Noncommutative Geometry IV: Differential Geometry
 4. Representations and simple modules

R. Meyer
Mathematisches Institut
Universität Göttingen

Summer Term 2020

Representations and simple modules

Question

What could replace the points for a noncommutative space?

- Maximal ideals make sense for them as well.
- We may also replace characters by simple modules or, equivalently, irreducible representations.
- The kernels of irreducible representations are primitive ideals.
- These are a bit more general than maximal ideals.
- In this lecture, we will introduce basic notions of representation theory and apply them to simple examples.

Modules generalise linear algebra

- As two important examples in this lecture, we will study modules over the algebra of polynomials $\mathbb{C}[x]$ and over the algebra of upper triangular 2×2-matrices.
- These turn out to be equivalent to linear maps $V \rightarrow V$ and to linear maps $V_{0} \rightarrow V_{1}$, respectively, where V, V_{0}, V_{1} are \mathbb{C}-vector spaces.
- Thus the study of modules over noncommutative algebras generalises linear algebra.
- This is an important motivation to study noncommutative algebras.

Definition

Let K be a field and let V be a K-vector space.
Let $\operatorname{End}(V)$ be the space of K-linear maps $V \rightarrow V$.
This is a K-algebra with respect to composition of maps as multiplication and pointwise addition and scalar multiplication.
A representation of a K-algebra A on V is an algebra homomorphism $f: A \rightarrow \operatorname{End}(V)$.
The pair (V, f) is also called a (left) A-module.
A representation or module is called faithful if f is injective.

Example

Let A be a K-algebra.
The regular representation of A on itself is the representation $\lambda: A \rightarrow \operatorname{End}(A)$ defined by $\lambda_{a}(b):=a \cdot b$.
It is faithful if A is unital.

Polynomials in one variable

Example

Let $A=\mathbb{C}[x]$. A representation $f: A \rightarrow \operatorname{End}(V)$ of A on V is determined by $f(x)$, which may be any K-linear map $V \rightarrow V$. Since A has infinite dimension, a linear map $V \rightarrow V$ can only give a faithful A-module if V is infinite-dimensional.
If a module is not faithful, then there is a non-zero polynomial $p \in \mathbb{C}[x]$ with $f(p)=0$. The normalised polynomial of smallest degree generates the kernel of f.
It is the minimal polynomial of $f(x)$.
A vector $v \in V$ is an eigenvector if and only if the subspace $\mathbb{C} \cdot v$ is an A-submodule of V.

Upper triangular 2×2-matrices

Theorem

Let A be the unital K-algebra of upper triangular matrices in $\mathbb{M}_{2} K$.
An A-module is a vector space with linear maps P, S that satisfy $P^{2}=P, P \cdot S=0$ and $S \cdot P=S$.
The category of unital A-modules with A-linear maps as morphisms is equivalent to the category whose objects are the K-linear maps between K-vector spaces and whose morphisms from T to T^{\prime} are the commuting diagrams

that is, pairs of maps $\left(\varphi_{0}, \varphi_{1}\right)$ with $T^{\prime} \circ \varphi_{0}=\varphi_{1} \circ T$.

Submodules and simple modules

Definition

Let $(V, f: A \rightarrow \operatorname{End}(V))$ be an A-module.
An A-submodule is a vector subspace W of V for which $f(a)(w) \in W$ for all $a \in A, w \in W$; then f restricts to a map $A \rightarrow \operatorname{End}(W)$ that turns W into an A-module.
We call (V, f) with $f \neq 0$ a simple A-module or an irreducible representation of A if the only A-submodules are $\{0\}$ and V.

Definition

An algebra is called (left) primitive if it has a faithful simple module. An ideal $I \triangleleft A$ is called primitive if A / I is primitive or, equivalently, there is a simple module (V, f) with $\operatorname{ker} f=I$.

Definition

Let A be a K-algebra. The set of primitive ideals of A is called the primitive ideal space and denoted by $\operatorname{Prim}(A)$. The set of isomorphism classes of simple A-modules is denoted by \hat{A}.

Results on simple modules

Proposition

Any unital K-algebra A has a simple module.
Simple unital K-algebras are primitive.
Maximal ideals in unital algebras are primitive ideals.

Corollary

Let A be a commutative unital K-algebra.
The map $\hat{A} \rightarrow \operatorname{Prim}(A)$ is bijective.
And $\operatorname{Prim}(A)$ is the set of maximal ideals in A.
These are in bijection with characters $A \rightarrow L$ for fields $L \supseteq K$.

