Exercise sheet 2.

Name	Exercise 1 2 3	Σ
	Points	
Exercise group (tutor's name)		

Deadline: Friday, 1.11.2024, 12:00.

Please use this page as a cover sheet and enter your name and tutor in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. In this exercise we consider the Hamiltonian $H = \sum_{j=1}^{3} \frac{1}{2m} P_j^2$ where P_j , j = 1, ..., 3 are the momentum operators and m > 0 is a constant.

- 1. Check that H can be defined as an unbounded operator on a domain containing the Schwartz space $\mathscr{S}(\mathbb{R}^3)$. Use similar argument as in Exercise 4 of the previous sheet to find a domain on which it is self adjoint.
- 2. For $t \in \mathbb{R}$, give a meaning to the operator $U_t \coloneqq \exp\left(-\frac{it}{\hbar}H\right)$ and show it is unitary.
- 3. Show the following integral formula for ψ_0 regular enough, say, in $\mathscr{S}(\mathbb{R}^3)$:

$$U_t \psi_0(x) = \int_{\xi \in \mathbb{R}^3} e^{2\pi i \left(\langle x, \xi \rangle - \frac{\pi h t}{m} |\xi|^2 \right)} \widehat{\psi_0}(\xi) \, \mathrm{d}\xi$$

4. Show that $\psi: (t, x) \mapsto U_t \psi_0(x)$ is the solution to the Schrödinger equation, that is,

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\psi = H\psi,$$

with initial condition ψ_0 .

Remember that for a commutative C^* -algebra \mathcal{A} , the spectrum $\widehat{\mathcal{A}}$ of the algebra is the set of algebra *-homomorphisms $\chi : \mathcal{A} \to \mathbb{C}$. Endowed with the coarsest topology for which the evaluation maps at elements of \mathcal{A} are continuous functions, this makes $\widehat{\mathcal{A}}$ a locally compact Haussdorff space (compact if \mathcal{A} is unital), such that the evaluation maps give an isomorphism $\mathcal{A} \cong C(\widehat{\mathcal{A}})$. You may use this fact below.

Exercise 2. The goal of this exercise is to define the joint spectrum of an *n*-tuple A_1, \ldots, A_n of (pairwise) commuting bounded selfadjoint operators on a Hilbert space \mathcal{H} . The result remains true for unbounded, normal, strongly commuting operators, but we limit the exercise to the bounded, selfadjoint case for simplicity. Let \mathcal{A} be the closed subalgebra of $\mathbb{B}(\mathcal{H})$ generated by the identity operator and A_1, \ldots, A_n .

- 1. Show that \mathcal{A} is a commutative unital C*-algebra. So $\mathcal{A} \cong C(\widehat{\mathcal{A}})$.
- 2. Show that the map $\widehat{\mathcal{A}} \to \mathbb{C}^n, \chi \mapsto (\chi(A_j))_{1 \leq j \leq n}$, is a homeomorphism onto a compact non-empty subset of \mathbb{C}^n . By definition, this image set is the *joint spectrum* of the operators.
- 3. Assume now that \mathcal{H} is finite-dimensional, so that the A_i are commuting, selfadjoint matrices. Show that the joint spectrum is the set of joint eigenvalues, that is, $(\lambda_j)_{1 \leq j \leq n} \in \mathbb{C}^n$ for which there is a $v \in \mathcal{H} \setminus \{0\}$ with $A_j v = \lambda_j v$ for all $1 \leq j \leq n$.

Exercise 3. Consider the momentum operators on $L^2(\mathbb{R}^n)$: $P_j := -i\hbar \frac{\partial}{\partial x^j}, 1 \le j \le n$. They are known to be selfadjoint and to commute strongly. Thus they generate a strongly continuous representation of \mathbb{R}^n : $U : \mathbb{R}^n \to \mathcal{B}(\mathbb{R}^n), k \mapsto \exp(\sum_{j=1}^n ik_j P_j)$. Let \mathcal{F} be the Fourier transform on $L^2(\mathbb{R}^n)$.

- 1. Show that $\mathcal{F}U(k)\mathcal{F}^*$ acts as a multiplication operator by an explicit function.
- 2. Conclude that $U(k)\psi(x) = \psi(x + \hbar k)$ for $\psi \in L^2(\mathbb{R}^n), x, k \in \mathbb{R}^n$.
- 3. For $\psi \in \mathscr{S}(\mathbb{R}^n)$, check that

$$\lim_{k_j\to 0}\frac{1}{\mathrm{i}k_j}(U(0,\ldots,k_j,\ldots,0)\psi-\psi)=P_j\psi.$$

This is part of Stone's Theorem.