Noncommutative Geometry IV: Differential Geometry 14. Representations and crossed products for Lie algebras

R. Meyer

Mathematisches Institut Universität Göttingen

Summer Term 2020

Representations and crossed products for Lie algebras

- We define representations of Lie algebras and actions of Lie algebras on algebras by derivations.
- We define the universal enveloping algebra of a Lie algebra and a crossed product for an action of a Lie algebra on an algebra by derivations.
 This is analyzed as the graduat for group actions.

This is analogous to the crossed product for group actions.

- In particular, we define a crossed product for algebra with a single derivation.
- The crossed product for the differentiation derivation on polynomials is the Weyl algebra.
- It is also generated by the canonical commutation relation, [p, q] = iħ.
- We prove that the Weyl algebra is simple, describe some irreducible representations, and its derivations.

Definition

Let \mathfrak{g} be a Lie algebra and V a vector space.

A representation of \mathfrak{g} on V is a linear map $\varrho \colon \mathfrak{g} \to \mathsf{End}(V)$ with

$$\varrho([X,Y]) = [\varrho(X), \varrho(Y)] := \varrho(X) \cdot \varrho(Y) - \varrho(Y) \cdot \varrho(X).$$

Example

If A is an algebra, then the bracket on derivations is defined so that $Der(A, A) \subseteq End(A)$ is a Lie subalgebra. Thus the canonical action of derivations on A is a representation of Der(A, A) on A.

Example

A continuous representation of a Lie group G on a Banach space defines a smooth representation of the Lie group on a dense subspace of "smooth vectors". And this gives a Lie algebra representation on this subspace.

The universal enveloping algebra

Definition

The universal enveloping algebra $U(\mathfrak{g})$ is the unital algebra generated by the set \mathfrak{g} with the relations that the map $i \colon \mathfrak{g} \to U(\mathfrak{g})$ is linear and satisfies $i([X, Y]) = i(X) \cdot i(Y) - i(Y) \cdot i(X)$.

Remark

Representations of $U(\mathfrak{g})$ are equivalent to representations of \mathfrak{g} .

Example

Let $\mathfrak{g} = \mathbb{R}^n$ with the zero bracket. A representation of \mathfrak{g} is equivalent to a family of *n* commuting operators on a vector space. The universal enveloping algebra is isomorphic to $\mathbb{R}[x_1, \ldots, x_n]$. $\mathbb{R}[x]$ is the universal enveloping algebra of the Lie algebra \mathbb{R} with zero bracket.

Lie algebra actions on algebras

Definition

An action of a Lie algebra \mathfrak{g} on an algebra A is a Lie algebra homomorphism $\mathfrak{g} \to \text{Der}(A, A)$, that is, $\alpha_{[X,Y]} = [\alpha_X, \alpha_Y]$.

Definition

Let \mathfrak{g} be a Lie algebra, A a unital algebra, and $\alpha \colon \mathfrak{g} \to \text{Der}(A, A)$ an action of \mathfrak{g} on A. A covariant representation of $(A, \mathfrak{g}, \alpha)$ on a vector space V is a pair (π, ϱ) consisting of an algebra representation $\pi \colon A \to \text{End}(V)$ and a Lie algebra representation $\varrho \colon \mathfrak{g} \to \text{End}(V)$, subject to the covariance condition

$$[\varrho(X),\pi(a)]=\pi(\alpha_X(a)).$$

The crossed product $A \rtimes_{\alpha} \mathfrak{g}$ is an algebra whose representations are equivalent to covariant representations of $(A, \mathfrak{g}, \alpha)$.

The case of a single derivation

Example

Let \mathfrak{g} be \mathbb{R} with zero bracket.

A Lie algebra action of \mathbb{R} on an algebra A is equivalent to a single derivation d on A.

A covariant representation becomes equivalent to a pair (π, X) consisting of a representation $\pi: A \to \text{End}(V)$ and a linear map $X \in \text{End}(V)$ that satisfies $[X, \pi(a)] = \pi(d(a))$ for all $a \in A$.

