Noncommutative Geometry IV: Differential Geometry

2. Recovering a manifold from its algebra of smooth functions

R. Meyer

Mathematisches Institut Universität Göttingen

Summer Term 2020

Algebraic geometry

- Before we consider noncommutative algebras as geometric objects, we explain in the first three lectures how to turn ordinary geometric objects into commutative algebras.
- We shall do this first with smooth manifolds; then, more briefly, with algebraic varieties.
- The first lecture on coordinates and manifolds recalls the concept of smooth manifold.
- The second lecture explains how to recover the manifold from its algebra of smooth functions.
- The third lecture briefly explains the analogous theory for algebraic varieties.

Recovering a manifold from its algebra of smooth functions

- We recall the concept of a K-algebra over a field K.
- Let X be a smooth manifold and K ∈ {R, C}. The smooth functions X → K form a K-algebra C[∞](X, K).
- A character on an K-algebra A is a non-zero algebra homomorphism A → K.
- The map sending x ∈ X to the evaluation homomorphism ev_x: C[∞](X, K) → K is a bijection from X onto the set of characters on C[∞](X, K).
- The set of characters on an algebra carries a canonical topology, called the Zariski topology.
- ► The Zariski topology on the set of characters on C[∞](X, K) is the usual topology on X.
- A smooth map f: X → Y induces an algebra homomorphism C[∞](Y, K) → C[∞](X, K), and any algebra homomorpism is of this form for a unique smooth map.
- ► The isomorphism class of the algebra C[∞](X, K) determines X up to diffeomorphism.

Algebras over fields

Definition

Let K be a field. A K-algebra is a K-vector space A with a map

$$m: A \times A \to A, \qquad (x, y) \mapsto x \cdot y,$$

called multiplication, which is bilinear and associative:

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$
 for all $a, b, c \in A.$ (1)

It is commutative if

$$a \cdot b = b \cdot a$$
 for all $a, b \in A$. (2)

A unit element is an element $1_A \in A$ with

$$1_A \cdot a = a = a \cdot 1_A \qquad \text{for all } a \in A. \tag{3}$$

An algebra with a unit element is called unital.

Algebras of smooth functions

Example

Let X be a smooth manifold and $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Let $C^{\infty}(X, \mathbb{K})$ be the set of smooth functions $X \to \mathbb{K}$.

This is a commutative, unital \mathbb{K} -algebra for the pointwise addition, scalar multiplication, and multiplication:

$$\begin{split} (f_1 + f_2)(x) &:= f_1(x) + f_2(x), \\ (\lambda \cdot f)(x) &:= \lambda \cdot f(x), \\ (f_1 \cdot f_2)(x) &:= f_1(x) \cdot f_2(x) \end{split}$$

for $f_1, f_2, f \in C^{\infty}(X, \mathbb{K})$, $\lambda \in \mathbb{K}$. We write $C^{\infty}(X)$ if \mathbb{K} is unimportant.

Characters

Definition

Let K be a field and let A and B be K-algebras.

An algebra homomorphism from A to B is a map $f: A \to B$ that is K-linear and satisfies $f(a \cdot b) = f(a) \cdot f(b)$ for all $a, b \in A$. If A and B are unital, we call f unital if $f(1_A) = 1_B$.

Definition

Let K be a field. A (K-valued) character on a K-algebra A is a non-zero algebra homomorphism $A \rightarrow K$. Let \hat{A} be the set of characters on A.

Theorem

Let X be a smooth manifold and let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. For each $x \in X$,

$$\operatorname{ev}_{x} \colon \operatorname{C}^{\infty}(X, \mathbb{K}) \to \mathbb{K}, \qquad f \mapsto f(x),$$

is a character. Any character is of this form. This yields a canonical bijection between X and the set of characters on $C^{\infty}(X, \mathbb{K})$.

The Zariski topology on the space of characters

Definition

Let A be a commutative K-algebra. Let S be a subset of \hat{A} . Its Zariski closure \overline{S} is the set of all $\chi \in \hat{A}$ with $\chi(a) = 0$ for all $a \in A$ with $\omega(a) = 0$ for all $\omega \in S$. Equivalently, \overline{S} is the largest subset such that $\omega(a) = 0$ for all $\omega \in S$ implies $\chi(a) = 0$ for all $\chi \in \overline{S}$.

Lemma

The Zariski closure satisfies the Kuratowski closure axioms and thus defines a topology on \hat{A} .

Lemma

The canonical bijection between X and the character space of $C^{\infty}(X)$ becomes a homeomorphism for the Zariski topology.

Proposition

A map $f: X \to Y$ is smooth if and only if $h \mapsto h \circ f$ defines a unital algebra homomorphism $f^*: C^{\infty}(Y) \to C^{\infty}(X)$. This defines a bijection from smooth maps $X \to Y$ to unital algebra homomorphisms $C^{\infty}(Y) \to C^{\infty}(X)$. In the language of category theory, $X \mapsto C^{\infty}(X, \mathbb{K})$ is a fully faithful functor from the category of smooth manifolds and smooth maps to the category of unital \mathbb{K} -algebras and unital algebra homomorphisms.

Corollary

If $C^{\infty}(X)$ and $C^{\infty}(Y)$ are isomorphic algebras, then X and Y are diffeomorphic.

Topology on $C^{\infty}(X)$

Definition

A sequence $(f_n)_{n \in \mathbb{N}}$ in $C^{\infty}(X)$ converges to $f \in C^{\infty}(X)$ if and only if for each chart $\varphi \colon U \to \mathbb{R}^d$, each compact subset $L \subseteq \varphi(U)$, and each multi-index α , the sequence of functions $\partial^{\alpha}(f_n \circ \varphi^{-1})|_L \colon L \to \mathbb{K}$ converges uniformly towards $\partial^{\alpha}(f \circ \varphi^{-1})|_L$.

Proposition

Any continuous character on $C^{\infty}(X)$ is ev_x for some $x \in X$.

The proof is done by contradiction. Let $\chi \colon C^{\infty}(X, \mathbb{K}) \to \mathbb{K}$ be a character with $\chi \neq ev_x$ for all $x \in X$.

We are going to prove that $\chi(1) = 0$, which is impossible.

Proof continued

- ▶ By assumption, there is $f \in C^{\infty}(X)$ with $\chi(f) \neq f(x)$.
- Since $\chi(1) = 1$, we may subtract $\chi(f) \cdot 1$ from f to get $f_x \in C^{\infty}(X)$ with $\chi(f_x) = 0$ and $f_x(x) \neq 0$.
- ► Then $\chi(f_x \cdot \overline{f_x}) = 0$ as well. And $|f_x|^2 = f_x \cdot \overline{f_x}$ is positive in a neighbourhood U_x of x.
- Let L be a compact subset of X. Then L ⊆ ∪ⁿ_{i=1} U_{xi} for finitely many of these open subsets.
- Then $\sum_{i=1}^{n} |f_{x_i}|^2$ is positive on L and in the kernel of χ .
- Multiplying with a suitable function, we get a smooth function g_L with g_L|_L = 1 and χ(g_L) = 0.
- These functions g_L converge to 1 if $L \rightarrow X$.
- Since χ is continuous, it follows that $\chi(1) = 0$.
- ▶ This is impossible. So there must be $x \in X$ with $\chi = ev_x$.