Noncommutative Geometry IV: Differential Geometry
 23. Towards periodic cyclic homology

R. Meyer

Mathematisches Institut
Universität Göttingen
Summer Term 2020

Towards periodic cyclic homology

- We are going to generalise de Rham cohomology to noncommutative algebras.
- We have seen that $\mathrm{HH}_{k}(A)=\mathrm{H}_{k}\left(\Omega^{\bullet}(A), b\right)$ generalises the space of de Rham k-forms $\Omega^{k}(M)$ on a smooth manifold M.
- We are going to define an operator $B: \Omega^{k}(A) \rightarrow \Omega^{k+1}(A)$.
- It is built out of d and b, and it anti-commutes with b.
- Then it induces maps $B_{*}: \mathrm{HH}_{k}(A) \rightarrow \mathrm{HH}_{k+1}(A)$ that generalise the de Rham boundary map.
- B_{*} is a coboundary map because $B^{2}=0$.
- The computations with b and B depend on the study of the operator $\kappa:=1-b d-d b$ and its minimal polynomial.
- We compute the cohomology of $\left(\mathrm{HH}_{*}(A), B_{*}\right)$ for polynomials in two variables and the Weyl algebra.

The Karoubi operator

- $b^{2}=0$ and $d^{2}=0$, but b and d do not anticommute.
- $\kappa:=1-[\mathrm{d}, b]=1-(\mathrm{d} b+b \mathrm{~d})$ is called Karoubi operator.
- if $\omega \in \Omega^{n-1}(A), x \in A$, then

$$
\begin{aligned}
\kappa(\omega \mathrm{d} x) & =\omega \mathrm{d} x-(-1)^{n} \mathrm{~d}([x, \omega])-(-1)^{n+1}[x, \mathrm{~d} \omega] \\
& =\omega \mathrm{d} x-(-1)^{n}[\mathrm{~d} x, \omega] \\
& =(-1)^{n-1} \mathrm{~d} x \cdot \omega
\end{aligned}
$$

- $B:=\sum_{j=0}^{n} \kappa^{j} \circ \mathrm{~d}$ on $\Omega^{n}(A)$
- $B\left(x_{0} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}\right)=\sum_{j=0}^{n}(-1)^{j n} \mathrm{~d} x_{j} \ldots \mathrm{~d} x_{n} \mathrm{~d} x_{0} \ldots \mathrm{~d} x_{j-1}$.

The (b, B)-bicomplex

Lemma
$b^{2}=0, B^{2}=0,[b, B]:=b B+B b=0$.

- B maps the subspaces ker b and $\operatorname{im} b$ of $\Omega(A)$ into themselves.
- It induces a map $B_{*}: \mathrm{HH}_{n}(A) \rightarrow \mathrm{HH}_{n+1}(A)$ with $B_{*}^{2}=0$.

Question

Is the cohomology of $\left(\mathrm{HH}_{\bullet}(A), B_{*}\right)$ a good generalisation of de Rham cohomology?

Properties of κ

- κ is a chain map for b and d:
$\kappa \mathrm{d}=\mathrm{d} \kappa, \kappa b=b \kappa$
- κ commutes with all operators built from b and d.
- $B^{2}=0$
- $\mathrm{d} \kappa^{n+1}=\kappa^{n+1} \mathrm{~d}=\mathrm{d}$ on $\Omega^{n}(A)$.
- $\kappa B=B \kappa=B$.
- $1+b \kappa^{n} \mathrm{~d}=\kappa^{n}$ on $\Omega^{n}(A)$
- $\kappa^{n} b=b \kappa^{n}=b$ on $\Omega^{n}(A)$
- $\mathrm{d} b=1-\kappa^{n+1}$ and $b \mathrm{~d}=\kappa^{n+1}-\kappa$ on $\Omega^{n}(A)$.
- $\left(\kappa^{n}-1\right)\left(\kappa^{n+1}-1\right)=0$ on $\Omega^{n}(A)$.
- $B b+b B=1-\kappa^{n}-\kappa^{n+1}+\kappa^{2 n+1}=\left(1-\kappa^{n}\right)\left(1-\kappa^{n+1}\right)=0$ on $\Omega^{n}(A)$.

Computation for polynomials

- $\mathrm{HH}_{n}\left(\mathrm{C}^{\infty} M\right) \cong \Omega^{n}(M)$ (if tensor products are completed)
- $\mathrm{HH}_{n}(\mathbb{C}[x, y]) \cong \begin{cases}\mathbb{C}[x, y], & \text { if } n=0, \\ \mathbb{C}[x, y] \mathrm{d} x \oplus \mathbb{C}[x, y] \mathrm{d} y, & \text { if } n=1, \\ \mathbb{C}[x, y] \mathrm{d} x \wedge \mathrm{~d} y, & \text { if } n=2, \\ 0, & \text { if } n>2 .\end{cases}$
- The action of B_{*} corresponds to the de Rham boundary map on differential forms.

Lemma

The cohomology of the cochain complex

$$
0 \rightarrow \mathbb{C}[x, y] \xrightarrow{\mathrm{d}} \mathbb{C}[x, y] \mathrm{d} x \oplus \mathbb{C}[x, y] \mathrm{d} y \xrightarrow{\mathrm{~d}} \mathbb{C}[x, y] \mathrm{d} x \wedge \mathrm{~d} y \rightarrow 0
$$

vanishes except in degree 0 , where it is \mathbb{C}.
$\mathrm{H}_{n}\left(\mathrm{HH}_{*}(\mathbb{C}[x, y]), B_{*}\right) \cong \begin{cases}\mathbb{C} & \text { if } n=0, \\ 0 & \text { otherwise } .\end{cases}$

Computation for the Weyl algebra

- We have already described a small free bimodule resolution for the Weyl algebra $A:=\mathbb{C}\langle p, q \mid[p, q]=\mathrm{i} \hbar\rangle$.
- We use it to compute $\mathrm{HH}_{*}(A)$:
it is the homology of the chain complex
$0 \rightarrow A \xrightarrow{\left(\mathrm{ad}_{p},-\mathrm{ad}_{q}\right)} A \oplus A \xrightarrow{\left(\mathrm{ad}_{q}, \mathrm{ad}_{p}\right)} A \rightarrow 0$.
- $\mathrm{H}_{n}\left(\mathrm{HH}_{*}(A), B_{*}\right) \cong \mathrm{HH}_{n}(A) \cong \begin{cases}\mathbb{C} & \text { if } n=2, \\ 0 & \text { otherwise. }\end{cases}$
- Compare:

$$
\mathrm{H}_{n}\left(\mathrm{HH}_{*}(\mathbb{C}[x, y]), B_{*}\right) \cong \begin{cases}\mathbb{C} & \text { if } n=0 \\ 0 & \text { otherwise }\end{cases}
$$

