Exercise sheet 8.

M.	D	-1	0	o	∇
Name	Exercise	T	2	3	ک
	Points				
Exercise group (tutor's name)					

Deadline: Friday, 13.12.2024, 12:00.

Please use this page as a cover sheet and enter your name and tutor in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. Let A be a unital Banach algebra. Consider $f = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \mathbb{M}_2(A)$ and $e = \begin{pmatrix} f & 0 \\ 0 & -f \end{pmatrix} \in \mathbb{M}_4(A)$. We consider the grading on $\mathbb{M}_2(A)$ given by diagonal and off-diagonal matrices and the corresponding entrywise grading on $\mathbb{M}_4(A) = \mathbb{M}_2(\mathbb{M}_2(A))$. Show that $e \in \mathcal{F}(\mathbb{M}_4(A))$ is homotopic to -e in $\mathcal{F}(\mathbb{M}_4(A))$. Let $e_0 \in \mathcal{F}(A)$ be any element homotopic to its opposite in $\mathcal{F}(A)$. Show that there is a group isomorphism:

$$K(M_4(A), e) \cong K(A, e_0).$$

Exercise 2. By convention, $0 \in \mathbb{N}$. Compute the Grothendieck group of the following semigroups:

- 1. $(\mathbb{N}, +)$
- 2. $(\mathbb{N} \setminus \{0\}, \times)$
- 3. (\mathbb{N}, \times)
- 4. The monoid of equivalence classes of projections on an infinite-dimensional separable Hilbert space.

Exercise 3. Compute the K-theory groups of the following algebras:

- 1. \mathbb{C} with the trivial grading;
- 2. $Cl_{1,0} := \mathbb{C} \oplus \mathbb{C}$ with the grading given by the flip.