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Group algebras

» The group algebra of a group G is an algebra whose
representations are equivalent to representations of G.

» The group algebra of a finite group is a
semi-simple, finite-dimensional algebra.

» We interpret the structure theorem for such algebras
in representation theoretic terms.

» We construct an explicit isomorphism between
the group algebra and a direct sum of matrix algebras
and describe its inverse.

» This generalises the Fourier transform.

» The proof uses the Schur Orthogonality Relations
for matrix coefficients of irreducible representations.



The group algebra

Definition

Let G be a group and K a field.

The group algebra K[G] is the ring of all functions f: G — K with
finite support and with the convolution product

(Axh)(g) = >, =Y A(hhH(h1g)
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Lemma
The group algebra K[G] is a unital K-algebra.

Example
If G = 7Z, then C[Z] = C[t, t~!] (Laurent polynomials).
The isomorphism maps ¢, — t" for n € Z.



Representations of the group and the group algebra

Definition

A representation of a group G on a vector space V is a

group homomorphism 7: G — Aut(V).

Here Aut(V) denotes the group of invertible linear maps on V.
If V is a Banach space, then we allow only bounded linear maps
on V.

Proposition
If m: G — Aut(V) is a group representation, then

w(f) =) f(g)r(g)

geai

defines an algebra representation 7: K[G] — End(V).
Conversely, any unital algebra representation comes from a unique
group representation of G.



Semisimplicity

Theorem

Let G be a finite group. The group algebra C[G] is semi-simple.
Let G be the set of isomorphism classes of irreducible
representations of G and let d; for w € G be the dimension of the
representation m. There is an isomorphism C[G] = @ __z My, C.

Corollary
Let G be a finite group. Then }° d? = |G|.
Proposition

Let G be a group, let K be a field, and let C be the set of all finite
conjugacy classes in G. The characteristic functions of (g) € C
form a basis for the centre of K[G].

The number of isomorphism classes of irreducible C-linear
representations is the number of conjugacy classes in G.



An example: the symmetric group on three letters

» The group G = S3 has six elements and three conjugacy
classes: the trivial element and the classes
of cycles of length two and three.

> So G has three elements.
» There are two homomorphisms G — {£1}:
the trivial homomorphism and the
sign homomorphism that maps each transposition to —1.
» The third representation must have dimension 2.
» The group G acts on C3 by permuting the basis vectors.
C-(1,1,1) is an invariant subspace.
» The orthogonal complement is
the 2-dimensional, irreducible representation of G.



The Fourier transform for finite Abelian groups

Theorem

Let G be a finite Abelian group.

Then G is equal to the set of characters of G.

The Fourier transform is an isomorphism between

the algebra C[G] with the convolution product and

the algebra C[G] with pointwise multiplication.

Let G be a finite cyclic group. So G = Z/n for some n € N>i.
Any character of G is x;: k — exp(2mikl/n) for some | € Z/n.
So G~7Z/n.



The Fourier transform for finite groups

Definition

Any representation (V, ) of G yields a unital algebra
homomorphism 7: C[G] — End(V) = M,_C, where d; := dim V.
Letting (V,7) run through the set G of all irreducible
representations, we get a unital algebra homomorphism

F: C[G] — [] Ma,C
e
This is called the Fourier transform for G.

Theorem
The Fourier transform is invertible. Its inverse

F': @, ¢ End(Vx) — C[G] is given by

-1
F= (%) . c2)( Z |G| r(Xr 0 Tg—1).
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Invariant inner products

Proposition

Let m: G — Aut(V) be a group representation of G on a
finite-dimensional vector space V.

There is a G-invariant inner product on V, that is,

an inner product with (mgv |mgw) = (v |w) for all g € G,
v,we V.

Corollary

Any finite-dimensional representation V of G is

a direct sum of irreducible representations.

The canonical map F: C[G] — @__z End(Vx) is injective.



An adjoint for F

Definition
We define an inner product on End(V) for m € G by

d7T *
(x|y) = G tr(x*y).

for all x,y € End(V;).
We give C[G] the usual inner product as in ¢2(G).

As we shall see, the normalisation factor d, /|G| makes
the Fourier transform F: C[G] — @__z My, C isometric.

Lemma

F*((xx),c2)(8) = Z:G\G\UXWOW 1).
TE



Matrix coefficients

Definition
For v,w € V, define ¢, w(g) := (mgw | v). The function ¢, is
called a matrix coefficient of the representation .

» There is a canonical vector space isomorphism
V ® V — End(V), vew— |v)(w|
» So there is a linear map
C: End(V) = C[G),  C(Iv)(w]) = cyuw = (mgw | v).

> C(x)(g) = tr(xomg-1).



Canonical intertwiners to the regular representation

v): Cl6] =V, V() =) F(g)mg(v),

geG
{vl: V=C[6],  (vi(w)(g) = cwv = (mg(v) [w).

Lemma

v = (vl

{(v| and hence |v)) are G-equivariant:
(vlomg = Ago((v] and |v)) o Ag = g o |v)).

Lemma (Schur)

Let (V,7) and (W, p) be finite-dimensional irreducible rep’s of G.
Let T: V — W be G-equivariant. Then T is invertible or zero.
If (V,m) = (W,p), then T is a scalar multiple of the identity:

T =a-ldy for some a € C.



Orthogonality Relations

Theorem

Let G be a finite group. Let (V,m) and (W, p) be

irreducible representations of G with G-invariant inner products.
Let vi,vo € V, wi,wpr € W.

If (V,7) and (W, p) are not isomorphic, then ¢y, v, Lcw; w, in
C[G], that is,

0="> (mgvi|va){pgwi|wa) = D (va|mgv1){pgwr | wo).
geG geai

If (V,m) = (W, p) with the same inner product, then

1G]

(Cuw | Cwpwg) = g (wi [vi) - (va | w2).
s

Corollary
The map F* is isometric.



