Noncommutative Geometry IV: Differential Geometry

16. From deformation quantisations to Hochschild cohomology

R. Meyer

Mathematisches Institut
Universität Göttingen
Summer Term 2020

From deformation quantisations to Hochschild cohomology

- We have introduced $\mathrm{HH}^{0}(A, M)$ and $\mathrm{HH}^{1}(A, M)$ last time. Here A is an algebra, M an A-bimodule.
- We will define $\mathrm{HH}^{n}(A, M)$ for all $n \geq 0$.
- $\mathrm{HH}^{2}(A, M)$ is related to certain algebra extensions.
- These are related to formal deformation quantisations.
- We will define polynomial and formal deformation quantisations and sketch the physical intuition behind.
- Then we "truncate" deformation quantisations.
- The truncated deformation quantisations are classified by $\mathrm{HH}^{2}(A, A)$.

Definition

A polynomial deformation quantisation of an algebra A_{0} is an associative multiplication on $A_{0}[\hbar]:=A_{0} \otimes \mathbb{C}[\hbar]$ that is \hbar-bilinear and agrees with the multiplication in A_{0} up to terms divisible by \hbar.

- Then $m(a, b)=\sum_{k=0}^{\infty} m_{k}(a, b) \cdot \hbar^{k}$ with $m_{k}: A_{0} \times A_{0} \rightarrow A_{0}$.
- Associativity means that

$$
\sum_{k=0}^{l} m_{k}\left(a, m_{l-k}(b, c)\right)=\sum_{k=0}^{1} m_{k}\left(m_{l-k}(a, b), c\right)
$$

- For $I=1$, this says

$$
a \cdot m_{1}(b, c)+m_{1}(a, b \cdot c)=m_{1}(a, b) \cdot c+m_{1}(a \cdot b, c) .
$$

- These equations are non-linear in $\left(m_{k}\right)$ for $I \geq 2$.

Formal deformation quantisation

In a polynomial deformation quantisation, the series
$\sum_{l=0}^{\infty} m_{l}(a, b) \hbar^{l}$ must be finite for each fixed a, b. This is hard to control.

Definition

Let A_{0} be an algebra and let $A_{0} \llbracket \hbar \rrbracket$ be the $\mathbb{C} \llbracket \hbar \rrbracket$-module of formal power series in one variable with coefficients in A_{0}.
A formal deformation quantisation of A_{0} is an associative multiplication on $A:=A_{0} \llbracket \hbar \rrbracket$ that is \hbar-bilinear and agrees with the multiplication in A_{0} up to terms divisible by \hbar.

An example of a formal deformation quantisation

Example

- For $\hbar \in \mathbb{R}$, let $\alpha_{\hbar}: \mathbb{Z} \rightarrow \operatorname{Aut}\left(\mathbb{C}\left[t, t^{-1}\right]\right)$ be the automorphism that is induced by rotation with angle \hbar :
- $\alpha_{\hbar}\left(t^{n}\right):=\exp (2 \pi \mathrm{i} \hbar n) t^{n}$ for all $n \in \mathbb{Z}$.
- Let $B:=\mathbb{C}\left[t, t^{-1}\right] \llbracket \hbar \rrbracket$ and define an \hbar-linear automorphism $\alpha \in \operatorname{Aut}(B)$ by

$$
\alpha\left(t^{n} \hbar^{m}\right)=t^{n} \exp (2 \pi \mathrm{i} \hbar n) \hbar^{m}:=t^{n} \cdot \sum_{j=0}^{\infty} \frac{(2 \pi \mathrm{i} n)^{j}}{j!} \hbar^{m+j}
$$

- The crossed product $B \rtimes_{\alpha} \mathbb{Z}$ is a formal deformation quantisation of $\mathbb{C}\left[t, t^{-1}\right] \rtimes_{0} \mathbb{Z}$. This deformation quantisation is not polynomial because it involves exponential functions.

Equivalence of formal deformation quantisations

Definition

Two formal deformation quantisations m and m^{\prime} are equivalent if there is an invertible \hbar-linear map $\Psi: A_{0} \llbracket \hbar \rrbracket \rightarrow A_{0} \llbracket \hbar \rrbracket$ with $m(\Psi(a), \Psi(b))=\Psi\left(m^{\prime}(a, b)\right)$ for all $a, b \in A_{0} \llbracket \hbar \rrbracket$ and $\Psi(a) \equiv a \bmod (\hbar)$ for all $a \in A_{0}$.

- Compare coefficients: $\left(m_{l}\right)$ and $\left(m_{l}^{\prime}\right)$ are equivalent iff

$$
\sum_{j=0}^{l} \sum_{k=0}^{l-j} m_{l-j-k}\left(\Psi_{j}(a), \Psi_{k}(b)\right)=\sum_{j=0}^{l} \Psi_{j}\left(m_{l-j}^{\prime}(a, b)\right)
$$

for all $I \in \mathbb{N}, a, b \in A_{0}$.

