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Exercise 1. (This exercise shows that the canonical commutation relations cannot be realised by bounded
operators.) In this exercise, we consider a Hilbert space H with a dense subspace D ⊆ H and linear
maps X, P : D → D with the property that their commutator [X, P ] := XP − PX is iℏ (times the
identity operator on D) with some constant ℏ > 0. If you like, you may simplify by pretending that
ℏ = 1.

1. Show that the position and momentum operators X, P on L2(R) satisfy this relation with
D = C∞

c (R).

2. For n ∈ N, compute [X, P n] (use that taking the commutator with X is a derivation).

3. Show that X and P cannot both be continuous.

4. Show that H cannot be finite-dimensional.

Recall that the algebra of quaternions H is a 4-dimensional real vector space generated by (1, i, j, k)
with product generated by the relations: i2 = j2 = k2 = ijk = −1. They form a non-commutative field.
The conjugate of an element h = x + yi + zj + tk is the element h̄ = x − yi − zj − tk. We have:

N(h) := h̄h = hh̄ = x2 + y2 + z2 + t2 ∈ R≥0

The map N : H → R is a positive definite quadratic form for which (1, i, j, k) forms an orthonormal
basis.

Exercise 2. (The goal of this exercise is to prove that SU(2)
/

{±Id2} ∼= SO(3).) For a quaternion

h ∈ H as above, we construct the matrix Mh :=
(

a −b̄
b ā

)
∈ M2(C) with a = x + iy, b = z − it.

1. Check that H → M2(C), h 7→ Mh is an injective algebra homomorphism, and that for h ∈ H, we
have M∗

h = Mh̄.
We now see H as a subalgebra of matrices. For g ∈ SU(2), define a map φg : H → H, h 7→ ghg−1.

2. Check that φg is an algebra homomorphism and preserves the quadratic form N .

3. Show that there is a map φ : SU(2) → O(I), where I is the subspace of H generated by i, j, k endo-
wed with the inner product corresponding to N . Show that the image of this group homomorphism
lies in SO(I) ∼= SO(3).

4. Show that φ : SU(2) → SO(3) is surjective (one could find a preimage for each rotation). Compute
the kernel of φ.

5. Conclude that there is an isomorphism SU(2)
/

{±Id2} ∼= SO(3).


