Exercise sheet 5.

Name	Exerc	ise	1	2	3	Σ
	Point	ſS				
Exercise group (tutor's name)						

Deadline: Friday, 22.11.2024, 12:00.

Please use this page as a cover sheet and enter your name and tutor in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. (Another point of view on the SSH model.) We may understand the SSH model as follows. Put $\Lambda_0 := \frac{1}{2}\mathbb{Z}$ and take the Hilbert space $\mathcal{H} := \ell^2(\Lambda_0)$. Let H be the Hamiltonian on \mathcal{H} . We assume that $H_{x,y} := \langle \delta_x | H \delta_y \rangle$ vanishes unless |x - y| = 1/2 and that H commutes with the translations $(S_u f)(x) := f(x - y)$ for all $y \in \mathbb{Z}$.

1. Identify $\mathcal{H} \cong \ell^2(\mathbb{Z}, \mathbb{C}^2)$ using $\Lambda_0 = \mathbb{Z} \sqcup (\frac{1}{2} + \mathbb{Z})$ and show that, under this identification, H corresponds to the operator on $\ell^2(\mathbb{Z}, \mathbb{C}^2)$ given by the matrix

$$H = \begin{pmatrix} 0 & a + bS_1 \\ \overline{a} + \overline{b}S_1^* & \end{pmatrix}$$

for some $a, b \in \mathbb{C}$.

2. Now use the identification $\Lambda_0 = \mathbb{Z} \sqcup (-\frac{1}{2} + \mathbb{Z})$ to identify $\mathcal{H} \cong \ell^2(\mathbb{Z}, \mathbb{C}^2)$. Show that H now has the matrix

$$H = \begin{pmatrix} 0 & aS_1^* + b \\ \overline{a}S_1 + \overline{b} & \end{pmatrix}.$$

This is interesting because this matrix and the one above have different indices for |b| > |a|.

Exercise 2. Let $\Lambda = \mathbb{Z}^2 \subseteq \mathbb{R}^2$ and let $\mathcal{H} = \ell^2(\Lambda)$. Let G be the group of all isometries of the plane \mathbb{R}^2 that map Λ to itself. Let $g \in G$ act on \mathcal{H} by $(S_g f)(x) = f(g^{-1})(x)$ for all $x \in \Lambda$, $f \in \ell^2(\Lambda)$. Let H be a selfadjoint operator on \mathcal{H} that commutes with this representation of G.

- 1. Show that G is the semidirect product of the group of translations S_x for $x \in \mathbb{Z}^2$ and the 8-element dihedral group of symmetries of the square.
- 2. Identify all the points $x \in \Lambda$ with $||x|| \leq \sqrt{2}$ and show that the action of the dihedral group restricted to this subset of Λ has exactly three distinct orbits.
- 3. Describe the most general form for H if $\langle \delta_x | H \delta_y \rangle$ vanishes for $||x y|| > \sqrt{2}$.
- 4. Assume now that $\langle \delta_x | H \delta_y \rangle = 0$ for $||x y|| \neq 1$. Compute the spectrum of H in this case. (Follow the sketch I gave for the case of graphene.)

In the following exercise, you may use that the Fredholm index of an operator is invariant under homotopies of Fredholm operators.

Exercise 3. Let $\hat{S} \in \mathbb{B}(\ell^2(\mathbb{N}))$ be the unilateral shift $\hat{S}f(x) = f(x-1)$. Let $\lambda \in \mathbb{C}$.

- 1. Assume $|\lambda| > 1$. Show that $\hat{S} \lambda$ is invertible.
- 2. Assume $|\lambda| < 1$. Compute the kernels of the operators $\hat{S} \lambda$ and $(\hat{S} \lambda)^*$ for $|\lambda| \neq 1$ and prove that the image of $\hat{S} \lambda$ is the entire orthogonal complement of the kernel of $(\hat{S} \lambda)^*$. Deduce that $\hat{S} \lambda$ is Fredholm.
- 3. Show that $\hat{S} \lambda$ for $|\lambda| < 1$ and $|\lambda| > 1$ have different indices. Deduce that $\hat{S} \lambda$ cannot be Fredholm for $|\lambda| = 1$.