Exercise sheet 6.

Name	Exercise 1 2	3 Σ
	Points	
Exercise group (tutor's name)		

Deadline: Friday, 29.11.2024, 12:00.

Please use this page as a cover sheet and enter your name and tutor in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. Let T, S_1, S_2 be operators on a Hilbert space \mathcal{H} such that $TS_j - 1$ and $S_jT - 1$ are compact for j = 1, 2. Show that $S_1 - S_2$ is compact. Show that there is a parametrix S (that is, ST - 1 and TS - 1 are compact) that also satisfies TST = T and STS = S. Give an example that shows that such an S need not be unique. (Hence, the Fredholm operators do *not* form an inverse semigroup.)

Exercise 2. Let A be a unital Banach algebra, $I \triangleleft A$ a closed 2-sided ideal.

- 1. Show that if $a \in A$ is close enough to 1_A then it is of the form $\exp(x)$ for some $x \in A$.
- 2. Show that if $a \in A$ is such that $[a] \in (A/I)^{\times}$ and is homotopic to $[1_A]$ then there exists $k \in I$ such that $a + k \in A^{\times}$.

Exercise 3. In this exercise, we introduce another equivalent point of view on Toeplitz operators. Denote by \hat{S} the unilateral shift on $\ell^2(\mathbb{N})$ and $\mathcal{T} \subset \mathcal{B}(\ell^2(\mathbb{N}))$, the C*-subalgebra generated by \hat{S} .

- 1. Show that a function in $L^2(\mathbb{T})$ extends holomorphically to the unit disk $\mathbb{D} \subset \mathbb{C}$ if and only if all its negative Fourier coefficients vanish. We denote by $H^2(\mathbb{D}) := \operatorname{Hol}(\mathbb{D}) \cap L^2(\mathbb{T})$ this subspace. Show that this $H^2(\mathbb{D})$ is closed in $L^2(\mathbb{T})$. This gives $H^2(\mathbb{D})$ the structure of a Banach space for which $z \mapsto z^n, n \in \mathbb{N}$ forms an orthonormal basis.
- 2. Using the aforementioned basis, we get that a unitary isomorphism $F \colon \ell^2(\mathbb{N}) \to H^2(\mathbb{D})$. Compute the operator $F\hat{S}F^*$.
- 3. We write $P: L^2(\mathbb{T}) \to H^2(\mathbb{D})$ for the orthogonal projector onto $H^2(\mathbb{D})$. Show that F induces an isomorphism $\mathcal{T} \cong C^*(PM_f, f \in \mathcal{C}(\mathbb{T}))$.