Noncommutative Geometry IV: Differential Geometry 9. Involutive algebras

R. Meyer

Mathematisches Institut Universität Göttingen

Summer Term 2020

Involutive algebras

- ► A *-algebra is a C-algebra with a conjugate-linear involution.
- For finite-dimensional algebras, this is related to semi-simplicity.
- ▶ We examine some examples of *-algebras.
- We define new *-algebras through universal properties: the Toeplitz algebra and Leavitt path algebras.

Involutive algebras - the definition

Definition An involutive algebra or *-algebra is a \mathbb{C} -algebra A with a map $A \rightarrow A$, $a \mapsto a^*$, that is conjugate-linear $(\lambda a + \mu b)^* = \overline{\lambda} a^* + \overline{\mu} b^*$ involutive $(a^*)^* = a$ anti-multiplicative $(a \cdot b)^* = b^* \cdot a^*$

Definition

A *-homomorphism between two *-algebras A and B is an algebra homomorphism $\varphi \colon A \to B$ with $\varphi(a^*) = \varphi(a)^*$.

Examples of involutive algebras

Example

 $\mathbb{M}_n\mathbb{C}$ for $n \in \mathbb{N} \cup \{\infty\}$ with $(x_{ij})^* := (\overline{x_{ji}})$ is a *-algebra.

Example

Let G be a group. Define $f^*(g) := \overline{f(g^{-1})}$ for $f \in \mathbb{C}[G]$, $g \in G$. This makes $\mathbb{C}[G]$ a *-algebra.

Example

Let X be a manifold. Then $f^*(x) := \overline{f(x)}$ for $f \in C^{\infty}(X)$, $x \in X$, makes $C^{\infty}(X)$ a *-algebra.

Example

Let \mathcal{H} be a Hilbert space and let $\mathbb{B}(\mathcal{H})$ be the algebra of bounded linear operators on \mathcal{H} . If $x \in \mathbb{B}(\mathcal{H})$, then there is $x^* \in \mathbb{B}(\mathcal{H})$ with $\langle xv | w \rangle = \langle v | x^*w \rangle$ for all $v, w \in \mathcal{H}$. This makes $\mathbb{B}(\mathcal{H})$ a *-algebra.

Special elements in *-algebras

Definition Let A be a *-algebra. An element $a \in A$ is called self-adjoint $a^* = a$ projection $a^* = a$ and $a^2 = a$ partial isometry $aa^*a = a$ or, equivalently, $a^*aa^* = a^*$. unitary $aa^* = a^*a = 1$ (needs unital A) isometry $a^*a = 1$ coisometry $aa^* = 1$.

If a is a partial isometry, then aa^* and a^*a are projections. They are called the range and source projections of a. Universal *-algebra for a self-adjoint element

Lemma

Give $\mathbb{C}[x]$ the involution defined by $x^* = x$. For any self-adjoint element a in a unital *-algebra A, there is a unique unital *-homomorphism $f : \mathbb{C}[x] \to A$ with f(x) = a. We call $x \in \mathbb{C}[x]$ the universal self-adjoint element of a unital *-algebra and we call $\mathbb{C}[x]$ the universal unital *-algebra generated by a self-adjoint element.

More universal *-algebras

Lemma

The projection (1,0) in the algebra $\mathbb{C} \oplus \mathbb{C}$ with the involution $(x,y)^* := (\overline{x},\overline{y})$ is the universal projection in a unital *-algebra. That is, unital *-homomorphisms $\mathbb{C} \oplus \mathbb{C} \to A$ correspond to projections in A by evaluation at (1,0).

Proposition

Equip $\mathbb{C}[t, t^{-1}] \cong \mathbb{C}[\mathbb{Z}]$ with the involution $(\sum_{n \in \mathbb{Z}} c_n t^n)^* := \sum_{n \in \mathbb{Z}} \overline{c_n} t^{-n} = \sum_{n \in \mathbb{Z}} \overline{c_{-n}} t^n$. The element $t \in \mathbb{C}[t, t^{-1}]$ is the universal unitary element of a unital *-algebra.

The Toeplitz algebra

Definition

The unilateral shift is the operator S on the Hilbert space $\ell_2(\mathbb{N})$ that shifts every basis vector one to the right: $S\delta_n := \delta_{n+1}$ for all $n \in \mathbb{N}$.

The Toeplitz algebra \mathcal{T} is the *-subalgebra of $\mathbb{B}(\ell_2\mathbb{N})$ generated by S.

Theorem

The isometry $S \in \mathcal{T}$ is the universal isometry in a unital *-algebra. For any isometry s in a unital *-algebra A, there is a unique unital *-homomorphism $\varrho: \mathcal{T} \to A$ with $\varrho(S) = s$.

Structure of the Toeplitz algebra

Definition

Let $I \subseteq A$ be an ideal in an algebra A. Let A/I be the quotient algebra and let $i: I \to A$ and $p: A \to A/I$ be the canonical maps. We call the diagram

$$I \xrightarrow{i} A \xrightarrow{p} A/I$$

an algebra extension and we call A an extension of A/I by I.

Theorem

The Toeplitz algebra is an extension of the algebra $\mathbb{C}[t, t^{-1}]$ of Laurent polynomials by the algebra $\mathbb{M}_{\infty}\mathbb{C}$ of finite matrices.

Representation theory of the Toeplitz algebra

Proposition

Let $W \subseteq \ell_2 \mathbb{N}$ be the algebraic linear span of the basis vectors $(\delta_n)_{n \in \mathbb{N}}$ and represent \mathcal{T} on W by $S \mapsto S|_W$. This representation is irreducible and faithful, so that \mathcal{T} is a primitive algebra.

Proposition

Any irreducible representation of \mathcal{T} that is non-zero on $\mathbb{M}_{\infty}\mathbb{C}$ is isomorphic to the representation above.

The other irreducible representations of \mathcal{T} are characters on the quotient $\mathcal{T}/\mathbb{M}_{\infty}\mathbb{C} \cong \mathbb{C}[t, t^{-1}]$. The canonical map $\hat{\mathcal{T}} \to \text{Prim}(\mathcal{T})$ is a bijection.

Theorem

Any isometry on a Hilbert space can be decomposed as a direct sum of a unitary and of copies of the unilateral shift.

Leavitt path algebras

Definition

The Leavitt path algebra $L(\Gamma, \Gamma'_0)$ of a directed graph Γ relative to a subset Γ'_0 of suitable vertices is the universal *-algebra with generators S_v for $v \in \Gamma_0$ and S_α for $\alpha \in \Gamma_1$, subject to the following relations:

(V)
$$S_{v} \cdot S_{w} = 0$$
 for $v \neq w$ and $S_{v}^{2} = S_{v} = S_{v}^{*}$;
(E) $S_{\alpha}S_{s(\alpha)} = S_{\alpha}$ and $S_{r(\alpha)}S_{\alpha} = S_{\alpha}$ for all α ;
(CK1) $S_{\alpha}^{*}S_{\beta} = 0$ if $\alpha \neq \beta$ and $S_{\alpha}^{*}S_{\alpha} = S_{s(\alpha)}$;
(CK2) $\sum_{\alpha \in r^{-1}(v)} S_{\alpha}S_{\alpha}^{*} = S_{v}$ for all $v \in \Gamma'_{0}$.

Proposition

Let Γ have two vertices a, b and two edges $v : a \to b$ and $w : b \to b$. Let $\Gamma'_0 = \{b\}$. The Leavitt path algebra $L(\Gamma, \Gamma'_0)$ is isomorphic as a *-algebra to the Toeplitz algebra \mathcal{T} .