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Part 1: Hochschild cohomology of the Weyl algebra

I The Koszul resolution for two variables also gives a projective
bimodule resolution for the Weyl algebra.

I We use this to compute the Hochschild cohomology of the
Weyl algebra.

I It turns out that the Hochschild cohomology for ~ = 0 and
~ 6= 0 are quite different.

I Hochschild cohomology is
not invariant under deformation quantisation.



The Koszul resolution once again

I Fix ~ ∈ C.
I Let A = C〈p, q | [p, q] = i~〉.
I Let Pk := A⊗ Λk(C2)⊗ A.

That is, P0 ∼= P2 ∼= A⊗ A, P1 ∼= (A⊗ A)⊕ (A⊗ A).
I Define dk : Pk → Pk−1 for k = 2, 1 and d0 : A⊗ A→ A:

d2(a ⊗ e1 ∧ e2 ⊗ b) := a · p ⊗ e2 ⊗ b − a ⊗ e2 ⊗ p · b
− a · q ⊗ e1 ⊗ b + a ⊗ e1 ⊗ q · b,

d1(a ⊗ e1 ⊗ b) := a · p ⊗ b − a ⊗ p · b,

d1(a ⊗ e2 ⊗ b) := a · q ⊗ b − a ⊗ q · b,

d0(a ⊗ b) := a · b.

I For ~ = 0, this is the Koszul resolution of C[p, q].



The Hochschild cohomology results

Theorem
(Pk , dk) is a projective A-bimodule resolution of A.
Let M be an A-bimodule. Then HHn(A,M) = 0 for n ≥ 3 and

HH2(A,M) ∼= M
/

[p,M] + [q,M].

In particular, HH2(A,A) = 0 if ~ 6= 0.

Corollary
Any formal deformation quantisation of the Weyl algebra A with
~ 6= 0 is equivalent to the trivial one: m(a, b) = a · b for a, b ∈ A.



Discontinuity of Hochschild cohomology for ~→ 0

I If ~ 6= 0, then the Weyl algebra has the same Hochschild
cohomology with coefficients A as C:
HH0(A,A) = C · 1A and HHk(A,A) = 0 for k ≥ 1.

I If ~ = 0, then the Hochschild cohomology of A = C[p, q] is
much bigger:
HHk(A,A) = {k-vector fields on R2}.



Part II: De Rham cohomology of smooth manifolds

I The final goal of this class is to define
periodic cyclic cohomology,
a cohomology theory for noncommutative algebras that
generalises de Rham cohomology for smooth manifolds.

I Today we recall the definition of de Rham cohomology for
smooth manifolds.



The first de Rham boundary map
Example (de Rham complex of R)

· · · → 0→ C∞(R)→ C∞(R)→ 0→ . . .

f 7→ f ′.

The derivative map is surjective. Its kernel is R · {1}.
De Rham cohomology of R: H1

dR(R) = 0 and H0
dR(R) = R.

I Let M be any smooth manifold.
I The derivative of a smooth function f : M → R at x ∈ M is a

linear map TxM → Tf (x)R ∼= R.
I This defines a section of the cotangent bundle T∗M.
I Let Ω0(M) := C∞(M) and let Ω1(M) be the space of smooth

sections of the cotangent bundle of M.
I d : Ω0(M)→ Ω1(M), (df )(x) := Dx f ,

is the first de Rham boundary map.



Physical interpretation

I Use a Riemannian metric to identify Ω1(M) with the space of
vector fields on M.

I Then d maps a smooth function V to its gradient grad(V ).
I Physical interpretation: V is a potential function

and − grad(V ) is the force field defined by the potential.
I If dV = 0, then V is locally constant

(constant on each connected component of M).
Thus the potential is unique up to adding a constant if M is
connected.

I A force field is conservative if it admits a potential.
This is equivalent to energy conservation.

I While every force field on R is conservative,
this fails for all other smooth manifolds.



The second de Rham boundary

Proposition
A force field

∑n
j=1 fj dxj on Rn is conservative if and only if it

satisfies the system of linear partial differential equations

∂fi
∂xj

= ∂fj
∂xi

, ∀1 ≤ i < j ≤ n.

I Let Λk(T∗M) be the vector bundle on M defined at each
point by taking the kth exterior power of Λ1(T∗M).

I The second de Rham boundary on Rn is
d : Ω1(Rn)→ Ω2(Rn),

∑n
j=1 fj dxj 7→

∑n
i ,j=1

∂fj
∂xi

dxi ∧ dxj =∑
1≤i<j≤n

(
∂fj
∂xi
− ∂fi

∂xj

)
dxi ∧ dxj .

Proposition
The first de Rham cohomology of Rn vanishes for all n ≥ 1.



The de Rham complex of a smooth manifold

I Let Ωk(M) be the space of sections of Λk(T∗M) for k ≥ 0.
I This vanishes for k > dimM.
I Define the boundary map d : Ωk(M)→ Ωk+1(M)

in local coordinates by

d(f dxi1 dxi2 . . . dxik ) =
n∑

j=1

∂f
∂xj

dxj dxi1 dxi2 . . . dxik .

I Some work is needed to check that this is well defined and
d2 = 0.
The complex so defined is the de Rham complex.

I Its cohomology is called de Rham cohomology.



Properties of de Rham cohomology

Theorem
The de Rham cohomology and the singular cohomology of a
smooth manifold with coefficients R are naturally isomorphic.

Corollary
De Rham cohomology is homotopy invariant:
Homotopic smooth maps f , g : X ⇒ Y
induce the same map in de Rham cohomology.

Corollary (Poincaré Lemma)
Hk

dR(Rn) = 0 for all k ≥ 1.



De Rham cohomology in dimension 3

I Let M be an oriented smooth manifold of dimension 3.
I C∞(M) = Ω0(M).
I M has a volume form ω ∈ Ω3(M).
I C∞(M) ∼= Ω3(M), f 7→ f · ω.
I Ω2(M) ∼= Ω1(M) ∼= X(M), the space of smooth vector fields

on M, by using a Riemannian metric on M and the resulting
volume form.

I The de Rham complex becomes a cochain complex

0→ C∞(M)→ X(M)→ X(M)→ C∞(M)→ 0.

I On R3:
I d : Ω0(M)→ Ω1(M) is the gradient map.
I d : Ω1(M)→ Ω2(M) is the rotation map.
I d : Ω2(M)→ Ω3(M) is the divergence map.


