Noncommutative Geometry IV: Differential Geometry 15. The universal derivation — Morita invariance

R. Meyer

Mathematisches Institut Universität Göttingen

Summer Term 2020

The universal derivation — Morita invariance

- We define the bimodule of noncommutative differential forms $\Omega^1(A)$ so that {derivations $A \to M$ } \cong {bimodule maps $\Omega^1(A) \to M$ }.
- We define projective bimodule resolutions and use them to compute the quotient of derivations modulo inner derivations.
- We prove that this quotient is invariant under Morita equivalence.

Noncommutative differential 1-forms

Definition

Make $A \otimes A$ an A-bimodule in the obvious way: $a \cdot (b \otimes c) \cdot d := (a \cdot b) \otimes (c \cdot d)$ for $a, b, c, d \in A$. Define $\Omega^{1}(A) := \text{ker(mult: } A \otimes A \to A)$ and $d : A \to \Omega^{1}(A), d(a) := 1 \otimes a - a \otimes 1$.

Proposition

Let M be a unital A-bimodule and let $D: A \to M$ be a derivation. There is a unique bimodule map $f: \Omega^1(A) \to M$ with $f \circ d = D$.

Corollary

The derivation d: $A \rightarrow \Omega^1(A)$ is inner if and only if all derivations into A-bimodules are inner.

Remark

The map d is the inner derivation into $A \otimes A$ generated by $1 \otimes 1$.

Differential forms

Definition

The space $\Omega^1(M)$ of smooth 1-forms is the space of smooth sections of the cotangent bundle T^*M .

Proposition

Let V be a $C^{\infty}(M)$ -module. View it as a bimodule by $f \cdot v \cdot g = f \cdot g \cdot v$. Let D: $C^{\infty}(M) \rightarrow V$ be a derivation. There is a unique module homomorphism $\varphi \colon \Omega^1(M) \rightarrow V$ with $f \circ d_{dR} = D$.

Corollary

Let *M* be a smooth manifold and $A := C^{\infty}(M)$. The *A*-module $\Omega^{1}(M)$ is isomorphic to the commutator quotient $\Omega^{1}(A) / [A, \Omega^{1}(A)]$, the quotient by the linear span of $[a, \omega]$ for $a \in A$, $\omega \in \Omega^{1}(A)$.

The centre using bimodule maps

Definition

Let $\operatorname{Hom}_{A,A}(V, W)$ for two A-bimodules V, W denote the space of A-bimodule homomorphisms $V \to W$.

Lemma

 $\operatorname{Hom}_{A,A}(A \otimes A, M) \cong M$ for any unital A-bimodule M.

Proof.

Map $f \in \operatorname{Hom}_{A,A}(A \otimes A, M)$ to $f(1 \otimes 1)$ and $m \in M$ to the map $a \otimes b \mapsto a \cdot m \cdot b$.

Lemma

Make A an A-bimodule by left and right multiplication. Then $\operatorname{Hom}_{A,A}(A, M)$ is isomorphic to the centre $Z(M) = \{m \in M : a \cdot m = m \cdot a \text{ for all } a \in A\}.$

Inner derivations using bimodule maps

Let mult: $A \otimes A \rightarrow A$ be the multiplication map. It induces a map

 $\operatorname{Hom}_{A,A}(A,M) \xrightarrow{\operatorname{mult}^*} \operatorname{Hom}_{A,A}(A \otimes A,M) \cong M, \qquad f \mapsto f \circ \operatorname{mult}.$

Since mult is surjective, mult^{*} is injective. Its image is the centre Z(M) of M.

Definition

The cokernel of a map $f: X \to Y$ is the quotient Y/f(X).

Since $ad_m = 0$ if and only if *m* is central,

$$\operatorname{Inn}(A, M) \cong \frac{M}{Z(M)} = \operatorname{coker}(\operatorname{mult}^*).$$

The first two Hochschild cohomology groups

The functor $\operatorname{Hom}_{A,A}({\scriptstyle\sqcup},M)$ maps the inclusion $\Omega^1(A) \rightarrowtail A \otimes A$ to

$$M \xrightarrow{\mathsf{ad}} \mathsf{Der}(A, M).$$

Its kernel and cokernel

$$\begin{aligned} \mathsf{HH}^0(A, M) &:= \ker(\mathsf{ad} \colon M \to \mathsf{Der}(A, M)) \cong Z(M), \\ \mathsf{HH}^1(A, M) &:= \mathsf{coker}(\mathsf{ad} \colon M \to \mathsf{Der}(A, M)) \cong \frac{\mathsf{Der}(A, M)}{\mathsf{Inn}(A, M)} \end{aligned}$$

measure to what extent the restriction map Hom_{*A*,*A*}($A \otimes A, M$) \rightarrow Hom_{*A*,*A*}($\Omega^{1}(A), M$) is injective and surjective.

Morita invariance

Theorem

Let A and B be Morita equivalent unital algebras. Then $HH^{j}(A, A) \cong HH^{j}(B, B)$ for j = 0, 1.

Corollary

Let G be a finite group that acts freely on a smooth manifold M. Then

$$\begin{aligned} \mathsf{HH}^0(\mathsf{C}^\infty(M)\rtimes G,\mathsf{C}^\infty(M)\rtimes G)&\cong\mathsf{C}^\infty(G\backslash M),\\ \mathsf{HH}^1(\mathsf{C}^\infty(M)\rtimes G,\mathsf{C}^\infty(M)\rtimes G)&\cong\mathfrak{X}(G\backslash M), \end{aligned}$$

vector fields on $B \setminus M$.

