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Hochschild cohomology for algebras of smooth functions

I We identify the continuous Hochschild cohomology
of C∞(X ) for a smooth manifold X
with the spaces of k-vector fields on X for k ≥ 0.

I To prove the result above, we change the definitions of
“projective” and “resolution”,
taking into account topologies on modules.

I The “projective resolutions” in the new sense are very similar
to the Koszul resolutions for polynomials.



The main theorem

Definition
A k-vector field is a section of the kth exterior power of the
tangent bundle of X . That is, π(x) ∈ ΛkTxX for all x ∈ X .

Theorem
The kth continuous Hochschild cohomology of C∞(X ) with
coefficients in C∞(X ) is naturally isomorphic to the space Xk(X )
of smooth k-vector fields on X. The isomorphism maps a k-vector
field π to the Hochschild k-cocycle

Σπ : C∞(X )k → C∞(X ),
Σπ(f1, . . . , fk)(x) := 〈π(x) |Df1(x), · · · ,Dfk(x)〉.

Here Dfj(x) ∈ (TxX )∗ is the derivative of fj at x.



Why change the notion of bimodule?

I We want to compute the continuous Hochschild cohomology
using “projective resolutions”.

I We need topological modules to talk about continuous maps.
I The algebraic tensor product C∞(Rn)⊗ C∞(Rn) is not a nice

space of functions.
I We want to complete it to C∞(Rn × Rn).
I But C∞(Rn × Rn) is not projective because the diagonal

restriction map C∞(Rn × Rn)→ C∞(Rn) does not lift to a
bimodule map C∞(Rn × Rn)→ C∞(Rn)⊗ C∞(Rn).

I We restrict to complete topological modules and bimodules.



The right bimodules over C∞(X )

Theorem
Let M and N be smooth manifolds
and V a complete locally convex topological vector space.
A continuous bilinear map b : C∞(M)× C∞(N)→ V extends
uniquely to a continuous linear map l : C∞(M × N)→ V .
The complete projective topological tensor product of C∞(M) and
C∞(N) is naturally isomorphic to C∞(M × N).

Theorem
A complete locally convex topological bimodule over C∞(X ) is the
same as a complete locally convex topological module over
C∞(X × X ).



Why change the definition of exactness?

Lemma
If V is a finite-dimensional vector space,
then C∞(Rn × Rn,V ) is a projective C∞(Rn)-bimodule.

Proof.
HomC∞(Rn×Rn)(C∞(Rn × Rn,V ),M) ∼= Hom(V ,M).
I The bar resolution uses C∞(Rn × Rn,V ) for

infinite-dimensional V , say, V = C∞(Rn × · · · × Rn).
I This is only projective for extensions of topological modules

with a continuous linear section.
I If a chain complex C• has a continuous contracting homotopy,

then the chain complex Hom(V ,C•) of continuous linear
maps V → C• is again contractible, hence exact.

I We only allow exact chain complexes and resolutions with a
continuous contracting homotopy and call these admissible.



Continuous Hochschild cohomology and projective
resolutions

Theorem
Let A be a complete, locally convex topological unital algebra and
let M be a complete, locally convex topological unital A-module.
Let P• be a chain complex with an augmentation P0 → A.
Suppose that the bimodules Pn are relatively projective and that
the augmented chain complex is admissibly exact.
Then HHn

cont(A,M) ∼= Hn(
HomA,A(P•,M)

)
.

I Replacing C[x1, . . . , xn]⊗ C[y1, . . . , yn]
in the Koszul resolution for polynomials by
C∞(Rn × Rn) gives a projective resolution as above.

I This allows to compute the continuous Hochschild
cohomology of C∞(Rn).

I The computation for a manifold X uses the Koszul resolution
for the tangent bundle TX and another trick to replace X ×X
by a tubular neighbourhood TX around the diagonal.


