Noncommutative Geometry IV: Differential Geometry 11. Morita equivalence

R. Meyer

Mathematisches Institut Universität Göttingen

Summer Term 2020

Morita equivalence

- We are going to motivate the importance of Morita equivalence for noncommutative geometry.
- In many geometric situations, the noncommutative algebra describing it is only unique up to Morita equivalence.
- Morita equivalence is defined as an equivalence between the module categories.
- We characterise it through bimodules over the algebras with certain properties and using corners defined by full projections.
- We provide some important examples of Morita equivalent algebras.

Quotient spaces in noncommutative geometry

- X smooth compact manifold
- G a group
- α action of G on X by diffeomorphisms

basic paradigm of noncommutative geometry

Replace the orbit space $G \setminus X$ by the noncommutative algebra $C^{\infty}(X) \rtimes_{\alpha} G$. This is particularly interesting for infinite groups G, where the orbit space $G \setminus X$ is usually very badly behaved.

Irrational rotations

Example

Fix $\vartheta \in \mathbb{R}$. Let $X := \mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$ be a circle and let $G := \mathbb{Z}$ act on X by rotations: $n \bullet z := \exp(2\pi i \vartheta n) \cdot z$ for all $n \in \mathbb{Z}$. If ϑ is rational, $\vartheta = p/q$, then $q \bullet z = z$ for all $z \in X$, so that the action of G factors through an action of the finite group $\mathbb{Z}/q\mathbb{Z}$. Hence $G \setminus X = (\mathbb{Z}/q\mathbb{Z}) \setminus X$ is again a circle. If ϑ is irrational, then the orbit $Gz := \{n \bullet z : n \in \mathbb{Z}\}$ is dense in X for each $z \in X$. Hence any G-invariant continuous function on X is constant. The orbit space $G \setminus X$ carries no useful topology and is certainly not a smooth manifold.

Correspondence principle

The rotations with angles $2\pi\vartheta$ and $2\pi/\vartheta$ generate "the same" orbit space

$$\mathbb{T}/2\pi\vartheta\mathbb{Z}\cong\mathbb{R}/2\pi(\mathbb{Z}\!+\!\vartheta\mathbb{Z})\xrightarrow{\cong} \mathbb{R}/2\pi(\vartheta^{-1}\mathbb{Z}\!+\!\mathbb{Z})\cong\mathbb{T}/2\pi\vartheta^{-1}\mathbb{Z}.$$

Therefore, noncommutative geometry should not distinguish between the crossed products $C^{\infty}(\mathbb{T}) \rtimes_{\vartheta} \mathbb{Z}$ and $C^{\infty}(\mathbb{T}) \rtimes_{\vartheta^{-1}} \mathbb{Z}$. If a finite group *G* acts freely on a smooth manifold *X*, then noncommutative geometry should not distinguish between the algebras $C^{\infty}(X) \rtimes_{\alpha} G$ and $C^{\infty}(G \setminus X)$.

Morita equivalence

Definition

Let R be a (unital) ring. Let \mathfrak{Mod}_R be the category with left R-modules as objects, module homomorphisms as arrows, and the usual composition.

Two rings R and S are Morita equivalent if \mathfrak{Mod}_R and \mathfrak{Mod}_S are equivalent categories.

Theorem

Let *M* be a smooth compact manifold and let α be a free group action of a finite group *G* on *M*. Then $C^{\infty}(M) \rtimes_{\alpha} G$ and $C^{\infty}(G \setminus M)$ are Morita equivalent.

Bimodule tensor product

Definition

Let *R* and *S* be two rings, *Q* an *S*, *R*-bimodule, *M* an *R*-module. The *R*-balanced tensor product $Q \otimes_R M$ is the quotient of $Q \otimes M$ by the subgroup generated by $q \cdot r \otimes m - q \otimes r \cdot m$. The group $Q \otimes_R M$ carries a unique *S*-module structure with $s \cdot (q \otimes m) := (s \cdot q) \otimes m$ all $s \in S$, $q \in Q$, $m \in M$. If *M* is an *R*, *T*-module for a third ring *T*, then $Q \otimes_R M$ carries a unique right *T*-module structure with $(q \otimes m) \cdot t := q \otimes (m \cdot t)$. This makes $Q \otimes_R M$ an *S*, *T*-bimodule.

