Noncommutative Geometry IV: Differential Geometry

17. Computing Hochschild cohomology with projective resolutions

R. Meyer

Mathematisches Institut

Universität Göttingen
Summer Term 2020

Computing Hochschild cohomology with projective resolutions

- We are going to use more and more homological algebra.
- This needs a lot of new language.
- Today we introduce projective resolutions and use them to compute Hochschild cohomology.
- This uses two ideas.
- Hochschild cohomology can be obtained from the bar resolution, a certain "projective bimodule resolution".
- All projective bimodule resolutions of a module are "chain homotopy equivalent".

The language of chain complexes

- Chain complex C_{0} of A-modules: sequence of A-modules $\left(C_{n}\right)_{n \in \mathbb{Z}}$ with boundary maps $d_{n}: C_{n} \rightarrow C_{n-1}$ such that $d_{n-1} \circ d_{n}=0$ for all $n \in \mathbb{Z}$.
- An n-cycle in C_{\bullet} is $x \in C_{n}$ with $d_{n}(x)=0$.
- An n-boundary in C_{0} is $d_{n+1}(x)$ with $x \in C_{n+1}$.
- cycles are homologous if they differ by a boundary.
- The nth homology of a chain complex is the quotient of n-cycles by n-boundaries, $\mathrm{H}_{n}\left(C_{\bullet}\right):=\operatorname{ker}\left(d_{n}\right) / d_{n+1}\left(C_{n+1}\right)$.
- A chain complex is called exact if all its cycles are boundaries or, equivalently, $\mathrm{H}_{n}\left(C_{\bullet}\right)=0$ for all $n \in \mathbb{Z}$.
- A cochain complex C^{\bullet} is similar, but has coboundary maps $d^{n}: C^{n} \rightarrow C^{n+1}$. The cochain complex analogues of cycles, boundaries, and homology for cochain complexes are cocycles, coboundaries and cohomology.
The nth cohomology is written $\mathrm{H}^{n}\left(C_{\bullet}\right)$.

The Hochschild complex

Example

The Hochschild cochains $A^{\bullet} \rightarrow M$ with the Hochschild coboundary form a cochain complex (of vector spaces). Its cohomology is the Hochschild cohomology $\mathrm{HH}^{n}(A, M)$.

Projective resolutions

Definition

A projective resolution of an A-bimodule M is a chain complex P_{\bullet} of projective A-bimodules with $P_{n}=0$ for $n<0$ and with an augmentation map $d_{0}: P_{0} \rightarrow M$ with $d_{0} \circ d_{1}=0$, such that the following augmented chain complex is exact:

$$
\cdots \rightarrow P_{3} \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0 \rightarrow 0 \rightarrow \cdots
$$

Theorem

Let A be a unital algebra and let M be an A-bimodule. Let $P_{\bullet} \rightarrow A$ be a projective resolution of A by unital A-bimodules, with boundary maps d_{n}^{P}. Let $\operatorname{Hom}_{A, A}\left(P_{\bullet}, M\right)$ be the cochain complex with A-bimodule maps $f: P_{n} \rightarrow M$ as n-cochains and the coboundary map $d^{n}(f):=(-1)^{n+1} f \circ d_{n+1}^{P}$. Then

$$
\operatorname{HH}^{n}(A, M) \cong \mathrm{H}^{n}\left(\operatorname{Hom}_{A, A}\left(P_{\bullet}, M\right)\right)
$$

The bar resolution

Definition

- Let $\bar{A}:=A / \mathbb{C} \cdot 1$ and let $\operatorname{Bar}_{n}(A):=A \otimes \bar{A}^{\otimes n} \otimes A$ for $n \geq 0$; here it is understood that $\operatorname{Bar}_{0}(A):=A \otimes A$.
- Define $b^{\prime}: \operatorname{Bar}_{n}(A) \rightarrow \operatorname{Bar}_{n-1}(A)$ by letting $b^{\prime}\left(a_{0} \otimes \cdots \otimes a_{n+1}\right)$ be

$$
\sum_{j=0}^{n}(-1)^{j} a_{0} \otimes \cdots \otimes a_{j-1} \otimes a_{j} \cdot a_{j+1} \otimes a_{j+2} \otimes \cdots \otimes a_{n+1}
$$

Lemma

The map b^{\prime} is well defined and $b^{\prime} \circ b^{\prime}=0$.
Proposition
$\operatorname{Hom}_{A, A}\left(\operatorname{Bar}_{\bullet}(A), M\right)$ is naturally isomorphic to the normalised Hochschild cochain complex for A with coefficients in M.

