Noncommutative Geometry IV: Differential Geometry 8. The group algebra of the dihedral group

R. Meyer

Mathematisches Institut Universität Göttingen

Summer Term 2020

The group algebra of the dihedral group

- ► The infinite dihedral group D_∞ is generated by two elements s, t with the relations s² = t² = 1.
- ► There is an isomorphism between $\mathbb{C}[D_{\infty}]$ and $\left\{\begin{pmatrix}f_{11} & f_{12} \\ f_{21} & f_{22}\end{pmatrix} \in \mathbb{M}_2\mathbb{C}[x] : f_{21}(0) = f_{21}(1) = 0\right\}.$
- ► Thus C[D_∞] has centre isomorphic to C[x], and it is finitely generated as a module over the centre.
- For a unital algebra A with this property, the map Prim(A) → is bijective, and all primitive ideals of A are maximal. There is a finite-to-one map → Z(Â).

Definition

The infinite dihedral group D_{∞} is the group of affine transformations of \mathbb{R} that is generated by translations τ_n for $n \in \mathbb{Z}$ and the reflection *s* at the origin.

- An element of D_∞ is either a translation τ_n or a reflection τ_n ∘ s for some unique n ∈ Z.
- The multiplication table is determined by $\tau_n \tau_m = \tau_{n+m}$, $s^2 = 1$, and $s\tau_n = \tau_{-n}s$.
- ▶ The subgroup of translations $\mathbb{Z} \cong \{\tau_n\}$ in D_∞ is normal, and $D_\infty \cong \mathbb{Z} \rtimes \mathbb{Z}/2$, where $\mathbb{Z}/2$ acts on \mathbb{Z} by $n \mapsto -n$.

Other generators

- The group D_∞ is generated by s and t := τ₁ ∘ s because ts = τ₁, st = τ₋₁.
- Both s and t are reflections.
 They satisfy no relations besides s² = t² = 1.
- A representation of D_{∞} is equivalent to a pair of linear operators S and T with $S^2 = T^2 = 1$.

▶
$$p := \frac{1}{2}(1+s), q := \frac{1}{2}(1+t).$$

- The relations s² = t² = 1 are equivalent to p² = p and q² = q.
- ► A representation of D_∞ is equivalent to a pair of idempotent operators P and Q.

Representations in dimensions $1 \mbox{ and } 2$

- Representations of dimension 1 are characters.
- A character on D_∞ is given by two arbitrary signs χ(s), χ(t) ∈ {±1}.
- ► Thus there are four 1-dimensional representations.

Proposition

There is a 1-parameter family of 2-dimensional representations with

$$S=egin{pmatrix} 1&0\0&-1 \end{pmatrix}, \qquad T=egin{pmatrix} 2x-1&2\2x(1-x)&1-2x \end{pmatrix}.$$

It is irreducible if $x \neq 0, 1$. Any irreducible 2-dimensional representation is equivalent to exactly one of these.

The group algebra

Proposition

The homomorphism $\rho \colon \mathbb{C}[D_{\infty}] \to \mathbb{M}_2\mathbb{C}[x]$ that maps

$$s\mapsto egin{pmatrix} 1&0\0&-1 \end{pmatrix},\qquad t\mapsto egin{pmatrix} 2x-1&2\2x(1-x)&1-2x \end{pmatrix}$$

is injective.

Its range is the subalgebra

$$\left\{ \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix} : f_{21}(0) = f_{21}(1) = 0 \right\}.$$

Corollary

The centre of $\mathbb{C}[D_{\infty}]$ is isomorphic to $\mathbb{C}[x]$; the isomorphism maps x to pqp + (1-p)(1-q)(1-p) = 1 + (st + ts)/2.

The representation theory of the dihedral group

Theorem (Schur's Lemma)

Let A be a \mathbb{C} -algebra of at most countable dimension. Let (V, f) be an irreducible representation of A. Let $T: V \to V$ be an A-module homomorphism, that is, a \mathbb{C} -linear map that commutes with f(A). Then $T = \kappa \cdot Id_V$ for some $\kappa \in \mathbb{C}$.

Corollary

Any irreducible representation of $A := \mathbb{C}[D_{\infty}]$ is of dimension at most 2. The canonical map $\widehat{A} \to \text{Prim}(A)$ is bijective and all primitive ideals are maximal.

The set of equivalence classes of irreducible representations is in bijection with $\mathbb{C} \setminus \{0,1\} \sqcup \mathbb{Z}/2 \times \mathbb{Z}/2$, where $y \in \mathbb{C} \setminus \{0,1\}$ corresponds to the representation ρ_y and points (n,m) in $\{0,1\} \times \{0,1\}$ correspond to the characters given by $s \mapsto (-1)^n$, $t \mapsto (-1)^m$.

Algebras of finite type

Definition

A unital \mathbb{C} -algebra is called finite type if

it is finitely generated as a module over its centre.

That is, there are finitely many elements $x_1, \ldots, x_n \in A$ such that every element of A can be written as $x_1z_1 + \cdots + x_nz_n$ with central elements $z_1, \ldots, z_n \in Z(A)$.

Theorem

Let A be a unital algebra of finite type over \mathbb{C} . Let Z(A) be its centre. Assume that A has a countable basis over \mathbb{C} . Then the map $Prim(A) \rightarrow \hat{A}$ is bijective and all primitive ideals of A are maximal.

Each irreducible representation of A restricts to a character on Z(A). The resulting map $\widehat{A} \to \widehat{Z(A)}$ is finite-to-one.