Noncommutative Geometry IV: Differential Geometry 17. Computing Hochschild cohomology with projective resolutions

R. Meyer

Mathematisches Institut Universität Göttingen

Summer Term 2020

Computing Hochschild cohomology with projective resolutions

- ▶ We are going to use more and more homological algebra.
- This needs a lot of new language.
- Today we introduce projective resolutions and use them to compute Hochschild cohomology.
- This uses two ideas.
 - Hochschild cohomology can be obtained from the bar resolution, a certain "projective bimodule resolution".
 - All projective bimodule resolutions of a module are "chain homotopy equivalent".

The language of chain complexes

- ▶ Chain complex C_{\bullet} of *A*-modules: sequence of *A*-modules $(C_n)_{n \in \mathbb{Z}}$ with boundary maps $d_n : C_n \to C_{n-1}$ such that $d_{n-1} \circ d_n = 0$ for all $n \in \mathbb{Z}$.
- An *n*-cycle in C_{\bullet} is $x \in C_n$ with $d_n(x) = 0$.
- An *n*-boundary in C_{\bullet} is $d_{n+1}(x)$ with $x \in C_{n+1}$.
- cycles are homologous if they differ by a boundary.
- The *n*th homology of a chain complex is the quotient of *n*-cycles by *n*-boundaries, H_n(C_●) := ker(d_n) / d_{n+1}(C_{n+1}).
- A chain complex is called exact if all its cycles are boundaries or, equivalently, H_n(C_●) = 0 for all n ∈ Z.
- A cochain complex C[●] is similar, but has coboundary maps dⁿ: Cⁿ → Cⁿ⁺¹. The cochain complex analogues of cycles, boundaries, and homology for cochain complexes are cocycles, coboundaries and cohomology. The *n*th cohomology is written Hⁿ(C_●).

The Hochschild complex

Example

The Hochschild cochains $A^{\bullet} \to M$ with the Hochschild coboundary form a cochain complex (of vector spaces). Its cohomology is the Hochschild cohomology $HH^{n}(A, M)$.

Projective resolutions

Definition

A projective resolution of an A-bimodule M is a chain complex P_{\bullet} of projective A-bimodules with $P_n = 0$ for n < 0 and with an augmentation map $d_0: P_0 \to M$ with $d_0 \circ d_1 = 0$, such that the following augmented chain complex is exact:

$$\cdots \rightarrow P_3 \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0 \rightarrow 0 \rightarrow \cdots$$

Theorem

Let A be a unital algebra and let M be an A-bimodule. Let $P_{\bullet} \to A$ be a projective resolution of A by unital A-bimodules, with boundary maps d_n^P . Let $\operatorname{Hom}_{A,A}(P_{\bullet}, M)$ be the cochain complex with A-bimodule maps $f: P_n \to M$ as n-cochains and the coboundary map $d^n(f) := (-1)^{n+1} f \circ d_{n+1}^P$. Then

$$\mathrm{HH}^n(A,M)\cong \mathrm{H}^n(\mathrm{Hom}_{A,A}(P_{\bullet},M)).$$

The bar resolution

Definition

- ▶ Define b': $\operatorname{Bar}_n(A) \to \operatorname{Bar}_{n-1}(A)$ by letting $b'(a_0 \otimes \cdots \otimes a_{n+1})$ be

$$\sum_{j=0}^{n} (-1)^{j} a_{0} \otimes \cdots \otimes a_{j-1} \otimes a_{j} \cdot a_{j+1} \otimes a_{j+2} \otimes \cdots \otimes a_{n+1}.$$

Lemma

The map b' is well defined and $b' \circ b' = 0$.

Proposition

 $\operatorname{Hom}_{A,A}(\operatorname{Bar}_{\bullet}(A), M)$ is naturally isomorphic to the normalised Hochschild cochain complex for A with coefficients in M.

Chain maps

Definition

A chain map between two chain complexes of A-modules C_{\bullet} and D_{\bullet} is a sequence of A-module maps $f_n: C_n \to D_n$ with $f_n \circ d^C = d^D \circ f_{n+1}$ for all $n \in \mathbb{Z}$. That is, the following diagram commutes:

Chain homotopies

Definition

Let C_{\bullet} and D_{\bullet} be chain complexes.

