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Endomorphism algebras and finite-dimensional algebras

We will study modules and ideals for two classes of algebras:
1. Algebras of endomorphisms
2. Finite-dimensional algebras



Algebras of endomorphisms

I The algebra End(V ) contains an important ideal Endf(V ),
spanned by rank-1-operators.

I If V has a countable basis, then Endf(V ) is the only
non-trivial ideal in End(V ).

I The algebra Endf(V ) has only one irreducible representation:
its representation on V .

I Any nondegenerate representation of Endf(V ) is a direct sum
of copies of the representation on V .

I The category of nondegenerate representation of Endf(V ) is
equivalent to the category of vector spaces.



Finite-Rank Operators

Let V ∗ := HomK (V ,K ) be the dual vector space.
Given v̂ ∈ V ∗ and w ∈W , we define K -linear maps

|w〉 : K →W , κ 7→ w · κ,
〈v̂ | : V → K , v 7→ v̂(v),

|w〉〈v̂ | : V →W , v 7→ |w〉
(
〈v̂ |(v)

)
= w · v̂(v).

(1)

Any operator V →W of rank 1 is of the form |w〉〈v̂ | for some
w ∈W \ {0} and some v̂ ∈ V ∗ \ {0}.
And T ◦ |w〉〈v̂ | ◦ S = |T (w)〉〈S∗v̂ |.



Ideals in End(V )

Proposition
Any non-zero ideal in End(V ) contains Endf(V ).
If V has countably infinite dimension,
then {0}, Endf(V ), and End(V ) are the only ideals in End(V ).

Proof.
I Let I be a non-zero ideal, T ∈ I \ {0}.
I Then there is v ∈ V with T (v) 6= 0.
I Then there is v̂ ∈ V ∗ with v̂(T (v)) = 1.
I If w ∈ V , ŵ ∈ V ∗, then |w〉〈v̂ |T |v〉〈ŵ | = |w〉〈ŵ | ∈ I.
I Then Endf(V ) ⊆ I.
I Assume also I 6= Endf(V ). Then I contains T of infinite rank.
I Choose countable bases for V and the image of T to find

a, b ∈ End(V ) with aTb = 1.



Nondegenerate modules

Definition
Let V be a vector space and A an algebra.
A representation f : A→ End(V ) is non-degenerate if elements of
the form f (a)(v) for a ∈ A, v ∈ V span V or, briefly, A · V = V .

Lemma
Let A be unital with unit 1A. An A-module is non-degenerate if
and only if 1A · v = v for all v ∈ V .

Example
The obvious representation Endf(V )→ End(V ) is non-degenerate.

Theorem
The category of non-degenerate representations of Endf(V ) is
equivalent to the category of vector spaces.



Finite-Dimensional algebras

I Let A be a finite-dimensional C-algebra.
I There is a maximal ideal I ⊆ A that is nilpotent – In = A.
I This ideal is also the intersection of the kernels of all

irreducible representations of A.
I The quotient A/I is isomorphic to a direct sum of matrix

algebras over C.
I If A is a finite-dimensional C∗-algebra, then it contains no

nilpotent ideals. Then A is isomorphic to a sum of matrix
algebras.



Some classical theorems

Theorem (Wedderburn)
A finite-dimensional K-algebra for a field K is simple if and only if
it is isomorphic to MnD for some n ∈ N≥1 and some
finite-dimensional division algebra D over K.

Theorem (Frobenius)
Any finite-dimensional division algebra over R is isomorphic to R,
C, or to the algebra H of quaternions.



The nilradical

Definition
Let A be an algebra. An ideal I / A is called nilpotent if there is
n ∈ N such that i1 · · · in = 0 for all i1, . . . , in ∈ I.

Lemma
Let I1, I2 / A be nilpotent ideals. Then

I1 + I2 := {i1 + i2 : i1 ∈ I1, i2 ∈ I2}

is a nilpotent ideal as well. Therefore, any algebra contains a
maximal nilpotent ideal – its nilradical.



The radical

Lemma
Let A be an algebra.
The nilradical is contained in all primitive ideals of A.
The intersection of all primitive ideals is also called radical.

Proof.
I Let I / A be a nilpotent ideal and

let f : A→ End(V ) be an irreducible representation of A.
We prove by contradiction that f |I = 0.

I Otherwise, I · V = V by irreducibility.
I Then Ik · V = V for all k ∈ N by induction.
I This is impossible because Ik = 0 for some k ∈ N.



Finite-Dimensional semi-simple algebras
Definition
A finite-dimensional algebra is semi-simple if its nilradical vanishes
or, equivalently, if zero is its only nilpotent ideal.

Theorem
Any semi-simple finite-dimensional algebra is isomorphic to a finite
direct product of simple algebras, that is, to a finite direct product
of matrix algebras over division algebras.
Let A be any finite-dimensional algebra.
Let radA / A be its nilradical. Then A/ radA is semi-simple.
Hence it is isomorphic to a finite direct product of matrix algebras
over division algebras:

A/ radA ∼=
n⊕

j=1
MmjDj

for some n ∈ N≥0, mj ∈ N≥1, and division algebras Dj over K .
The radical is equal to the nilradical.



Pointlike invariants for finite-dimensional algebras

Theorem
The representations A/ radA�MmjDj for j = 1, . . . , n form
a set of representatives for Â.
Both Â and Prim(A) consist of exactly n points.
Any primitive ideal in A is maximal.



Finite-Dimensional C∗-algebras

Theorem
Let A be a finite-dimensional unital algebra and let 〈␣ | ␣〉 be an
inner product on A with the property that for each a ∈ A, there is
a∗ ∈ A with 〈ax | y〉 = 〈x | a∗y〉. Then A is semi-simple.

Proposition
Let A ⊆MnC be a subalgebra with x∗ ∈ A for all x ∈ A; here the
adjoint of a matrix is defined by (xij)∗ := (xji).
Then radA = {0}. So A is a direct sum of matrix algebras.