Description of the crossed product

Theorem

Let \mathfrak{g} be a Lie algebra and A a unital algebra. Let $\alpha \colon \mathfrak{g} \to \text{Der}(A, A)$ be an action of \mathfrak{g} on A. There is a unique associative multiplication on $A \otimes U(\mathfrak{g})$ such that

 $i_A \colon A \to A \otimes U(\mathfrak{g}), \qquad a \mapsto a \otimes 1,$

is an algebra homomorphism,

$$i_{\mathfrak{g}} \colon \mathfrak{g} \to A \otimes U(\mathfrak{g}), \qquad X \mapsto 1 \otimes X,$$

is a Lie algebra homomorphism, and

$$[i_{\mathfrak{g}}(X), i_{A}(a)] = i_{A}(\alpha_{X}(a)).$$

This makes $A \otimes U(\mathfrak{g})$ the crossed product $A \rtimes_{\alpha} \mathfrak{g}$.

Crossed product for a single derivations

Corollary

The crossed product $A \rtimes_d \mathbb{R}$ for a single derivation $d \in \text{Der}(A, A)$ is $A \otimes \mathbb{R}[t]$ with the multiplication generated by that of A and the commutation relation [t, a] = d(a).

Proposition

Let $d = \operatorname{ad}_{x}$ be an inner derivation on an algebra A. Then $A \rtimes_{d} \mathbb{R} \cong A \otimes \mathbb{R}[t]$. Here the target $A \otimes \mathbb{R}[t]$ carries the obvious multiplication $(a \otimes t^{m}) \cdot (b \otimes t^{n}) := (ab) \otimes t^{m+n}$.

The Weyl algebra

Definition

Let A be the crossed product of $\mathbb{C}[q]$ by the derivation $d(q^n) := i\hbar nq^{n-1}$ for some $\hbar \in \mathbb{C} \setminus \{0\}$. This algebra is called Weyl algebra by mathematicians and

Heisenberg algebra by mathematical physicists.

The algebra A is the universal algebra with two generators p, q that satisfy the canonical commutation relation

$$[p,q] := pq - qp = \hbar i.$$

Example

Define operators p, q on $\mathbb{C}[x]$ by

$$p(f) := x \cdot f, \qquad q(f) := \frac{\hbar}{i} f' = -\hbar i f',$$

where f' denotes the derivative of f. This generates a representation of the Weyl algebra.

Simplicity and uniqueness

Proposition

The Weyl algebra is simple.

Proposition

The Weyl algebra A is the unique unital algebra with two generators satisfying the canonical commutation relation. Let B be any unital algebra and let $P, Q \in B$ satisfy $[P, Q] = \hbar i$. Then there is a unique unital algebra homomorphism $f : A \to B$ with f(p) = P and f(q) = Q. And f is an algebra isomorphism onto the subalgebra of B

generated by P and Q.

Irreducible representations of the Weyl algebra

Proposition

Let f be a polynomial and let $V_f \subseteq C^{\infty}(\mathbb{R})$ be the subspace of all functions of the form $g \exp(f)$ with a polynomial $g \in \mathbb{C}[x]$. Let p and q act on V_f by $p(g \exp f) := x \cdot g \exp f$ and

$$q(g \exp f) := -i\hbar \frac{d}{dx}(g \exp f) = -i\hbar(g' - gf') \exp f.$$

This defines an irreducible representation of A on V_f . The irreducible representations V_{f_1} and V_{f_2} are only isomorphic if $f_2 = f_1 + c$ for a constant $c \in \mathbb{C}$.

Remark

In mathematical physics, we are mainly interested in self-adjoint solutions of the canonical commutation relation.

Any such representation of the Weyl algebra is unitarily equivalent to a direct sum of copies of the standard representation on $L^2(\mathbb{R})$.

Derivations on the Weyl algebra

Theorem

Let A be the Weyl algebra. Any derivation $A \rightarrow A$ is inner. (But there are non-inner derivations from the Weyl algebra into bimodules over it.)

Lemma

The only invertible elements of the Weyl algebra A are the constant multiples of the identity, which are central. So the only inner automorphism of A is the identity map.

Example

Translations define a 1-parameter group of automorphisms

$$au_t \colon A \to A, \qquad au_t(p^n q^m) \coloneqq (p-t)^n q^m.$$

Its generator is the inner derivation $\mathrm{ad}_{q/\mathrm{i}\hbar}$. The automorphism τ_t is not inner. because $\exp(qt/\mathrm{i}\hbar)$ is not a polynomial in q.