Noncommutative Geometry IV: Differential Geometry 20. Quasi-free algebras and their Hochschild cohomology

R. Meyer

Mathematisches Institut Universität Göttingen

Summer Term 2020

Quasi-free algebras and their Hochschild cohomology

Question

What can we say about an algebra A when A has a "short" projective A-bimodule resolution?

- Today we consider the case when A has a projective bimodule resolution of length 1.
- Equivalent characterisations:
 - any square-zero algebra extension of A splits;
 - any nilpotent extension of A splits;
 - $HH^2(A, M) = 0$ for all A-bimodules M;
 - $HH^{k}(A, M) = 0$ for all $k \ge 2$ and all A-bimodules M;
 - $\Omega^1(A)$ is a projective A-bimodule.
- ▶ We give many examples of quasi-free algebras:
 ℂ, ℂ[t], ℂ[t, t⁻¹]; group algebra of the dihedral group;
 Toeplitz algebra; quiver algebras and Leavitt path algebras.
- Hochschild cohomology for quasi-free algebras reduces to HH⁰ and HH¹.

The definition and a first consequence

Definition

An algebra is called quasi-free if any square-zero algebra extension $I \rightarrow E \rightarrow A$ splits by an algebra homomorphism $A \rightarrow E$. This is equivalent to $HH^2(A, M) = 0$ for all A-bimodules M.

Lemma

A unital algebra A is quasi-free if and only if $HH^2(A, M) = 0$ for all unital A-bimodules, if and only if any square-zero extension $I \rightarrow E \rightarrow A$ with unital E splits by a unital algebra homomorphism.

Theorem

If A is quasi-free, then any formal deformation quantisation of A is equivalent to the trivial one: $m(a, b) = a \cdot b$ for all $a, b \in A$.

Examples of quasi-free algebras 1

Proposition

The field \mathbb{C} is quasi-free. If $I \rightarrow E \rightarrow A$ is a square-zero extension, then any idempotent $p \in A$ lifts to an idempotent $\hat{p} \in E$.

Proposition

The group algebra of the infinite dihedral group D_∞ is quasi-free.

Example

The polynomial algebra $\mathbb{C}[p]$ is quasi-free, even free: any algebra extension $I \rightarrow E \twoheadrightarrow \mathbb{C}[p]$ with unital E splits by a unital algebra homomorphism $\mathbb{C}[p] \rightarrow E$: lift $p \in \mathbb{C}[p]$ to some $e \in E$ and map $p^n \mapsto e^n$ for $n \in \mathbb{N}$.

Example

The polynomial algebra $\mathbb{C}[p,q]$ is not quasi-free because the Weyl algebra deformation provides a non-split square-zero extension.

Examples of quasi-free algebras 2

Proposition

Let Q be a quiver with countably many vertices. Its quiver algebra is quasi-free.

Proposition

The algebra $\mathbb{C}[t, t^{-1}]$ of Laurent polynomials is quasi-free.

Proposition

The Toeplitz algebra is quasi-free.

Theorem

Let Γ be a directed graph with countably many vertices and let $\Gamma'_0 \subseteq \Gamma_0$ be a set of regular vertices. Then the relative Leavitt path algebra $L(\Gamma, \Gamma'_0)$ is quasi-free.

Nilpotent extensions of quasi-free algebras split

Definition

An algebra extension $I \rightarrow E \twoheadrightarrow Q$ is called nilpotent if there is $k \in \mathbb{N}$ with $I^k = 0$.

Theorem

Let A be a unital algebra. The following are equivalent:

- any square-zero extension $I \rightarrow E \rightarrow A$ splits;
- For any square-zero extension I → E → Q, any algebra homomorphism A → Q lifts to an algebra homomorphism A → E;
- any nilpotent extension $I \rightarrow E \rightarrow A$ splits;
- For any nilpotent extension I → E → Q, any algebra homomorphism A → Q lifts to an algebra homomorphism A → E.

More equivalent characterisations of quasi-freeness

Theorem

Let A be a unital algebra. The following are equivalent:

- $\Omega^1(A)$ is a projective A-bimodule;
- A has a projective A-bimodule resolution of length 1;
- A is quasi-free, that is, $HH^2(A, M) = 0$ for all A-bimodules M.