Noncommutative Geometry IV: Differential Geometry 10. Crossed products

R. Meyer

Mathematisches Institut Universität Göttingen

Summer Term 2020

Crossed products

- A crossed product algebra is built from an action of a group G on an algebra A by automorphisms.
- Its representations are equivalent to covariant representations of the group G and the algebra A.
- The group algebra of a semi-direct product of groups is a crossed product.
- We compute some examples of crossed products.
- ► For an action of a finite group on C[∞](X), we describe the representation theory of the crossed product.

The definition of the crossed product

Convolution

The data

G a group

- A an algebra over some field
- lpha action of G on A by automorphisms

Definition

The crossed product $G \ltimes_{\alpha} A = A \rtimes_{\alpha} G$ is the vector space of functions $G \to A$ with finite support, equipped with the convolution product

$$(f_1 * f_2)(g) := \sum_{h \in G} f_1(h) \cdot \alpha_h(f_2(h^{-1}g)).$$

The definition of the crossed product

Generators and relations

Define $a\delta_g \in G \ltimes_\alpha A$ for $g \in G$, $a \in A$ by $a\delta_g(h) = 0$ for $h \neq g$ and $a\delta_g(g) = a$. Every element of $G \ltimes A$ decomposes uniquely as a sum $\sum_{g \in F} a(g)\delta_g$ for some finite subset $F \subseteq G$. The convolution product is generated by the rule

$$a\delta_g * b\delta_h = a\alpha_g(b)\delta_{gh}$$

Covariant representations

Definition A covariant representation of (A, G, α) is a pair of representations $f: A \to \text{End}(V), U: G \to \text{Aut}(V)$ on the same vector space Vthat satisfy the covariance condition $U_g f(a) U_g^{-1} = f(\alpha_g(a))$ for all $g \in G, a \in A$.

Proposition

Let A be a unital algebra, let G be a group, and let $\alpha: G \to Aut(A)$ be a group homomorphism. The category of unital representations of $A \rtimes_{\alpha} G$ is isomorphic to the category of unital covariant representations of (A, G, α) .

Example

Let $\lambda : A \to \operatorname{End}(A)$ be the left regular representation, $\lambda_a(b) := a \cdot b$. The pair (λ, α) is a covariant representation: $\alpha_g \lambda_a \alpha_{g^{-1}}(b) = \alpha_g(a \cdot \alpha_{g^{-1}}(b)) = \alpha_g(a)b = \lambda_{\alpha_g(a)}(b).$

Semi-direct products of groups

Let N and H be groups.

Write Aut(N) for the group of group automorphisms of N. Let $\alpha: H \to Aut(N)$ be a group homomorphism.

Definition

The semi-direct product group $H \ltimes_{\alpha} N = N \rtimes_{\alpha} H$ is $N \times H$ with the product $(n_1, h_1) \cdot (n_2, h_2) := (n_1 \alpha_{h_1}(n_2), h_1 h_2)$.

Example

The isometry group of \mathbb{R}^n is the semi-direct product of the group $N = \mathbb{R}^n$ of translations and the orthogonal group H = O(n) with for the canonical action $\alpha : O(n) \to \operatorname{Aut}(\mathbb{R}^n)$.

Example

The infinite dihedral group is a semi-direct product $D_{\infty} = \mathbb{Z} \rtimes_{\alpha} \mathbb{Z}/2$, where $\alpha_n(m) = (-1)^n \cdot m$ for $m \in \mathbb{Z}$, $n \in \mathbb{Z}/2$.

Crossed products and semi-direct product groups

Lemma

Let N and H be groups and $\alpha \colon H \to \operatorname{Aut}(N)$. This induces an action $\overline{\alpha} \colon H \to \operatorname{Aut}(K[N]), \overline{\alpha}(\delta_n) \coloneqq \delta_{\overline{\alpha}(n)}$. And $K[N] \rtimes_{\overline{\alpha}} H \cong K[N \rtimes_{\alpha} H]$.

In particular,

$$K[D_{\infty}] \cong K[\mathbb{Z}] \rtimes \mathbb{Z}/2 \cong K[t, t^{-1}] \rtimes \mathbb{Z}/2.$$

Some crossed product computations

Proposition

Let A be a unital \mathbb{C} -algebra, G a finite group, and $\alpha \colon G \to \operatorname{Aut}(A)$. Let $\lambda_g f(x) \coloneqq f(g^{-1}x)$ denote the left regular representation of G on $\mathbb{C}[G]$. Let G act on $B \coloneqq A \otimes \operatorname{End}(\mathbb{C}[G])$ by $g \cdot (a \otimes x) \coloneqq \alpha_g(a) \otimes \lambda_g x \lambda_g^{-1}$. Then $A \rtimes_{\alpha} G$ is naturally isomorphic to the fixed point subalgebra of the G-action on B.

Lemma

Let G be a countably infinite group. Let $A = \mathbb{C}[G]$ with pointwise multiplication and let $\alpha = \lambda$ be the left regular representation. Then $A \rtimes_{\alpha} G \cong \mathbb{M}_{\infty} \mathbb{C}$.

Lemma

 $G \ltimes \mathbb{C}[G/H] \cong \mathbb{C}[H] \otimes \mathbb{M}_{|G/H|}\mathbb{C}$. The irreducible representations of $G \ltimes \mathbb{C}[G/H]$ are in bijection with irreducible representations of H.

Representation theory

Let X be a smooth compact manifold, G a finite group. An action α of G on X by diffeomorphisms induces an action of G on $C^{\infty}(X)$ by algebra automorphisms.

$$\mathsf{A} \ \mathsf{C}^{\infty}(X) \rtimes_{\alpha} \mathsf{G}$$

 $G \setminus X$ orbit space;

 G_{x} stabiliser subgroup of $x \in X$

 \hat{G}_{x} set of irreducible representations of G_{x} .

Theorem

There is a canonical bijection between \hat{A} and $\bigsqcup_{x \in G \setminus X} \hat{G}_x$. The map $\hat{A} \to \text{Prim}(A)$ is bijective and any primitive ideal in A is maximal and closed in the natural topology.