Noncommutative Geometry IV: Differential Geometry

14. Representations and crossed products for Lie algebras

R. Meyer

Mathematisches Institut
Universität Göttingen

Summer Term 2020

Representations and crossed products for Lie algebras

- We define representations of Lie algebras and actions of Lie algebras on algebras by derivations.
- We define the universal enveloping algebra of a Lie algebra and a crossed product for an action of a Lie algebra on an algebra by derivations.
This is analogous to the crossed product for group actions.
- In particular, we define a crossed product for algebra with a single derivation.
- The crossed product for the differentiation derivation on polynomials is the Weyl algebra.
- It is also generated by the canonical commutation relation, $[p, q]=\mathrm{i} \hbar$.
- We prove that the Weyl algebra is simple, describe some irreducible representations, and its derivations.

Definition

Let \mathfrak{g} be a Lie algebra and V a vector space.
A representation of \mathfrak{g} on V is a linear map $\varrho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ with

$$
\varrho([X, Y])=[\varrho(X), \varrho(Y)]:=\varrho(X) \cdot \varrho(Y)-\varrho(Y) \cdot \varrho(X)
$$

Example

If A is an algebra, then the bracket on derivations is defined so that $\operatorname{Der}(A, A) \subseteq \operatorname{End}(A)$ is a Lie subalgebra.
Thus the canonical action of derivations on A is a representation of $\operatorname{Der}(A, A)$ on A.

Example

A continuous representation of a Lie group G on a Banach space defines a smooth representation of the Lie group on a dense subspace of "smooth vectors".
And this gives a Lie algebra representation on this subspace.

The universal enveloping algebra

Definition

The universal enveloping algebra $U(\mathfrak{g})$ is the unital algebra generated by the set \mathfrak{g} with the relations that the map $i: \mathfrak{g} \rightarrow U(\mathfrak{g})$ is linear and satisfies $i([X, Y])=i(X) \cdot i(Y)-i(Y) \cdot i(X)$.

Remark

Representations of $U(\mathfrak{g})$ are equivalent to representations of \mathfrak{g}.

Example

Let $\mathfrak{g}=\mathbb{R}^{n}$ with the zero bracket.
A representation of \mathfrak{g} is equivalent to
a family of n commuting operators on a vector space.
The universal enveloping algebra is isomorphic to $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. $\mathbb{R}[x]$ is the universal enveloping algebra of the Lie algebra \mathbb{R} with zero bracket.

Lie algebra actions on algebras

Definition

An action of a Lie algebra \mathfrak{g} on an algebra A is a Lie algebra homomorphism $\mathfrak{g} \rightarrow \operatorname{Der}(A, A)$, that is, $\alpha_{[X, Y]}=\left[\alpha_{X}, \alpha_{Y}\right]$.

Definition

Let \mathfrak{g} be a Lie algebra, A a unital algebra, and $\alpha: \mathfrak{g} \rightarrow \operatorname{Der}(A, A)$ an action of \mathfrak{g} on A. A covariant representation of $(A, \mathfrak{g}, \alpha)$ on a vector space V is a pair (π, ϱ) consisting of an algebra representation $\pi: A \rightarrow$ End (V) and a Lie algebra representation $\varrho: \mathfrak{g} \rightarrow \operatorname{End}(V)$, subject to the covariance condition

$$
[\varrho(X), \pi(a)]=\pi\left(\alpha_{X}(a)\right)
$$

The crossed product $A \rtimes_{\alpha} \mathfrak{g}$ is an algebra whose representations are equivalent to covariant representations of $(A, \mathfrak{g}, \alpha)$.

The case of a single derivation

Example

Let \mathfrak{g} be \mathbb{R} with zero bracket.
A Lie algebra action of \mathbb{R} on an algebra A is equivalent to a single derivation d on A.
A covariant representation becomes equivalent to a pair (π, X) consisting of a representation $\pi: A \rightarrow \operatorname{End}(V)$ and a linear map $X \in \operatorname{End}(V)$ that satisfies $[X, \pi(a)]=\pi(d(a))$ for all $a \in A$.

