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Group algebras

I The group algebra of a group G is an algebra whose
representations are equivalent to representations of G .

I The group algebra of a finite group is a
semi-simple, finite-dimensional algebra.

I We interpret the structure theorem for such algebras
in representation theoretic terms.

I We construct an explicit isomorphism between
the group algebra and a direct sum of matrix algebras
and describe its inverse.

I This generalises the Fourier transform.
I The proof uses the Schur Orthogonality Relations

for matrix coefficients of irreducible representations.



The group algebra

Definition
Let G be a group and K a field.
The group algebra K [G ] is the ring of all functions f : G → K with
finite support and with the convolution product

(f1 ∗ f2)(g) :=
∑

h,k∈G:hk=g
f1(h)f2(k) =

∑
h∈G

f1(h)f2(h−1g)

=
∑
h∈G

f1(gh)f2(h−1).

Lemma
The group algebra K [G ] is a unital K-algebra.

Example
If G = Z, then C[Z] ∼= C[t, t−1] (Laurent polynomials).
The isomorphism maps δn 7→ tn for n ∈ Z.



Representations of the group and the group algebra

Definition
A representation of a group G on a vector space V is a
group homomorphism π : G → Aut(V ).
Here Aut(V ) denotes the group of invertible linear maps on V .
If V is a Banach space, then we allow only bounded linear maps
on V .

Proposition
If π : G → Aut(V ) is a group representation, then

π̄(f ) :=
∑
g∈G

f (g)π(g)

defines an algebra representation π̄ : K [G ]→ End(V ).
Conversely, any unital algebra representation comes from a unique
group representation of G.



Semisimplicity

Theorem
Let G be a finite group. The group algebra C[G ] is semi-simple.
Let Ĝ be the set of isomorphism classes of irreducible
representations of G and let dπ for π ∈ Ĝ be the dimension of the
representation π. There is an isomorphism C[G ] ∼=

⊕
π∈Ĝ MdπC.

Corollary
Let G be a finite group. Then

∑
π∈Ĝ d2

π = |G |.

Proposition
Let G be a group, let K be a field, and let C be the set of all finite
conjugacy classes in G. The characteristic functions of 〈g〉 ∈ C
form a basis for the centre of K [G ].
The number of isomorphism classes of irreducible C-linear
representations is the number of conjugacy classes in G.



An example: the symmetric group on three letters

I The group G = S3 has six elements and three conjugacy
classes: the trivial element and the classes
of cycles of length two and three.

I So Ĝ has three elements.
I There are two homomorphisms G → {±1}:

the trivial homomorphism and the
sign homomorphism that maps each transposition to −1.

I The third representation must have dimension 2.
I The group G acts on C3 by permuting the basis vectors.

C · (1, 1, 1) is an invariant subspace.
I The orthogonal complement is

the 2-dimensional, irreducible representation of G .



The Fourier transform for finite Abelian groups

Theorem
Let G be a finite Abelian group.
Then Ĝ is equal to the set of characters of G.
The Fourier transform is an isomorphism between
the algebra C[G ] with the convolution product and
the algebra C[Ĝ ] with pointwise multiplication.
Let G be a finite cyclic group. So G = Z/n for some n ∈ N≥1.
Any character of G is χl : k 7→ exp(2πikl/n) for some l ∈ Z/n.
So Ĝ ∼= Z/n.



The Fourier transform for finite groups
Definition
Any representation (V , π) of G yields a unital algebra
homomorphism π̄ : C[G ]→ End(V ) ∼= MdπC, where dπ := dimV .
Letting (V , π) run through the set Ĝ of all irreducible
representations, we get a unital algebra homomorphism

F : C[G ]→
∏
π∈Ĝ

MdπC.

This is called the Fourier transform for G .

Theorem
The Fourier transform is invertible. Its inverse
F−1 :

⊕
π∈Ĝ End(Vπ)→ C[G ] is given by

F−1((xπ)
π∈Ĝ

)
(g) :=

∑
π∈Ĝ

dπ
|G | tr(xπ ◦ πg−1).



Invariant inner products

Proposition
Let π : G → Aut(V ) be a group representation of G on a
finite-dimensional vector space V .
There is a G-invariant inner product on V , that is,
an inner product with 〈πgv |πgw〉 = 〈v |w〉 for all g ∈ G,
v ,w ∈ V .

Corollary
Any finite-dimensional representation V of G is
a direct sum of irreducible representations.
The canonical map F : C[G ]→

⊕
π∈Ĝ End(Vπ) is injective.



An adjoint for F

Definition
We define an inner product on End(Vπ) for π ∈ Ĝ by

〈x | y〉 := dπ
|G | · tr(x∗y).

for all x , y ∈ End(Vπ).
We give C[G ] the usual inner product as in `2(G).
As we shall see, the normalisation factor dπ/|G | makes
the Fourier transform F : C[G ]→

⊕
π∈Ĝ MdπC isometric.

Lemma
F ∗
(
(xπ)

π∈Ĝ
)
(g) =

∑
π∈Ĝ

dπ
|G | tr(xπ ◦ πg−1).



Matrix coefficients

Definition
For v ,w ∈ V , define cv ,w (g) := 〈πgw | v〉. The function cv ,w is
called a matrix coefficient of the representation π.
I There is a canonical vector space isomorphism

V ⊗ V → End(V ), v ⊗ w 7→ |v〉〈w |.

I So there is a linear map

C : End(V )→ C[G ], C
(
|v〉〈w |

)
= cv ,w := 〈πgw | v〉.

I C(x)(g) = tr(x ◦ πg−1).



Canonical intertwiners to the regular representation

|v〉〉 : C[G ]→ V , |v〉〉(f ) :=
∑
g∈G

f (g)πg (v),

〈〈v | : V → C[G ], 〈〈v |(w)(g) := cw ,v = 〈πg (v) |w〉.

Lemma
|v〉〉∗ = 〈〈v |.
〈〈v | and hence |v〉〉 are G-equivariant:
〈〈v | ◦ πg = λg ◦ 〈〈v | and |v〉〉 ◦ λg = πg ◦ |v〉〉.

Lemma (Schur)
Let (V , π) and (W , ρ) be finite-dimensional irreducible rep’s of G.
Let T : V →W be G-equivariant. Then T is invertible or zero.
If (V , π) = (W , ρ), then T is a scalar multiple of the identity:
T = a · IdV for some a ∈ C.



Orthogonality Relations
Theorem
Let G be a finite group. Let (V , π) and (W , ρ) be
irreducible representations of G with G-invariant inner products.
Let v1, v2 ∈ V , w1,w2 ∈W.
If (V , π) and (W , ρ) are not isomorphic, then cv1,v2⊥cw1,w2 in
C[G ], that is,

0 =
∑
g∈G
〈πgv1 | v2〉〈ρgw1 |w2〉 =

∑
g∈G
〈v2 |πgv1〉〈ρgw1 |w2〉.

If (V , π) = (W , ρ) with the same inner product, then

〈cv1,v2 | cw1,w2〉 = |G |dπ
〈w1 | v1〉 · 〈v2 |w2〉.

Corollary
The map F ∗ is isometric.


