Noncommutative Geometry IV: Differential Geometry
 6. Group algebras

R. Meyer

Mathematisches Institut
Universität Göttingen

Summer Term 2020

Group algebras

- The group algebra of a group G is an algebra whose representations are equivalent to representations of G.
- The group algebra of a finite group is a semi-simple, finite-dimensional algebra.
- We interpret the structure theorem for such algebras in representation theoretic terms.
- We construct an explicit isomorphism between the group algebra and a direct sum of matrix algebras and describe its inverse.
- This generalises the Fourier transform.
- The proof uses the Schur Orthogonality Relations for matrix coefficients of irreducible representations.

The group algebra

Definition

Let G be a group and K a field.
The group algebra $K[G]$ is the ring of all functions $f: G \rightarrow K$ with finite support and with the convolution product

$$
\begin{array}{r}
\left(f_{1} * f_{2}\right)(g):=\sum_{h, k \in G: h k=g} f_{1}(h) f_{2}(k)=\sum_{h \in G} f_{1}(h) f_{2}\left(h^{-1} g\right) \\
=\sum_{h \in G} f_{1}(g h) f_{2}\left(h^{-1}\right)
\end{array}
$$

Lemma

The group algebra $K[G]$ is a unital K-algebra.
Example
If $G=\mathbb{Z}$, then $\mathbb{C}[\mathbb{Z}] \cong \mathbb{C}\left[t, t^{-1}\right]$ (Laurent polynomials).
The isomorphism maps $\delta_{n} \mapsto t^{n}$ for $n \in \mathbb{Z}$.

Representations of the group and the group algebra

Definition

A representation of a group G on a vector space V is a group homomorphism $\pi: G \rightarrow \operatorname{Aut}(V)$.
Here $\operatorname{Aut}(V)$ denotes the group of invertible linear maps on V.
If V is a Banach space, then we allow only bounded linear maps on V.

Proposition

If $\pi: G \rightarrow \operatorname{Aut}(V)$ is a group representation, then

$$
\bar{\pi}(f):=\sum_{g \in G} f(g) \pi(g)
$$

defines an algebra representation $\bar{\pi}: K[G] \rightarrow \operatorname{End}(V)$.
Conversely, any unital algebra representation comes from a unique group representation of G.

Semisimplicity

Theorem

Let G be a finite group. The group algebra $\mathbb{C}[G]$ is semi-simple.
Let \widehat{G} be the set of isomorphism classes of irreducible representations of G and let d_{π} for $\pi \in \widehat{G}$ be the dimension of the representation π. There is an isomorphism $\mathbb{C}[G] \cong \bigoplus_{\pi \in \widehat{G}} \mathbb{M}_{d_{\pi}} \mathbb{C}$.

Corollary

Let G be a finite group. Then $\sum_{\pi \in \widehat{G}} d_{\pi}^{2}=|G|$.

Proposition

Let G be a group, let K be a field, and let C be the set of all finite conjugacy classes in G. The characteristic functions of $\langle g\rangle \in C$ form a basis for the centre of $K[G]$.
The number of isomorphism classes of irreducible \mathbb{C}-linear representations is the number of conjugacy classes in G.

An example: the symmetric group on three letters

- The group $G=S_{3}$ has six elements and three conjugacy classes: the trivial element and the classes of cycles of length two and three.
- So \widehat{G} has three elements.
- There are two homomorphisms $G \rightarrow\{ \pm 1\}$: the trivial homomorphism and the sign homomorphism that maps each transposition to -1 .
- The third representation must have dimension 2.
- The group G acts on \mathbb{C}^{3} by permuting the basis vectors. $\mathbb{C} \cdot(1,1,1)$ is an invariant subspace.
- The orthogonal complement is the 2-dimensional, irreducible representation of G.

The Fourier transform for finite Abelian groups

Theorem

Let G be a finite Abelian group.
Then \widehat{G} is equal to the set of characters of G.
The Fourier transform is an isomorphism between
the algebra $\mathbb{C}[G]$ with the convolution product and the algebra $\mathbb{C}[\widehat{G}]$ with pointwise multiplication.
Let G be a finite cyclic group. So $G=\mathbb{Z} / n$ for some $n \in \mathbb{N}_{\geq 1}$. Any character of G is $\chi_{I}: k \mapsto \exp (2 \pi \mathrm{ikl} / n)$ for some $I \in \mathbb{Z} / n$. So $\widehat{G} \cong \mathbb{Z} / n$.

The Fourier transform for finite groups

Definition

Any representation (V, π) of G yields a unital algebra homomorphism $\bar{\pi}: \mathbb{C}[G] \rightarrow \operatorname{End}(V) \cong \mathbb{M}_{d_{\pi}} \mathbb{C}$, where $d_{\pi}:=\operatorname{dim} V$. Letting (V, π) run through the set \widehat{G} of all irreducible representations, we get a unital algebra homomorphism

$$
F: \mathbb{C}[G] \rightarrow \prod_{\pi \in \widehat{G}} \mathbb{M}_{d_{\pi}} \mathbb{C} .
$$

This is called the Fourier transform for G.