Description of the crossed product

Theorem
Let \mathfrak{g} be a Lie algebra and A a unital algebra.
Let $\alpha: \mathfrak{g} \rightarrow \operatorname{Der}(A, A)$ be an action of \mathfrak{g} on A.
There is a unique associative multiplication on $A \otimes U(\mathfrak{g})$ such that

$$
i_{A}: A \rightarrow A \otimes U(\mathfrak{g}), \quad a \mapsto a \otimes 1
$$

is an algebra homomorphism,

$$
i_{\mathfrak{g}}: \mathfrak{g} \rightarrow A \otimes U(\mathfrak{g}), \quad X \mapsto 1 \otimes X
$$

is a Lie algebra homomorphism, and

$$
\left[i_{\mathfrak{g}}(X), i_{A}(a)\right]=i_{A}\left(\alpha_{X}(a)\right)
$$

This makes $A \otimes U(\mathfrak{g})$ the crossed product $A \rtimes_{\alpha} \mathfrak{g}$.

Crossed product for a single derivations

Corollary

The crossed product $A \rtimes_{d} \mathbb{R}$ for a single derivation $d \in \operatorname{Der}(A, A)$ is $A \otimes \mathbb{R}[t]$ with the multiplication generated by that of A and the commutation relation $[t, a]=d(a)$.

Proposition

Let $d=\mathrm{ad}_{x}$ be an inner derivation on an algebra A.
Then $A \rtimes_{d} \mathbb{R} \cong A \otimes \mathbb{R}[t]$.
Here the target $A \otimes \mathbb{R}[t]$ carries the obvious multiplication
$\left(a \otimes t^{m}\right) \cdot\left(b \otimes t^{n}\right):=(a b) \otimes t^{m+n}$.

The Weyl algebra

Definition

Let A be the crossed product of $\mathbb{C}[q]$ by the derivation $d\left(q^{n}\right):=\mathrm{i} \hbar n q^{n-1}$ for some $\hbar \in \mathbb{C} \backslash\{0\}$.
This algebra is called Weyl algebra by mathematicians and Heisenberg algebra by mathematical physicists.
The algebra A is the universal algebra with two generators p, q that satisfy the canonical commutation relation

$$
[p, q]:=p q-q p=\hbar \mathrm{i} .
$$

Example
Define operators p, q on $\mathbb{C}[x]$ by

$$
p(f):=x \cdot f, \quad q(f):=\frac{\hbar}{i} f^{\prime}=-\hbar i f^{\prime},
$$

where f^{\prime} denotes the derivative of f.
This generates a representation of the Weyl algebra.

Simplicity and uniqueness

Proposition

The Weyl algebra is simple.

Proposition

The Weyl algebra A is the unique unital algebra with two generators satisfying the canonical commutation relation. Let B be any unital algebra and let $P, Q \in B$ satisfy $[P, Q]=\hbar \mathrm{i}$. Then there is a unique unital algebra homomorphism $f: A \rightarrow B$ with $f(p)=P$ and $f(q)=Q$.
And f is an algebra isomorphism onto the subalgebra of B generated by P and Q.

Irreducible representations of the Weyl algebra

Proposition

Let f be a polynomial and let $V_{f} \subseteq \mathrm{C}^{\infty}(\mathbb{R})$ be the subspace of all functions of the form $g \exp (f)$ with a polynomial $g \in \mathbb{C}[x]$. Let p and q act on V_{f} by $p(g \exp f):=x \cdot g \exp f$ and

$$
q(g \exp f):=-\mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} x}(g \exp f)=-\mathrm{i} \hbar\left(g^{\prime}-g f^{\prime}\right) \exp f .
$$

This defines an irreducible representation of A on V_{f}.
The irreducible representations $V_{f_{1}}$ and $V_{f_{2}}$ are only isomorphic if $f_{2}=f_{1}+c$ for a constant $c \in \mathbb{C}$.

Remark

In mathematical physics, we are mainly interested in self-adjoint solutions of the canonical commutation relation.
Any such representation of the Weyl algebra is unitarily equivalent to a direct sum of copies of the standard representation on $L^{2}(\mathbb{R})$.

Derivations on the Weyl algebra

Theorem

Let A be the Weyl algebra. Any derivation $A \rightarrow A$ is inner.
(But there are non-inner derivations from the Weyl algebra into bimodules over it.)

Lemma

The only invertible elements of the Weyl algebra A are the constant multiples of the identity, which are central.
So the only inner automorphism of A is the identity map.

Example

Translations define a 1-parameter group of automorphisms

$$
\tau_{t}: A \rightarrow A, \quad \tau_{t}\left(p^{n} q^{m}\right):=(p-t)^{n} q^{m} .
$$

Its generator is the inner derivation $\operatorname{ad}_{q / i \hbar}$.
The automorphism τ_{t} is not inner.
because $\exp (q t / i \hbar)$ is not a polynomial in q.

