideal such

that E is a full Hilbert I-module. Even if we assume A and B σ-unital, E need not be
countably generated. For instance, for A = B = C, arbitrarily large Hilbert spaces
give a correspondence A C B. To get anywhere, we better assume E countably
generated as well. Another problem is that ideals in σ-unital C∗-algebras need
not be σ-unital because I+ is unital and hence σ-unital for any C∗-algebra I. To
apply Theorem 10.6, we must assume that E is countably generated as a Hilbert
B-module and that I is σ-unital; since I ∼= K(E∗), this is equivalent to E∗ being
countably generated as a Hilbert K(E)-module. Then we get an isomorphism of
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Hilbert modules E∞ ∼= I∞. The left action A → B(B) gives a nondegenerate
∗-homomorphism

A⊗K→ B(E∞) ∼= B(I∞) ∼=M(K(I∞)) ∼=M(I ⊗K).

Thus a correspondence E : A C B with both E and E∗ countably generated gives
a morphism

A⊗K M I ⊗K / B ⊗K
for the ideal I = 〈E | E〉B / B. This morphism is unique up to composition with
Adu for u ∈ U(I ⊗K).

Exercise 10.9. If I / B, there is a strictly continuous, unital ∗-homomorphism
M(B)→M(I). When is it injective? Find an example where this map is injective
but not surjective.

We can use the above description of correspondences to find a strict 2-category
equivalent to the correspondence bicategory at least for σ-unital C∗-algebras. Its
arrows A← B are pairs (I, ϕ) with I / B and a morphism ϕ : A⊗K M I⊗K. The
2-arrows (I, ϕ)⇒ (J, ψ) are unitary multipliers of I ⊗K that intertwine ϕ and ψ
if I = J ; there are no 2-arrows if I 6= J . The composition of these arrows is done
to match the composition of correspondences. But now the composition is really
associative, not just up to 2-arrows, and the identity arrow (B, idB⊗K) on B is really
a strict unit arrow on B. We will not use this strictification of the correspondence
bicategory because it seems artificial.

Definition 10.10. A C∗-algebra A is C∗-stable if A ∼= K(`2N)⊗A.

Since K(`2N)⊗K(`2N) ∼= K(`2N), C∗-algebras of the form K(`2N)⊗A are always
C∗-stable.

The Brown–Green–Rieffel Theorem 10.8 implies that two C∗-stable, σ-unital
C∗-algebras are Morita–Rieffel equivalent if and only if they are isomorphic.

Exercise 10.11. If A is C∗-stable and E : A C B is a correspondence, then E ∼= E∞
as a correspondence. If E is full and countably generated and B is also C∗-stable,
then E ∼= B as a Hilbert module, so that E ∼= Bf for some morphism f : A M B.
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