Noncommutative Geometry IV: Differential Geometry

5. Endomorphism algebras and finite-dimensional algebras

R. Meyer

Mathematisches Institut Universität Göttingen

Summer Term 2020

Endomorphism algebras and finite-dimensional algebras

We will study modules and ideals for two classes of algebras:

- 1. Algebras of endomorphisms
- 2. Finite-dimensional algebras

Algebras of endomorphisms

- The algebra End(V) contains an important ideal End_f(V), spanned by rank-1-operators.
- If V has a countable basis, then End_f(V) is the only non-trivial ideal in End(V).
- The algebra End_f(V) has only one irreducible representation: its representation on V.
- Any nondegenerate representation of End_f(V) is a direct sum of copies of the representation on V.
- The category of nondegenerate representation of End_f(V) is equivalent to the category of vector spaces.

Finite-Rank Operators

Let $V^* := \text{Hom}_{\mathcal{K}}(V, \mathcal{K})$ be the dual vector space. Given $\hat{v} \in V^*$ and $w \in W$, we define \mathcal{K} -linear maps

$$\begin{split} |w\rangle \colon K \to W, & \kappa \mapsto w \cdot \kappa, \\ \langle \widehat{v}| \colon V \to K, & v \mapsto \widehat{v}(v), \\ |w\rangle \langle \widehat{v}| \colon V \to W, & v \mapsto |w\rangle (\langle \widehat{v}|(v)) = w \cdot \widehat{v}(v). \end{split}$$
(1)

Any operator $V \to W$ of rank 1 is of the form $|w\rangle\langle \hat{v}|$ for some $w \in W \setminus \{0\}$ and some $\hat{v} \in V^* \setminus \{0\}$. And $T \circ |w\rangle\langle \hat{v}| \circ S = |T(w)\rangle\langle S^* \hat{v}|$.

Ideals in End(V)

Proposition

Any non-zero ideal in End(V) contains $End_f(V)$. If V has countably infinite dimension, then {0}, $End_f(V)$, and End(V) are the only ideals in End(V).

Proof.

- Let I be a non-zero ideal, $T \in I \setminus \{0\}$.
- Then there is $v \in V$ with $T(v) \neq 0$.
- Then there is $\hat{v} \in V^*$ with $\hat{v}(T(v)) = 1$.
- If $w \in V$, $\widehat{w} \in V^*$, then $|w\rangle \langle \widehat{v}|T|v\rangle \langle \widehat{w}| = |w\rangle \langle \widehat{w}| \in I$.
- Then $\operatorname{End}_{f}(V) \subseteq I$.
- Assume also $I \neq \text{End}_f(V)$. Then I contains T of infinite rank.
- Choose countable bases for V and the image of T to find a, b ∈ End(V) with aTb = 1.

Nondegenerate modules

Definition

Let V be a vector space and A an algebra.

A representation $f: A \to \text{End}(V)$ is non-degenerate if elements of the form f(a)(v) for $a \in A$, $v \in V$ span V or, briefly, $A \cdot V = V$.

Lemma

Let A be unital with unit 1_A . An A-module is non-degenerate if and only if $1_A \cdot v = v$ for all $v \in V$.

Example

The obvious representation $\operatorname{End}_{f}(V) \to \operatorname{End}(V)$ is non-degenerate.

Theorem

The category of non-degenerate representations of $\text{End}_{f}(V)$ is equivalent to the category of vector spaces.

Finite-Dimensional algebras

- ▶ Let A be a finite-dimensional C-algebra.
- There is a maximal ideal $I \subseteq A$ that is nilpotent $I^n = A$.
- This ideal is also the intersection of the kernels of all irreducible representations of A.
- The quotient A/I is isomorphic to a direct sum of matrix algebras over C.
- If A is a finite-dimensional C*-algebra, then it contains no nilpotent ideals. Then A is isomorphic to a sum of matrix algebras.

Theorem (Wedderburn)

A finite-dimensional K-algebra for a field K is simple if and only if it is isomorphic to $\mathbb{M}_n D$ for some $n \in \mathbb{N}_{\geq 1}$ and some finite-dimensional division algebra D over K.

Theorem (Frobenius)

Any finite-dimensional division algebra over \mathbb{R} is isomorphic to \mathbb{R} , \mathbb{C} , or to the algebra \mathbb{H} of quaternions.

The nilradical

Definition

Let A be an algebra. An ideal $I \triangleleft A$ is called nilpotent if there is $n \in \mathbb{N}$ such that $i_1 \cdots i_n = 0$ for all $i_1, \ldots, i_n \in I$.

Lemma

Let $I_1, I_2 \triangleleft A$ be nilpotent ideals. Then

$$I_1 + I_2 := \{i_1 + i_2 : i_1 \in I_1, i_2 \in I_2\}$$

is a nilpotent ideal as well. Therefore, any algebra contains a maximal nilpotent ideal – its nilradical.

The radical

Lemma

Let A be an algebra.

The nilradical is contained in all primitive ideals of A.

The intersection of all primitive ideals is also called radical.

Proof.

- Let I ⊲ A be a nilpotent ideal and let f: A → End(V) be an irreducible representation of A. We prove by contradiction that f|_I = 0.
- Otherwise, $I \cdot V = V$ by irreducibility.
- Then $I^k \cdot V = V$ for all $k \in \mathbb{N}$ by induction.
- This is impossible because $I^k = 0$ for some $k \in \mathbb{N}$.

Finite-Dimensional semi-simple algebras

Definition

A finite-dimensional algebra is semi-simple if its nilradical vanishes or, equivalently, if zero is its only nilpotent ideal.

Theorem

Any semi-simple finite-dimensional algebra is isomorphic to a finite direct product of simple algebras, that is, to a finite direct product of matrix algebras over division algebras.

Let A be any finite-dimensional algebra.

Let rad $A \triangleleft A$ be its nilradical. Then A/rad A is semi-simple. Hence it is isomorphic to a finite direct product of matrix algebras

over division algebras:

$$A/\operatorname{\mathsf{rad}} A\cong \bigoplus_{j=1}^n \mathbb{M}_{m_j} D_j$$

for some $n \in \mathbb{N}_{\geq 0}$, $m_j \in \mathbb{N}_{\geq 1}$, and division algebras D_j over K. The radical is equal to the nilradical.

Pointlike invariants for finite-dimensional algebras

Theorem

The representations $A/\operatorname{rad} A \twoheadrightarrow \mathbb{M}_{m_j}D_j$ for $j = 1, \ldots, n$ form a set of representatives for \widehat{A} . Both \widehat{A} and $\operatorname{Prim}(A)$ consist of exactly n points. Any primitive ideal in A is maximal.

Finite-Dimensional C*-algebras

Theorem

Let A be a finite-dimensional unital algebra and let $\langle \sqcup | \sqcup \rangle$ be an inner product on A with the property that for each $a \in A$, there is $a^* \in A$ with $\langle ax | y \rangle = \langle x | a^*y \rangle$. Then A is semi-simple.

Proposition

Let $A \subseteq \mathbb{M}_n\mathbb{C}$ be a subalgebra with $x^* \in A$ for all $x \in A$; here the adjoint of a matrix is defined by $(x_{ij})^* := (\overline{x_{ji}})$. Then rad $A = \{0\}$. So A is a direct sum of matrix algebras.