Noncommutative Geometry IV: Differential Geometry 19. Hochschild cohomology for algebras of smooth functions

R. Meyer

Mathematisches Institut Universität Göttingen

Summer Term 2020

Hochschild cohomology for algebras of smooth functions

- We identify the continuous Hochschild cohomology of C[∞](X) for a smooth manifold X with the spaces of k-vector fields on X for k ≥ 0.
- To prove the result above, we change the definitions of "projective" and "resolution", taking into account topologies on modules.
- The "projective resolutions" in the new sense are very similar to the Koszul resolutions for polynomials.

The main theorem

Definition

A *k*-vector field is a section of the *k*th exterior power of the tangent bundle of *X*. That is, $\pi(x) \in \Lambda^k T_x X$ for all $x \in X$.

Theorem

The kth continuous Hochschild cohomology of $C^{\infty}(X)$ with coefficients in $C^{\infty}(X)$ is naturally isomorphic to the space $\mathfrak{X}^{k}(X)$ of smooth k-vector fields on X. The isomorphism maps a k-vector field π to the Hochschild k-cocycle

$$\Sigma_{\pi} \colon \mathsf{C}^{\infty}(X)^k \to \mathsf{C}^{\infty}(X),$$

 $\Sigma_{\pi}(f_1, \ldots, f_k)(x) \coloneqq \langle \pi(x) | Df_1(x), \cdots, Df_k(x) \rangle.$

Here $Df_j(x) \in (T_x X)^*$ is the derivative of f_j at x.

Why change the notion of bimodule?

- We want to compute the continuous Hochschild cohomology using "projective resolutions".
- We need topological modules to talk about continuous maps.
- ► The algebraic tensor product C[∞](ℝⁿ) ⊗ C[∞](ℝⁿ) is not a nice space of functions.
- We want to complete it to $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$.
- But C[∞](ℝⁿ × ℝⁿ) is not projective because the diagonal restriction map C[∞](ℝⁿ × ℝⁿ) → C[∞](ℝⁿ) does not lift to a bimodule map C[∞](ℝⁿ × ℝⁿ) → C[∞](ℝⁿ) ⊗ C[∞](ℝⁿ).
- We restrict to complete topological modules and bimodules.

The right bimodules over $C^{\infty}(X)$

Theorem

Let M and N be smooth manifolds and V a complete locally convex topological vector space. A continuous bilinear map $b: C^{\infty}(M) \times C^{\infty}(N) \rightarrow V$ extends uniquely to a continuous linear map $I: C^{\infty}(M \times N) \rightarrow V$. The complete projective topological tensor product of $C^{\infty}(M)$ and $C^{\infty}(N)$ is naturally isomorphic to $C^{\infty}(M \times N)$.

Theorem

A complete locally convex topological bimodule over $C^{\infty}(X)$ is the same as a complete locally convex topological module over $C^{\infty}(X \times X)$.

Why change the definition of exactness?

Lemma

If V is a finite-dimensional vector space, then $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n, V)$ is a projective $C^{\infty}(\mathbb{R}^n)$ -bimodule.

Proof.

 $\operatorname{Hom}_{\operatorname{C}^{\infty}(\mathbb{R}^n\times\mathbb{R}^n)}(\operatorname{C}^{\infty}(\mathbb{R}^n\times\mathbb{R}^n,V),M)\cong\operatorname{Hom}(V,M).$

- The bar resolution uses C[∞](ℝⁿ × ℝⁿ, V) for infinite-dimensional V, say, V = C[∞](ℝⁿ × · · · × ℝⁿ).
- This is only projective for extensions of topological modules with a continuous linear section.
- If a chain complex C_● has a continuous contracting homotopy, then the chain complex Hom(V, C_●) of continuous linear maps V → C_● is again contractible, hence exact.
- We only allow exact chain complexes and resolutions with a continuous contracting homotopy and call these admissible.

Continuous Hochschild cohomology and projective resolutions

Theorem

Let A be a complete, locally convex topological unital algebra and let M be a complete, locally convex topological unital A-module. Let P_• be a chain complex with an augmentation $P_0 \rightarrow A$. Suppose that the bimodules P_n are relatively projective and that the augmented chain complex is admissibly exact. Then $HH^n_{cont}(A, M) \cong H^n(Hom_{A,A}(P_{\bullet}, M))$.

- ▶ Replacing C[x₁,..., x_n] ⊗ C[y₁,..., y_n] in the Koszul resolution for polynomials by C[∞](ℝⁿ × ℝⁿ) gives a projective resolution as above.
- ► This allows to compute the continuous Hochschild cohomology of C[∞](ℝⁿ).
- The computation for a manifold X uses the Koszul resolution for the tangent bundle TX and another trick to replace X × X by a tubular neighbourhood TX around the diagonal.