- For $I=1$, it says that

$$
m_{1}(a, b)+\Psi_{1}(a) \cdot b+a \cdot \Psi_{1}(b)=m_{1}^{\prime}(a, b)+\Psi_{1}(a \cdot b)
$$

- Any family of linear maps $\Psi_{I}: A_{0} \rightarrow A_{0}$ with $\Psi_{0}=\operatorname{Id}_{A}$ gives an invertible \hbar-linear map Ψ on $A_{0} \llbracket \hbar \rrbracket$. And then $m^{\prime}(a, b):=\Psi^{-1}(m(\Psi(a), \Psi(b)))$ is a formal deformation quantisation. It is equivalent to m by construction.

Definition

- Let A be an algebra and let M be an A-bimodule. An M-valued Hochschild 2-cocycle on A is a bilinear map $\omega: A \times A \rightarrow M$ satisfying

$$
a \cdot \omega(b, c)+\omega(a, b \cdot c)=\omega(a, b) \cdot c+\omega(a \cdot b, c)
$$

- A bilinear map $\omega: A \times A \rightarrow M$ is called a Hochschild 2-coboundary if it is of the form

$$
\partial \psi(a, b):=a \cdot \psi(b)+\psi(a) \cdot b-\psi(a \cdot b)
$$

for some linear map $\psi: A \rightarrow M$.

- Any Hochschild 2-coboundary is a Hochschild 2-cocycle.
- Hence we may define

$$
\mathrm{HH}^{2}(A, M):=\frac{\{\text { Hochschild 2-cocycles }\}}{\{\text { Hochschild 2-coboundaries }\}}
$$

Hochschild 2-cocycles and deformation quantisation

Proposition

There is a bijection between $\mathrm{HH}^{2}(A, A)$ and equivalence classes of associative multiplications on $A \llbracket \hbar \rrbracket /\left(\hbar^{2}\right) \cong A \oplus \hbar \cdot A$ that specialise to the given product for $\hbar=0$.

Definition

An algebra extension $I \rightharpoondown E \rightarrow Q$ is called a square-zero extension of Q by I if $i_{1} \cdot i_{2}=0$ for all $i_{1}, i_{2} \in I$.
Theorem
Let A be an algebra and let M be an A-bimodule.
There is a natural bijection between $\operatorname{HH}^{2}(A, M)$ and equivalence classes of square-zero extensions of A by M.
Two square-zero extensions of A by M are equivalent
if there is a commuting diagram

The case of trivial second Hochschild cohomology

Theorem
Let A be an algebra with $\mathrm{HH}^{2}(A, A)=0$.
Then all formal deformation quantisations are trivial.

Higher Hochschild cohomology

Definition

Let A be an algebra and let M be an A-bimodule.

- The Hochschild coboundary of an n-linear map $\varphi: A^{n} \rightarrow M$ is $\partial \varphi: A^{n+1} \rightarrow M$,

$$
\begin{gathered}
\partial \varphi\left(a_{0}, \ldots, a_{n}\right):=a_{0} \cdot \varphi\left(a_{1}, \ldots, a_{n}\right)-\varphi\left(a_{0} \cdot a_{1}, a_{2}, \ldots, a_{n}\right) \\
+\varphi\left(a_{0}, a_{1} \cdot a_{2}, a_{3}, \ldots, a_{n}\right)-\varphi\left(a_{0}, a_{1}, a_{2} \cdot a_{3}, a_{4}, \ldots, a_{n}\right) \\
\pm \cdots+(-1)^{n} \varphi\left(a_{0}, \ldots, a_{n-2}, a_{n-1} \cdot a_{n}\right) \\
+(-1)^{n+1} \varphi\left(a_{0}, \ldots, a_{n-2}, a_{n-1}\right) \cdot a_{n} .
\end{gathered}
$$

- We call ψ a Hochschild cocycle if $\partial \psi=0$.
- The Hochschild cohomology is

$$
\mathrm{HH}^{n}(A, M):=\frac{\{\text { Hochschild } n \text {-cocycles }\}}{\{\text { Hochschild } n \text {-coboundaries }\}}
$$

Normalised Hochschild cocycles

Definition

Let A be a unital algebra and let M be a unital A-bimodule. A Hochschild n-cochain $\omega: A^{n} \rightarrow M$ is called normalised if $\omega\left(a_{1}, \ldots, a_{n}\right)$ vanishes whenever $a_{i}=1$ for some $i \in\{1, \ldots, n\}$.

Lemma

Let A be a unital algebra, M a unital A-bimodule, and $n \in \mathbb{N}$.
Any Hochschild cocycle $\omega: A^{n} \rightarrow M$ is cohomologous to a normalised one.
If two normalised Hochschild cocycles $\omega_{1}, \omega_{2}: A^{n} \rightrightarrows M$ are cohomologous, then there is a normalised Hochschild cochain $\psi: A^{n-1} \rightarrow M$ with $\partial \psi=\omega_{1}-\omega_{2}$.
The Hochschild coboundary of a normalised Hochschild cochain is again normalised.