Chain maps

Definition

A chain map between two chain complexes of A-modules C_{\bullet} and D_{\bullet} is a sequence of A-module maps $f_{n}: C_{n} \rightarrow D_{n}$ with $f_{n} \circ d^{C}=d^{D} \circ f_{n+1}$ for all $n \in \mathbb{Z}$.
That is, the following diagram commutes:

$$
\begin{aligned}
& \cdots \longrightarrow D_{n+2} \xrightarrow[d_{n+2}^{D}]{\longrightarrow} D_{n+1} \xrightarrow[d_{n+1}^{D}]{ } D_{n} \xrightarrow[d_{n}^{D}]{ } D_{n-1} \longrightarrow \cdots
\end{aligned}
$$

Chain homotopies

Definition

Let C_{\bullet} and D_{\bullet} be chain complexes.
Let $\operatorname{Hom}\left(C_{\bullet}, D_{\bullet}\right)$ be the chain complex whose k-chains for $k \in \mathbb{Z}$ are arbitrary sequences of maps $f_{n}: C_{n} \rightarrow D_{n+k}$ and whose boundary map maps $\left(f_{n}\right)$ to the sequence of maps

$$
d_{n+k}^{D} \circ f_{n}-(-1)^{k} f_{n-1} \circ d_{n}^{C}: C_{n} \rightarrow D_{n+k-1} .
$$

Definition

Two chain maps $f_{\bullet}, g_{\bullet}: C_{\bullet} \rightrightarrows D_{\bullet}$ are chain homotopic if they are homologous in $\operatorname{Hom}\left(C_{\bullet}, D_{\bullet}\right)$, that is, there is a sequence of maps $s_{n}: C_{n} \rightarrow D_{n+1}$ with $d_{n+1}^{D} \circ s_{n}+s_{n-1} \circ d_{n}^{C}=f_{n}-g_{n}$. This sequence $\left(s_{n}\right)$ is also called a chain homotopy between f_{\bullet} and g_{\bullet}. A chain map is called null homotopic if it is homotopic to the zero map. A chain complex is called contractible if its identity map is homotopic to the zero map. A 1-chain s of $\operatorname{Hom}\left(C_{\bullet}, C_{0}\right)$ with $d(s)=\mathrm{Id}_{C_{0}}$ is called a contracting homotopy of C_{0}.

Chain homotopy equivalence

Lemma

Let $f, g: C_{\bullet} \rightrightarrows D_{\bullet}$ be two homotopic chain maps. Then f and g induce the same map on homology.

Definition
A chain map $f_{\bullet}: C_{\bullet} \rightarrow D_{\bullet}$ is called a (chain) homotopy equivalence if there is a chain map $g: D_{\bullet} \rightarrow C_{\bullet}$ such that $f_{\bullet} \circ g_{\bullet}$ and $g_{\bullet} \circ f_{\bullet}$ are homotopic to the identity maps on D_{\bullet} and C_{\bullet}.
Two chain complexes are called (chain) homotopy equivalent if such a chain homotopy exists.

Proposition

Let $\varphi_{\bullet}: C_{\bullet} \rightarrow D_{\bullet}$ be a homotopy equivalence between two chain complexes of A-bimodules and let F be an additive functor on the category of A-bimodules. Then $F\left(\varphi_{\bullet}\right)$ induces an isomorphism on homology, $\mathrm{H}_{n}\left(F\left(C_{\bullet}\right)\right) \rightarrow \mathrm{H}_{n}\left(F\left(D_{\bullet}\right)\right)$.

The uniqueness of projective resolutions

Theorem

Let M and M^{\prime} be two A-bimodules and let $P_{\bullet} \rightarrow M$ and $P_{\bullet}^{\prime} \rightarrow M^{\prime}$ be projective A-bimodule resolutions.
Then any bimodule homomorphism $f: M \rightarrow M^{\prime}$ lifts to a bimodule homomorphism chain map $P_{\bullet} \rightarrow P_{\bullet}^{\prime}$; this lifting is unique up to chain homotopy. In symbols:

$$
\mathrm{H}_{0}\left(\operatorname{Hom}_{A, A}\left(P_{\bullet}, P_{\bullet}^{\prime}\right)\right) \cong \operatorname{Hom}_{A, A}\left(M, M^{\prime}\right)
$$

Corollary

All projective A-bimodule resolutions of an A-bimodule M are homotopy equivalent as chain complexes of A-bimodules.

Application to Hochschild cohomology

Theorem
Let A be a unital algebra and let M be an A-bimodule. Let
$P_{\bullet} \rightarrow A$ be a projective resolution of A by unital A-bimodules, with boundary maps d_{n}^{P}. Then

$$
\operatorname{HH}^{n}(A, M) \cong \mathrm{H}^{n}\left(\operatorname{Hom}_{A, A}\left(P_{\bullet}, M\right)\right)
$$

Proof.

- If P_{\bullet} is the bar resolution, then $\operatorname{Hom}_{A, A}\left(P_{\bullet}, M\right)$ is the normalised Hochschild complex.
- If P_{\bullet} is any projective bimodule resolution, then P_{\bullet} is chain homotopy equivalent to the bar resolution as a complex of bimodules.
- This implies that an isomorphism on cohomology.

Computation for semisimple algebras

- Let A be a semi-simple, finite-dimensional algebra.
- Then A itself is projective as an A-bimodule.
- This gives a very short projective bimodule resolution with $P_{n}=0$ for $n \geq 1$ and $P_{0}=A$.
- $\mathrm{HH}^{n}(A, M)$ is the cohomology of the chain complex

$$
\cdots 0 \rightarrow 0 \rightarrow 0 \rightarrow \operatorname{Hom}_{A, A}(A, M) \rightarrow 0 \rightarrow 0 \rightarrow \cdots
$$

- That is, $\mathrm{HH}^{n}(A, M)=0$ for $n \geq 1$ and $\mathrm{HH}^{0}(A, M) \cong \operatorname{Hom}_{A, A}(A, M)$, the centre of M.