Theorem

Two rings R and S are Morita equivalent if and only if there are an S, R-bimodule Q and an R, S-bimodule P with bimodule isomorphisms $Q \otimes_R P \cong S$ and $P \otimes_S Q \cong R$.

Some examples of Morita equivalence

Example

Let R be a unital ring. Then R is Morita equivalent to $\mathbb{M}_n(R)$. The bimodules are $P = R^n$ and $Q = R^n$ with matrix-vector multiplication.

Matrix multiplication between $1 \times n$ - and $n \times 1$ -matrices gives the bimodule isomorphisms $Q \otimes_R P \cong S$ and $P \otimes_S Q \cong R$.

Definition

An idempotent element $p \in A$ in a ring A is called full if it generates A as an ideal, that is, elements of the form *apb* with $a, b \in A$ span A.

Theorem

Let $p \in A$ be a full idempotent in a unital ring A. Then A is Morita equivalent to pAp.

The linking ring

Definition

Let A and B be two unital rings. Let P and Q be an

A, B-bimodule and a B, A-bimodule. Let $\mu_{PQ} \colon P \otimes_B Q \to A$ and $\mu_{QP} \colon Q \otimes_A P \to B$ be bimodule homomorphisms. Assume also that

 $\begin{array}{l} \mu_{PQ}\otimes_{A}\mathrm{Id}_{P}=\mathrm{Id}_{P}\otimes_{B}\mu_{QP}\colon P\otimes_{B}Q\otimes_{A}P\to P \text{ and} \\ \mu_{QP}\otimes_{B}\mathrm{Id}_{Q}=\mathrm{Id}_{Q}\otimes_{A}\mu_{PQ}\colon Q\otimes_{A}P\otimes_{B}Q\to Q. \\ \text{The linking ring associated to } (A,B,P,Q,\mu_{PQ},\mu_{QP}) \text{ is the unital} \\ \text{ring with underlying vector space } L:=A\oplus P\oplus Q\oplus B \text{ and with} \\ \text{the associative multiplication} \end{array}$

$$\begin{pmatrix} \mathsf{a}_1 & \mathsf{p}_1 \\ \mathsf{q}_1 & \mathsf{b}_1 \end{pmatrix} \cdot \begin{pmatrix} \mathsf{a}_2 & \mathsf{p}_2 \\ \mathsf{q}_2 & \mathsf{b}_2 \end{pmatrix}$$
$$:= \begin{pmatrix} \mathsf{a}_1 \cdot \mathsf{a}_2 + \mu_{PQ}[\mathsf{p}_1 \otimes \mathsf{q}_2] & \mathsf{a}_1 \cdot \mathsf{p}_2 + \mathsf{p}_1 \cdot \mathsf{b}_2 \\ \mathsf{q}_1 \cdot \mathsf{a}_2 + \mathsf{b}_1 \cdot \mathsf{q}_2 & \mu_{QP}[\mathsf{q}_1 \otimes \mathsf{b}_2] + \mathsf{b}_1 \cdot \mathsf{b}_2 \end{pmatrix}$$

Morita equivalence through linking ring

Proposition

Let A and B be Morita equivalent. Then there are bimodules P and Q and bimodule homomorphisms μ_{PQ} and μ_{QP} as above, so that the linking ring L is defined.

The elements

$$p_A := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad p_B := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

in L are idempotent elements with $p_A L p_A \cong A$ and $p_B L p_B \cong B$. The idempotent elements p_A and p_B are full if μ_{PQ} and μ_{QP} are bimodule isomorphisms. Two rings are Morita equivalent if and only if they are both isomorphic to full corners in the same ring.

Morita invariance of the spectrum

Proposition

Let A and B be Morita equivalent unital rings. Then $Prim(A) \cong Prim(B)$ and $\hat{A} \cong \hat{B}$. The lattices $\mathbb{I}(A)$ and $\mathbb{I}(B)$ of ideals in A and B are isomorphic.