Theorem

The Fourier transform is invertible. Its inverse
$F^{-1}: \bigoplus_{\pi \in \widehat{G}} \operatorname{End}\left(V_{\pi}\right) \rightarrow \mathbb{C}[G]$ is given by

$$
F^{-1}\left(\left(x_{\pi}\right)_{\pi \in \widehat{G}}\right)(g):=\sum_{\pi \in \widehat{G}} \frac{d_{\pi}}{|G|} \operatorname{tr}\left(x_{\pi} \circ \pi_{g^{-1}}\right)
$$

Invariant inner products

Proposition

Let $\pi: G \rightarrow \operatorname{Aut}(V)$ be a group representation of G on a finite-dimensional vector space V.
There is a G-invariant inner product on V, that is, an inner product with $\left\langle\pi_{g} v \mid \pi_{g} w\right\rangle=\langle v \mid w\rangle$ for all $g \in G$, $v, w \in V$.

Corollary
Any finite-dimensional representation V of G is
a direct sum of irreducible representations.
The canonical map $F: \mathbb{C}[G] \rightarrow \bigoplus_{\pi \in \widehat{G}} \operatorname{End}\left(V_{\pi}\right)$ is injective.

An adjoint for F

Definition
We define an inner product on $\operatorname{End}\left(V_{\pi}\right)$ for $\pi \in \widehat{G}$ by

$$
\langle x \mid y\rangle:=\frac{d_{\pi}}{|G|} \cdot \operatorname{tr}\left(x^{*} y\right)
$$

for all $x, y \in \operatorname{End}\left(V_{\pi}\right)$.
We give $\mathbb{C}[G]$ the usual inner product as in $\ell^{2}(G)$.
As we shall see, the normalisation factor $d_{\pi} /|G|$ makes the Fourier transform $F: \mathbb{C}[G] \rightarrow \bigoplus_{\pi \in \widehat{G}} \mathbb{M}_{d_{\pi}} \mathbb{C}$ isometric.
Lemma
$F^{*}\left(\left(x_{\pi}\right)_{\pi \in \widehat{G}}\right)(g)=\sum_{\pi \in \widehat{G}} \frac{d_{\pi}}{|G|} \operatorname{tr}\left(x_{\pi} \circ \pi_{g^{-1}}\right)$.

Matrix coefficients

Definition

For $v, w \in V$, define $c_{v, w}(g):=\left\langle\pi_{g} w \mid v\right\rangle$. The function $c_{v, w}$ is called a matrix coefficient of the representation π.

- There is a canonical vector space isomorphism

$$
V \otimes \bar{V} \rightarrow \operatorname{End}(V), \quad v \otimes w \mapsto|v\rangle\langle w| .
$$

- So there is a linear map

$$
C: \operatorname{End}(V) \rightarrow \mathbb{C}[G], \quad C(|v\rangle\langle w|)=c_{v, w}:=\left\langle\pi_{g} w \mid v\right\rangle
$$

- $C(x)(g)=\operatorname{tr}\left(x \circ \pi_{g^{-1}}\right)$.

Canonical intertwiners to the regular representation

$$
\begin{aligned}
|v\rangle\rangle: \mathbb{C}[G] & \rightarrow V, & |v\rangle\rangle(f) & :=\sum_{g \in G} f(g) \pi_{g}(v), \\
\langle v|: V & \rightarrow \mathbb{C}[G], & \langle\langle v|(w)(g): & =c_{w, v}=\left\langle\pi_{g}(v) \mid w\right\rangle .
\end{aligned}
$$

Lemma
$|v\rangle\rangle^{*}=\langle\langle v|$.
$\langle\langle v|$ and hence $\mid v\rangle\rangle$ are G-equivariant:
$\langle v| \circ \pi_{g}=\lambda_{g} \circ\langle\langle v|$ and $\left.\left.\mid v\rangle\right\rangle \circ \lambda_{g}=\pi_{g} \circ|v\rangle\right\rangle$.
Lemma (Schur)
Let (V, π) and (W, ρ) be finite-dimensional irreducible rep's of G.
Let $T: V \rightarrow W$ be G-equivariant. Then T is invertible or zero.
If $(V, \pi)=(W, \rho)$, then T is a scalar multiple of the identity:
$T=a \cdot \operatorname{ld}_{V}$ for some $a \in \mathbb{C}$.

Orthogonality Relations

Theorem
Let G be a finite group. Let (V, π) and (W, ρ) be irreducible representations of G with G-invariant inner products.
Let $v_{1}, v_{2} \in V, w_{1}, w_{2} \in W$.
If (V, π) and (W, ρ) are not isomorphic, then $c_{v_{1}, v_{2}} \perp c_{w_{1}, w_{2}}$ in $\mathbb{C}[G]$, that is,

$$
0=\sum_{g \in G} \overline{\left\langle\pi_{g} v_{1} \mid v_{2}\right\rangle}\left\langle\rho_{g} w_{1} \mid w_{2}\right\rangle=\sum_{g \in G}\left\langle v_{2} \mid \pi_{g} v_{1}\right\rangle\left\langle\rho_{g} w_{1} \mid w_{2}\right\rangle .
$$

If $(V, \pi)=(W, \rho)$ with the same inner product, then

$$
\left\langle c_{v_{1}, v_{2}} \mid c_{w_{1}, w_{2}}\right\rangle=\frac{|G|}{d_{\pi}}\left\langle w_{1} \mid v_{1}\right\rangle \cdot\left\langle v_{2} \mid w_{2}\right\rangle .
$$

Corollary
The map F^{*} is isometric.