Let Hom $(C_{\bullet}, D_{\bullet})$ be the chain complex whose k-chains for $k \in \mathbb{Z}$ are arbitrary sequences of maps $f_n: C_n \to D_{n+k}$ and whose boundary map maps (f_n) to the sequence of maps

$$d_{n+k}^D \circ f_n - (-1)^k f_{n-1} \circ d_n^C \colon C_n \to D_{n+k-1}.$$

Definition

Two chain maps $f_{\bullet}, g_{\bullet} : C_{\bullet} \Rightarrow D_{\bullet}$ are chain homotopic if they are homologous in $\operatorname{Hom}(C_{\bullet}, D_{\bullet})$, that is, there is a sequence of maps $s_n : C_n \to D_{n+1}$ with $d_{n+1}^D \circ s_n + s_{n-1} \circ d_n^C = f_n - g_n$. This sequence (s_n) is also called a chain homotopy between f_{\bullet} and g_{\bullet} . A chain map is called null homotopic if it is homotopic to the zero map. A chain complex is called contractible if its identity map is homotopic to the zero map. A 1-chain s of $\operatorname{Hom}(C_{\bullet}, C_{\bullet})$ with $d(s) = \operatorname{Id}_{C_{\bullet}}$ is called a contracting homotopy of C_{\bullet} .

Chain homotopy equivalence

Lemma

Let $f, g: C_{\bullet} \Rightarrow D_{\bullet}$ be two homotopic chain maps. Then f and g induce the same map on homology.

Definition

A chain map $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ is called a (chain) homotopy equivalence if there is a chain map $g: D_{\bullet} \to C_{\bullet}$ such that $f_{\bullet} \circ g_{\bullet}$ and $g_{\bullet} \circ f_{\bullet}$ are homotopic to the identity maps on D_{\bullet} and C_{\bullet} .

Two chain complexes are called (chain) homotopy equivalent if such a chain homotopy exists.

Proposition

Let $\varphi_{\bullet} \colon C_{\bullet} \to D_{\bullet}$ be a homotopy equivalence between two chain complexes of A-bimodules and let F be an additive functor on the category of A-bimodules. Then $F(\varphi_{\bullet})$ induces an isomorphism on homology, $H_n(F(C_{\bullet})) \to H_n(F(D_{\bullet}))$.

The uniqueness of projective resolutions

Theorem

Let M and M' be two A-bimodules and let $P_{\bullet} \to M$ and $P'_{\bullet} \to M'$ be projective A-bimodule resolutions.

Then any bimodule homomorphism $f: M \to M'$ lifts to a bimodule homomorphism chain map $P_{\bullet} \to P'_{\bullet}$; this lifting is unique up to chain homotopy. In symbols:

$$H_0(\operatorname{Hom}_{A,A}(P_{\bullet},P'_{\bullet})) \cong \operatorname{Hom}_{A,A}(M,M').$$

Corollary

All projective A-bimodule resolutions of an A-bimodule M are homotopy equivalent as chain complexes of A-bimodules.

Application to Hochschild cohomology

Theorem

Let A be a unital algebra and let M be an A-bimodule. Let $P_{\bullet} \rightarrow A$ be a projective resolution of A by unital A-bimodules, with boundary maps d_n^P . Then

 $\mathrm{HH}^n(A,M)\cong \mathrm{H}^n(\mathrm{Hom}_{A,A}(P_{\bullet},M)).$

Proof.

- If P_● is the bar resolution, then Hom_{A,A}(P_●, M) is the normalised Hochschild complex.
- If P_• is any projective bimodule resolution, then P_• is chain homotopy equivalent to the bar resolution as a complex of bimodules.
- This implies that an isomorphism on cohomology.

Computation for semisimple algebras

- Let *A* be a semi-simple, finite-dimensional algebra.
- Then A itself is projective as an A-bimodule.
- ▶ This gives a very short projective bimodule resolution with $P_n = 0$ for $n \ge 1$ and $P_0 = A$.
- HHⁿ(A, M) is the cohomology of the chain complex

 $\cdots 0 \rightarrow 0 \rightarrow 0 \rightarrow \mathsf{Hom}_{\mathcal{A},\mathcal{A}}(\mathcal{A},\mathcal{M}) \rightarrow 0 \rightarrow 0 \rightarrow \cdots$

▶ That is, $HH^n(A, M) = 0$ for $n \ge 1$ and $HH^0(A, M) \cong Hom_{A,A}(A, M)$, the centre of M.