Noncommutative Geometry IV: Differential Geometry

16. From deformation quantisations to Hochschild cohomology

R. Meyer

Mathematisches Institut Universität Göttingen

Summer Term 2020

From deformation quantisations to Hochschild cohomology

- We have introduced HH⁰(A, M) and HH¹(A, M) last time. Here A is an algebra, M an A-bimodule.
- We will define $HH^n(A, M)$ for all $n \ge 0$.
- $HH^2(A, M)$ is related to certain algebra extensions.
- These are related to formal deformation quantisations.
- We will define polynomial and formal deformation quantisations and sketch the physical intuition behind.
- Then we "truncate" deformation quantisations.
- The truncated deformation quantisations are classified by HH²(A, A).

Definition

A polynomial deformation quantisation of an algebra A_0 is an associative multiplication on $A_0[\hbar] := A_0 \otimes \mathbb{C}[\hbar]$ that is \hbar -bilinear and agrees with the multiplication in A_0 up to terms divisible by \hbar .

- Then $m(a,b) = \sum_{k=0}^{\infty} m_k(a,b) \cdot \hbar^k$ with $m_k \colon A_0 \times A_0 \to A_0$.
- Associativity means that

$$\sum_{k=0}^{l} m_k(a, m_{l-k}(b, c)) = \sum_{k=0}^{l} m_k(m_{l-k}(a, b), c)$$

► For *l* = 1, this says

 $a \cdot m_1(b,c) + m_1(a,b \cdot c) = m_1(a,b) \cdot c + m_1(a \cdot b,c).$

• These equations are non-linear in (m_k) for $l \ge 2$.

Formal deformation quantisation

In a polynomial deformation quantisation, the series $\sum_{l=0}^{\infty} m_l(a, b)\hbar^l$ must be finite for each fixed a, b. This is hard to control.

Definition

Let A_0 be an algebra and let $A_0[\![\hbar]\!]$ be the $\mathbb{C}[\![\hbar]\!]$ -module of formal power series in one variable with coefficients in A_0 .

A formal deformation quantisation of A_0 is an associative multiplication on $A := A_0 \llbracket \hbar \rrbracket$ that is \hbar -bilinear and agrees with the multiplication in A_0 up to terms divisible by \hbar . An example of a formal deformation quantisation

Example

For $\hbar \in \mathbb{R}$, let $\alpha_{\hbar} \colon \mathbb{Z} \to \operatorname{Aut}(\mathbb{C}[t, t^{-1}])$ be the automorphism that is induced by rotation with angle \hbar :

•
$$\alpha_{\hbar}(t^n) := \exp(2\pi i\hbar n)t^n$$
 for all $n \in \mathbb{Z}$.

▶ Let $B := \mathbb{C}[t, t^{-1}][[\hbar]]$ and define an \hbar -linear automorphism $\alpha \in \operatorname{Aut}(B)$ by

$$\alpha(t^n\hbar^m) = t^n \exp(2\pi i\hbar n)\hbar^m := t^n \cdot \sum_{j=0}^{\infty} \frac{(2\pi i n)^j}{j!}\hbar^{m+j}.$$

▶ The crossed product $B \rtimes_{\alpha} \mathbb{Z}$ is a formal deformation quantisation of $\mathbb{C}[t, t^{-1}] \rtimes_0 \mathbb{Z}$. This deformation quantisation is not polynomial because it involves exponential functions.

Equivalence of formal deformation quantisations

Definition

Two formal deformation quantisations m and m' are equivalent if there is an invertible \hbar -linear map $\Psi \colon A_0[\![\hbar]\!] \to A_0[\![\hbar]\!]$ with $m(\Psi(a), \Psi(b)) = \Psi(m'(a, b))$ for all $a, b \in A_0[\![\hbar]\!]$ and $\Psi(a) \equiv a \mod (\hbar)$ for all $a \in A_0$.

• Compare coefficients: (m_l) and (m'_l) are equivalent iff

$$\sum_{j=0}^{l} \sum_{k=0}^{l-j} m_{l-j-k}(\Psi_j(a), \Psi_k(b)) = \sum_{j=0}^{l} \Psi_j(m_{l-j}'(a, b))$$

for all $l \in \mathbb{N}$, $a, b \in A_0$.

► For *I* = 1, it says that

 $m_1(a,b)+\Psi_1(a)\cdot b+a\cdot \Psi_1(b)=m_1'(a,b)+\Psi_1(a\cdot b).$

Any family of linear maps Ψ_I: A₀ → A₀ with Ψ₀ = Id_A gives an invertible ħ-linear map Ψ on A₀[[ħ]]. And then m'(a, b) := Ψ⁻¹(m(Ψ(a), Ψ(b))) is a formal deformation quantisation. It is equivalent to m by construction.

