Noncommutative Geometry IV: Differential Geometry 12. Derivations as noncommutative differentiation

R. Meyer

Mathematisches Institut Universität Göttingen

Summer Term 2020

Derivations as noncommutative differentiation

- We now start with noncommutative differential geometry.
- We describe differentiation of smooth functions on a manifold using tangent vectors and vector fields.
- ▶ We understand this algebraically using the Leibniz rule.
- This leads to the definition of a derivation into a bimodule.
- This generalises tangent vectors and vector fields for algebras of smooth functions.
- We define a subclass of inner derivations and show that all derivations for a matrix algebra are inner.
- This uses a description of derivations through sections of module extensions.
- To illustrate this theory, we discuss two-dimensional representations of algebras of smooth functions.

Differentiation of smooth functions?

- ▶ Partial derivatives of functions on \mathbb{R}^n depend on coordinates.
- The coordinate-independent formulation on a manifold are directional derivatives for tangent vectors.
- ▶ The directional derivative for $v \in T_x M$, $x \in M$ is a linear map $C^{\infty}(M, \mathbb{R}) \to \mathbb{R}$, $f \mapsto D_v f(x)$.
- A global version of this is the first order differential operator C[∞](M) → C[∞](M), f ↦ X(f), given by a vector field X on M.
- ► A vector field is a smooth section of the tangent bundle.

The Leibniz rule

Theorem

Let $m \in M$. A linear map $l: C^{\infty}(M, \mathbb{R}) \to \mathbb{R}$ is of the form $f \mapsto Df_m(\vec{v})$ for some $\vec{v} \in T_m M$ if and only if $l(f \cdot g) = f(m) \cdot l(g) + l(f) \cdot g(m)$. A linear map $l: C^{\infty}(M, \mathbb{R}) \to C^{\infty}(M, \mathbb{R})$ comes from a smooth vector field on M if and only if $l(f \cdot g) = l(f) \cdot g + f \cdot l(g)$.

Definition

Let A be an algebra and let M be an A-bimodule. A derivation is a linear map $d: A \rightarrow M$ that satisfies the Leibniz rule: $d(a \cdot b) = a \cdot d(b) + d(a) \cdot b$ for all $a, b \in A$. Der $(A, M) = \{$ derivations $A \rightarrow M \}$.

Example $(A = C^{\infty}(M, \mathbb{R}) \text{ for a manifold } M)$ Der $(A, A) \cong \{\text{smooth vector fields}\}.$ Let $x \in M$. Then $A/\ker ev_x$ is an A-bimodule and Der $(A, A/\ker ev_x) \cong T_x M$. Derivations generalise both smooth vector fields and tangent vectors on manifolds. Here we use \mathbb{R} -valued functions on smooth manifolds in order to get ordinary tangent vectors and vector fields.

On $C^{\infty}(M, \mathbb{C})$, we get vectors in the complexified tangent bundle and the complex vector space generated by smooth vector fields. This is less geometric.

Some things like integrating a vector field to a flow no longer work.

Inner derivations

Definition

Let A be an algebra, let M be an A-bimodule, and let $m \in M$. The inner derivation ad_m is defined by $\operatorname{ad}_m(a) = [m, a] := m \cdot a - a \cdot m$ for all $a \in A$. $\operatorname{Inn}(A, M) := \{ \text{inner derivations } A \to M \} \subseteq \operatorname{Der}(A, M)$. The centre Z(M) of M is the set of all $m \in M$ with $\operatorname{ad}_m = 0$, that is, $a \cdot m = m \cdot a$ for all $a \in A$.

There is a linear map

ad: $M \rightarrow \text{Der}(A, M)$.

Its kernel is equal to the centre Z(M) of M.

Theorem

Let $A = \mathbb{M}_n \mathbb{C}$. Then any derivation in Der(A, A) is inner. Any derivation $A \to M$ for a unital A-bimodule M is inner.

Derivations are not Morita invariant Der($\mathbb{M}_n\mathbb{C}, \mathbb{M}_n\mathbb{C}$) is much bigger than Der(\mathbb{C}, \mathbb{C}) = {0}.

Derivations and module extensions

- Let V → X → W be an extension of left A-modules: the map i: V → X is injective and p induces an isomorphism X/i(V) ≃ W.
- There is a linear map not module homomorphism s: W → X with p ∘ s = Id_W.
- Use s to split $X \cong V \oplus W$ as a vector space.
- For $a \in A$, the operator μ_a^X of multiplication by a has the form

$$\mu_{a}^{X} = \begin{pmatrix} \mu_{a}^{V} & d_{a} \\ 0 & \mu_{a}^{W} \end{pmatrix}$$

where μ_a^V and μ_a^W multiply by a on V and W and $d_a \colon W \to V$. This gives a derivation $d \colon A \to \text{Hom}(W, V)$ for the bimodule structure on Hom(W, V) defined by $a \cdot x \cdot b \coloneqq \mu_a^V \circ x \circ \mu_b^W$ for $a, b \in A, x \colon W \to V$.

Dependence on the section s: may replace s by s + δ for some linear map δ: W → V. This replaces d by d + ad_δ.

Derivations and bimodule extensions II

Theorem

Let A be an algebra, let V and W be left A-modules. Equip Hom(W, V) with the canonical A-bimodule structure. Let $Ext_A(W, V)$ be the set of equivalence classes of A-module extensions $V \rightarrow X \rightarrow W$, where two such extensions are considered equivalent if there is a commuting diagram

$$V \longrightarrow X_1 \longrightarrow W$$

 $\parallel \qquad \downarrow \cong \qquad \parallel$
 $V \longrightarrow X_2 \longrightarrow W.$

Then $\operatorname{Ext}_A(W, V) \cong \frac{\operatorname{Der}(A, \operatorname{Hom}(W, V))}{\operatorname{Inn}(A, \operatorname{Hom}(W, V))}.$

An extension splits by an A-module homomorphism if and only if the corresponding derivation is inner.

Two-dimensional representations of smooth functions

- Let *M* be a smooth compact manifold.
- Let ρ: C[∞](M, C) → M₂C be a two-dimensional representation.
- This is reducible. So it fits into a module extension

$$V \rightarrowtail (\mathbb{C}^2, \varrho) \twoheadrightarrow W$$

with 1-dimensional representations V and W.

- These are just characters, corresponding to points x_0, x_1 in M.
- The representation is determined by these two points and a derivation C[∞](M) → Hom(W, V). Here Hom(W, V) is isomorphic to C with the bimodule structure by f₀ · λ · f₁ := f₀(x₀)λf₁(x₁).
- If $x_0 = x_1 = x$, the derivation is equivalent to a vector in $T_x M$.

• If
$$x_0 \neq x_1$$
, the derivation is inner.