Noncommutative Geometry IV: Differential Geometry
 10. Crossed products

R. Meyer

Mathematisches Institut
Universität Göttingen

Summer Term 2020

Crossed products

- A crossed product algebra is built from an action of a group G on an algebra A by automorphisms.
- Its representations are equivalent to covariant representations of the group G and the algebra A.
- The group algebra of a semi-direct product of groups is a crossed product.
- We compute some examples of crossed products.
- For an action of a finite group on $\mathrm{C}^{\infty}(X)$, we describe the representation theory of the crossed product.

The definition of the crossed product

Convolution

The data
G a group
A an algebra over some field
α action of G on A by automorphisms
Definition
The crossed product $G \ltimes_{\alpha} A=A \rtimes_{\alpha} G$ is the vector space of functions $G \rightarrow A$ with finite support, equipped with the convolution product

$$
\left(f_{1} * f_{2}\right)(g):=\sum_{h \in G} f_{1}(h) \cdot \alpha_{h}\left(f_{2}\left(h^{-1} g\right)\right)
$$

The definition of the crossed product

Generators and relations

Define $a \delta_{g} \in G \ltimes{ }_{\alpha} A$ for $g \in G, a \in A$ by $a \delta_{g}(h)=0$ for $h \neq g$ and $a \delta_{g}(g)=a$.
Every element of $G \ltimes A$ decomposes uniquely as a sum $\sum_{g \in F} a(g) \delta_{g}$ for some finite subset $F \subseteq G$.
The convolution product is generated by the rule

$$
a \delta_{g} * b \delta_{h}=a \alpha_{g}(b) \delta_{g h} .
$$

Covariant representations

Definition

A covariant representation of (A, G, α) is a pair of representations $f: A \rightarrow \operatorname{End}(V), U: G \rightarrow \operatorname{Aut}(V)$ on the same vector space V that satisfy the covariance condition $U_{g} f(a) U_{g}^{-1}=f\left(\alpha_{g}(a)\right)$ for all $g \in G, a \in A$.

Proposition

Let A be a unital algebra, let G be a group, and let
$\alpha: G \rightarrow \operatorname{Aut}(A)$ be a group homomorphism.
The category of unital representations of $A \rtimes_{\alpha} G$ is isomorphic to the category of unital covariant representations of (A, G, α).

Example

Let $\lambda: A \rightarrow \operatorname{End}(A)$ be the left regular representation, $\lambda_{a}(b):=a \cdot b$. The pair (λ, α) is a covariant representation:
$\alpha_{g} \lambda_{a} \alpha_{g^{-1}}(b)=\alpha_{g}\left(a \cdot \alpha_{g^{-1}}(b)\right)=\alpha_{g}(a) b=\lambda_{\alpha_{g}(a)}(b)$.

Semi-direct products of groups

Let N and H be groups.
Write Aut (N) for the group of group automorphisms of N.
Let $\alpha: H \rightarrow \operatorname{Aut}(N)$ be a group homomorphism.
Definition
The semi-direct product group $H \ltimes_{\alpha} N=N \rtimes_{\alpha} H$ is $N \times H$ with the product $\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right):=\left(n_{1} \alpha_{h_{1}}\left(n_{2}\right), h_{1} h_{2}\right)$.

Example

The isometry group of \mathbb{R}^{n} is the semi-direct product of the group $N=\mathbb{R}^{n}$ of translations and the orthogonal group $H=\mathrm{O}(n)$ with for the canonical action $\alpha: \mathrm{O}(n) \rightarrow \operatorname{Aut}\left(\mathbb{R}^{n}\right)$.

Example

The infinite dihedral group is a semi-direct product
$D_{\infty}=\mathbb{Z} \rtimes_{\alpha} \mathbb{Z} / 2$, where $\alpha_{n}(m)=(-1)^{n} \cdot m$ for $m \in \mathbb{Z}, n \in \mathbb{Z} / 2$.

Crossed products and semi-direct product groups

Lemma
Let N and H be groups and $\alpha: H \rightarrow \operatorname{Aut}(N)$.
This induces an action $\bar{\alpha}: H \rightarrow \operatorname{Aut}(K[N]), \bar{\alpha}\left(\delta_{n}\right):=\delta_{\bar{\alpha}(n)}$.
And $K[N] \rtimes_{\bar{\alpha}} H \cong K\left[N \rtimes_{\alpha} H\right]$.
In particular,

$$
K\left[D_{\infty}\right] \cong K[\mathbb{Z}] \rtimes \mathbb{Z} / 2 \cong K\left[t, t^{-1}\right] \rtimes \mathbb{Z} / 2
$$

Some crossed product computations

Proposition

Let A be a unital \mathbb{C}-algebra, G a finite group, and $\alpha: G \rightarrow \operatorname{Aut}(A)$. Let $\lambda_{g} f(x):=f\left(g^{-1} x\right)$ denote the left regular representation of G on $\mathbb{C}[G]$. Let G act on $B:=A \otimes \operatorname{End}(\mathbb{C}[G])$ by
$g \cdot(a \otimes x):=\alpha_{g}(a) \otimes \lambda_{g} x \lambda_{g}^{-1}$.
Then $A \rtimes_{\alpha} G$ is naturally isomorphic to the fixed point subalgebra of the G-action on B.

Lemma

Let G be a countably infinite group. Let $A=\mathbb{C}[G]$ with pointwise multiplication and let $\alpha=\lambda$ be the left regular representation.
Then $A \rtimes_{\alpha} G \cong \mathbb{M}_{\infty} \mathbb{C}$.
Lemma
$G \ltimes \mathbb{C}[G / H] \cong \mathbb{C}[H] \otimes \mathbb{M}_{|G / H|} \mathbb{C}$.
The irreducible representations of $G \ltimes \mathbb{C}[G / H]$ are in bijection with irreducible representations of H.

Representation theory

Let X be a smooth compact manifold, G a finite group.
An action α of G on X by diffeomorphisms induces an action of G on $C^{\infty}(X)$ by algebra automorphisms.
$A C^{\infty}(X) \rtimes_{\alpha} G$
$G \backslash X$ orbit space;
G_{x} stabiliser subgroup of $x \in X$
\hat{G}_{x} set of irreducible representations of G_{x}.

Theorem

There is a canonical bijection between \hat{A} and $\bigsqcup_{x \in G \backslash X} \hat{G}_{x}$.
The map $\hat{A} \rightarrow \operatorname{Prim}(A)$ is bijective and any primitive ideal in A is maximal and closed in the natural topology.