Definition

Let A be an algebra and let M be an A-bimodule. An M-valued Hochschild 2-cocycle on A is a bilinear map ω: A × A → M satisfying

$$a \cdot \omega(b, c) + \omega(a, b \cdot c) = \omega(a, b) \cdot c + \omega(a \cdot b, c).$$

A bilinear map ω: A × A → M is called a Hochschild 2-coboundary if it is of the form

$$\partial \psi(\mathbf{a}, \mathbf{b}) := \mathbf{a} \cdot \psi(\mathbf{b}) + \psi(\mathbf{a}) \cdot \mathbf{b} - \psi(\mathbf{a} \cdot \mathbf{b})$$

for some linear map $\psi \colon A \to M$.

- Any Hochschild 2-coboundary is a Hochschild 2-cocycle.
- Hence we may define

$$HH^{2}(A, M) := \frac{\{Hochschild 2-cocycles\}}{\{Hochschild 2-coboundaries\}}$$

Hochschild 2-cocycles and deformation quantisation

Proposition

There is a bijection between $HH^2(A, A)$ and equivalence classes of associative multiplications on $A[[\hbar]]/(\hbar^2) \cong A \oplus \hbar \cdot A$ that specialise to the given product for $\hbar = 0$.

Definition

An algebra extension $I \rightarrow E \rightarrow Q$ is called a square-zero extension of Q by I if $i_1 \cdot i_2 = 0$ for all $i_1, i_2 \in I$.

Theorem

Let A be an algebra and let M be an A-bimodule. There is a natural bijection between $HH^2(A, M)$ and equivalence classes of square-zero extensions of A by M.

Two square-zero extensions of A by M are equivalent if there is a commuting diagram

$$\begin{array}{cccc} M & \longrightarrow & E_1 & \longrightarrow & A \\ \| & & \downarrow \cong & \| \\ M & \longrightarrow & E_2 & \longrightarrow & A. \end{array}$$

The case of trivial second Hochschild cohomology

Theorem Let A be an algebra with $HH^2(A, A) = 0$. Then all formal deformation quantisations are trivial.

Higher Hochschild cohomology

Definition

Let A be an algebra and let M be an A-bimodule.

• The Hochschild coboundary of an *n*-linear map $\varphi \colon A^n \to M$ is $\partial \varphi \colon A^{n+1} \to M$,

$$\begin{aligned} \partial\varphi(a_0,\ldots,a_n) &:= a_0 \cdot \varphi(a_1,\ldots,a_n) - \varphi(a_0 \cdot a_1,a_2,\ldots,a_n) \\ &+ \varphi(a_0,a_1 \cdot a_2,a_3,\ldots,a_n) - \varphi(a_0,a_1,a_2 \cdot a_3,a_4,\ldots,a_n) \\ &\pm \cdots + (-1)^n \varphi(a_0,\ldots,a_{n-2},a_{n-1} \cdot a_n) \\ &+ (-1)^{n+1} \varphi(a_0,\ldots,a_{n-2},a_{n-1}) \cdot a_n. \end{aligned}$$

• We call ψ a Hochschild cocycle if $\partial \psi = 0$.

The Hochschild cohomology is

$$\mathsf{HH}^n(A, M) := \frac{\{\mathsf{Hochschild } n\text{-}\mathsf{cocycles}\}}{\{\mathsf{Hochschild } n\text{-}\mathsf{coboundaries}\}}.$$

Normalised Hochschild cocycles

Definition

Let *A* be a unital algebra and let *M* be a unital *A*-bimodule. A Hochschild *n*-cochain $\omega \colon A^n \to M$ is called normalised if $\omega(a_1, \ldots, a_n)$ vanishes whenever $a_i = 1$ for some $i \in \{1, \ldots, n\}$.

Lemma

Let A be a unital algebra, M a unital A-bimodule, and $n \in \mathbb{N}$. Any Hochschild cocycle $\omega \colon A^n \to M$ is cohomologous to a normalised one.

If two normalised Hochschild cocycles $\omega_1, \omega_2 \colon A^n \rightrightarrows M$ are cohomologous, then there is a normalised Hochschild cochain $\psi \colon A^{n-1} \to M$ with $\partial \psi = \omega_1 - \omega_2$.

The Hochschild coboundary of a normalised Hochschild cochain is again normalised.