Noncommutative Geometry IV: Differential Geometry 3. Algebraic varieties

R. Meyer

Mathematisches Institut Universität Göttingen

Summer Term 2020

Algebraic geometry

- Before we consider noncommutative algebras as geometric objects, we explain in the first three lectures how to turn ordinary geometric objects into commutative algebras.
- We shall do this first with smooth manifolds; then, more briefly, with algebraic varieties.
- The first lecture on coordinates and manifolds recalls the concept of smooth manifold.
- The second lecture explains how to recover the manifold from its algebra of smooth functions.
- The third lecture briefly explains the analogous theory for algebraic varieties.

Algebraic varieties

- ► We define affine algebraic varieties.
- ▶ We relate them to radical ideals in polynomial algebras.
- We sketch how affine algebraic varieties correspond to radical, finitely generated, commutative algebras.
- ▶ We generalise to affine algebraic varieties over ℝ and discuss their real and complex points.
- We modify the concept of character to allow characters into field extensions of the ground field.
- ▶ We find a bijection between characters and maximal ideals.
- We show that the new characters on C[∞](X) are still just point evaluations if X is compact.
- If X is non-compact, this is true for continuous characters on C[∞](X).

Affine algebraic varieties

Definition

An affine complex algebraic variety is a subset of \mathbb{C}^n that is defined by algebraic equations.

That is, it is the solution set of a set of polynomial equations.

An affine complex algebraic variety is given by its vanishing ideal

$$I_V := \{ p \in \mathbb{C}[x_1, \ldots, x_n] : p|_V = 0 \}$$

in $\mathbb{C}[x_1,\ldots,x_n]$.

Theorem (Hilbert's Nullstellensatz)

An ideal in $\mathbb{C}[x_1, \ldots, x_n]$ is of the form I_V for a subset $V \subseteq \mathbb{C}^n$ if and only if it is radical:

if $p^n \in I_V$ for some $n \in \mathbb{N}$, then $p \in I_V$.

Regular functions on affine algebraic varieties

Definition

The algebra of polynomial (usually called regular) functions on V is

$$\mathsf{Pol}(V) := \mathbb{C}[x_1, \ldots, x_n]/I_V.$$

It describes V independently of an embedding in \mathbb{C}^n .

Theorem

A \mathbb{C} -algebra is of the form Pol(V) for an affine complex algebraic variety V if and only if it is commutative and finitely generated and its radical vanishes.

Example

The algebra $\mathbb{C}[x]/(x^2)$ is commutative and finitely generated, but not radical.

Affine algebraic varieties over the reals

Definition

Let K be any field. An affine algebraic variety in K^n is a radical ideal I in $K[x_1, \ldots, x_n]$. The algebra of regular functions on the variety is the quotient algebra $Pol(V) := K[x_1, \ldots, x_n]/I$.

Example

Let $I = (x^2 + 1) \subseteq \mathbb{R}[x]$. The algebra of regular functions is $\mathbb{R}[x]/I \cong \mathbb{C}$. There is no character $\mathbb{R}[x]/I \to \mathbb{R}$ because $x^2 + 1 = 0$ has no real solutions. There are two characters $\mathbb{C} \cong \mathbb{R}[x]/I \to \mathbb{C}$: the identity map and complex conjugation.

The real algebraic variety defined by the equation $x^2 + 1 = 0$ has no real points and two complex points i and -i.

Characters and maximal ideals

Definition

Let K be a field and let A be a K-algebra.

A character on A is a surjective unital homomorphism $A \rightarrow L$ for some field extension L of K.

Two characters $\varphi \colon A \to L$ and $\varphi' \colon A \to L'$ are considered equivalent if there is an isomorphism $\lambda \colon L \to L'$ with $\lambda \circ \varphi = \varphi'$ and $\lambda|_{\mathcal{K}} = \mathsf{Id}_{\mathcal{K}}$.

Definition

A maximal ideal in a K-algebra A is a proper ideal $I \subsetneq A$ for which there is no ideal J with with $I \subsetneq J \subsetneq A$.

Proposition

Let A be a commutative, unital K-algebra. Mapping a character χ to its kernel ker χ defines a bijection between the set of maximal ideals in A and the set of equivalence classes of characters on A.

Proposition

Let X be a smooth compact manifold. Any ideal in $C^{\infty}(X)$ is contained in $I_x := \{f \in C^{\infty}(X) : f(x) = 0\}$ for some $x \in X$. If X is not compact, then $C^{\infty}(X)$ has maximal ideals that are not of this form. These contain $C_c^{\infty}(X)$ and are dense in $C^{\infty}(X)$. And the quotient field has uncountable dimension.

Algebraic varieties that are not affine

Theorem (Liouville's Theorem)

The only holomorphic functions on a compact complex manifold are the constant ones.

- Thus we cannot describe complex manifolds through its algebra of global holomorphic functions.
- We cannot describe a compact algebraic variety through an algebra of regular functions.
- Projective varieties are described through graded algebras.
- We may use sheaf theory or differential graded algebras. Differential graded algebras have also been used in noncommutative differential geometry. They are not treated much in this course.