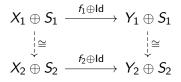
The Morita equivalence made explicit

- A Morita equivalence between two unital algebras A and B is given by an A, B-bimodule P and a B, A-bimodule Q and bimodule isomorphisms P ⊗_B Q ≅ A and Q ⊗_A P ≅ B.
- These yield an equivalence between the categories of unital A-bimodules Bimod(A) and of unital B-bimodules Bimod(B).
- ► The equivalence is $\varphi : \mathfrak{Bimod}(B) \to \mathfrak{Bimod}(A)$, $M \mapsto P \otimes_B M \otimes_B Q$ with inverse $M' \mapsto Q \otimes_A M' \otimes_A P$.
- $\blacktriangleright \varphi(B) := P \otimes_B B \otimes_B Q \cong P \otimes_B Q \cong A.$

Stably isomorphic maps

Definition

Two bimodule homomorphisms $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$ are stably isomorphic if there are bimodules S_1 and S_2 and bimodule isomorphisms that make the following diagram commute:



Remark

If f_1 and f_2 are stably isomorphic, then

$$\ker f_1 \cong \ker f_2, \qquad \operatorname{coker} f_1 \cong \operatorname{coker} f_2.$$

The idea of the proof I

Proposition

The maps $\varphi(\Omega^1 B) \to \varphi(B \otimes B)$ and $\Omega^1 A \to A \otimes A$ are stably isomorphic as bimodule maps.

- ▶ The functor $Hom_{A,A}(\sqcup, M)$ preserves stable isomorphism.
- Stably isomorphic maps have isomorphic kernels and cokernels.
- Thus the proposition implies the Morita invariance of HH⁰ and HH¹.

Projective modules

Lemma

Let P be an A-bimodule. The following assertions are equivalent:

1. the functor $\operatorname{Hom}_{A,A}(P, \sqcup)$ is exact, that is, if $K \rightarrow E \twoheadrightarrow Q$ is a bimodule extension, then the induced maps

 $\operatorname{Hom}_{A,A}(P,K) \to \operatorname{Hom}_{A,A}(P,E) \to \operatorname{Hom}_{A,A}(P,Q)$

form an extension of Abelian groups.

- 2. any surjective bimodule map $\pi: E \rightarrow P$ splits, that is, there is a bimodule map $\sigma: P \rightarrow E$ with $\pi \circ \sigma = Id_P$; we also call σ a section for π .
- 3. if $\pi: E \rightarrow Q$ is a surjective bimodule map, then any bimodule map $f: P \rightarrow Q$ lifts to a bimodule map $\hat{f}: P \rightarrow E$ (lifting means $\pi \circ \hat{f} = f$).

Definition

An A-bimodule P with these properties is called projective.

Free bimodules are projective

Example

Let V be any vector space. Turn $A \otimes V \otimes A$ into an A-bimodule by $a \cdot (b \otimes v \otimes c) \cdot d := (ab) \otimes v \otimes (cd)$. This is called the free bimodule on V. It is characterised by the existence of a natural isomorphism

$$\operatorname{Hom}_{A,A}(A\otimes V\otimes A,M)\cong\operatorname{Hom}(V,M)$$

for any A-bimodule M. Hence it is projective.

Schanuel's Lemma

Lemma (Schanuel's Lemma) *Let*

$$K_1 \stackrel{i_1}{\rightarrowtail} E_1 \stackrel{p_1}{\twoheadrightarrow} Q$$
 and $K_2 \stackrel{i_2}{\rightarrowtail} E_2 \stackrel{p_2}{\twoheadrightarrow} Q$

be bimodule extensions with the same quotient. Assume that E_1 and E_2 are projective. Then there are bimodule isomorphisms that make the following diagram commute:

$$\begin{array}{cccc} K_1 \oplus K_2 & \stackrel{i_1 \oplus \mathsf{Id}}{\longrightarrow} & E_1 \oplus K_2 & \stackrel{(p_1,0)}{\longrightarrow} & Q \\ & & & \downarrow \cong & & \downarrow \cong & & \parallel \\ K_1 \oplus K_2 & \stackrel{\mathsf{Id} \oplus i_2}{\longrightarrow} & K_1 \oplus E_2 & \stackrel{(0,p_2)}{\longrightarrow} & Q. \end{array}$$

Thus *i*₁ and *i*₂ are stably isomorphic.

The rest of the proof

- An equivalence of categories must preserve projective objects because they are defined in purely category theoretic terms.
- Hence both $A \otimes A$ and $\varphi(B \otimes B)$ are projective A-bimodules.
- Schanuel's Lemma shows that the maps $\Omega^1(A) \to A \otimes A$ and $\varphi(\Omega^1(B)) \to \varphi(B \otimes B)$ are stably isomorphic.
- Hence we may use $\varphi(\Omega^1(B)) \to \varphi(B \otimes B)$ to compute $HH^0(A, M)$ and $HH^1(A, M)$.
- Since φ is an equivalence of categories, this gives

$$HH^{0}(A, M) \cong HH^{0}(B, \varphi^{-1}(M)),$$

$$HH^{1}(A, M) \cong HH^{1}(B, \varphi^{-1}(M)).$$

Finally, $\varphi^{-1}(B) \cong A$.