Exercise sheet 4.

Name	Exercise	1	2	3	Σ
	Points				
Exercise group (tutor's name)					

Deadline: Friday, 15.11.2024, 12:00.

Please use this page as a cover sheet and enter your name and tutor in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. Let $\Theta: \mathcal{H} \to \mathcal{H}$ be a time-reversal symmetry on a Hilbert space \mathcal{H} . Let \mathcal{A} be the \mathbb{R} -subalgebra of \mathbb{R} -linear operators on \mathcal{H} generated by Θ and i.

1. If $\Theta^2 = -1$, find an isomorphism between \mathcal{A} and the algebra of quaternions \mathbb{H} .

2. If $\Theta^2 = +1$ find an isomorphism between \mathcal{A} and the \mathbb{R} -algebra of real 2×2 -matrices $\mathbb{M}_2(\mathbb{R})$.

Exercise 2. Let $\pi_0: G \to U(\mathcal{H}) / U(1)$ be a projective representation of a group G on a Hilbert space \mathcal{H} . Consider any map $\pi: G \to U(\mathcal{H})$ that lifts π_0 . Show that there is a map $c: G \times G \to U(1)$ such that:

$$\forall g, h \in G, \pi(g)\pi(h) = c(g, h)\pi(gh).$$

Show that this map is a U(1)-cocycle, that is:

$$\forall g,h,k \in G, c(gh,k)c(g,h) = c(g,hk)c(h,k).$$

Any other lift of π_0 would be of the form $f\pi$ where $f: G \mapsto U(1)$ is any function. Compute the cocycle of $f\pi$ in terms of c, the one of π .

Exercise 3. Consider the position and momentum operators on $L^2(\mathbb{R}^3)$: $X_1, X_2, X_3, P_1, P_2, P_3$. We obtain a projective representation of \mathbb{R}^6 by exponentiation:

$$\begin{split} \mathbb{R}^6 &= \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{B}(L^2(\mathbb{R}^3)) \\ & (s,t) \mapsto \exp(\mathrm{i} s X) \exp(\mathrm{i} t P). \end{split}$$

Compute the cocycle of this projective representation. You may use the computations of $\exp(isX)$ and $\exp(itP)$ as multiplication and translation operators in the lectures.