Noncommutative Geometry IV: Differential Geometry 23. Towards periodic cyclic homology

R. Meyer

Mathematisches Institut Universität Göttingen

Summer Term 2020

Towards periodic cyclic homology

- We are going to generalise de Rham cohomology to noncommutative algebras.
- We have seen that HH_k(A) = H_k(Ω[•](A), b) generalises the space of de Rham k-forms Ω^k(M) on a smooth manifold M.
- We are going to define an operator $B: \Omega^k(A) \to \Omega^{k+1}(A)$.
- It is built out of d and b, and it anti-commutes with b.
- Then it induces maps B_{*}: HH_k(A) → HH_{k+1}(A) that generalise the de Rham boundary map.
- B_* is a coboundary map because $B^2 = 0$.
- The computations with b and B depend on the study of the operator κ := 1 bd db and its minimal polynomial.
- We compute the cohomology of (HH_{*}(A), B_{*}) for polynomials in two variables and the Weyl algebra.

The Karoubi operator

The (b, B)-bicomplex

Lemma $b^2 = 0, B^2 = 0, [b, B] := bB + Bb = 0.$

• B maps the subspaces ker b and im b of $\Omega(A)$ into themselves.

▶ It induces a map B_* : $HH_n(A) \to HH_{n+1}(A)$ with $B_*^2 = 0$.

Question

Is the cohomology of $(HH_{\bullet}(A), B_*)$ a good generalisation of de Rham cohomology?

Properties of κ

κ is a chain map for b and d:
 κd = dκ, κb = bκ

 \triangleright κ commutes with all operators built from *b* and *d*.

Computation for polynomials

The action of B_{*} corresponds to the de Rham boundary map on differential forms.

Lemma

The cohomology of the cochain complex

 $0 \to \mathbb{C}[x,y] \xrightarrow{d} \mathbb{C}[x,y] \, dx \oplus \mathbb{C}[x,y] \, dy \xrightarrow{d} \mathbb{C}[x,y] \, dx \wedge dy \to 0$

vanishes except in degree 0, where it is \mathbb{C} .

$$\mathsf{H}_n(\mathsf{HH}_*(\mathbb{C}[x,y]),B_*)\cong egin{cases} \mathbb{C} & \textit{if }n=0,\ 0 & \textit{otherwise.} \end{cases}$$

Computation for the Weyl algebra

- We have already described a small free bimodule resolution for the Weyl algebra A := C⟨p, q | [p, q] = iħ⟩.
- We use it to compute HH_{*}(A): it is the homology of the chain complex 0 → A (ad_p,-ad_q) → A ⊕ A (ad_q,ad_p) → A → 0.
 H_n(HH_{*}(A), B_{*}) ≅ HH_n(A) ≅ {C if n = 2, 0 otherwise.
- Compare:

$$\mathsf{H}_n(\mathsf{HH}_*(\mathbb{C}[x,y]),B_*)\cong egin{cases} \mathbb{C} & ext{if } n=0,\ 0 & ext{otherwise}. \end{cases}$$