Exercise sheet 10.

Name

Exercise group (tutor's name)

Deadline: Friday, 10.1.2025, 12:00.

Please use this page as a cover sheet and enter your name and tutor in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. Apply matrix-stability of van Daele K-theory and exercise 3 of the previous sheet for

$$A_n \coloneqq \widehat{\mathbb{M}}_4 \mathbb{M}_k(\mathbb{M}_n(B)^+), \qquad A \coloneqq \widehat{\mathbb{M}}_4 \mathbb{M}_k(\mathbb{K}(\ell^2 \mathbb{N}) \otimes B)^+$$

for a $\mathbb{Z}/2$ -graded C*-algebra B and $k \in \mathbb{N}_{\geq 1}$ to deduce that a corner embedding $B \to \mathbb{K}(\ell^2 \mathbb{N}) \otimes \overline{B}$ induces an isomorphism $\mathbb{K}(B) \cong \mathbb{K}(\mathbb{K}(\ell^2 \mathbb{N}) \otimes \overline{B})$. Here $\overline{\otimes}$ denotes any C*-completion of the algebraic tensor product. Actually, this C*-completion is unique, but this is not relevant to the exercise. You may assume that $A_n \subseteq A$ is a C*-subalgebra as needed for exercise 3 of last exercise sheet. Here $\hat{\mathbb{M}}_4$ denotes the algebra of 4×4 -matrices with the grading described in exercise 1 of sheet 8.

On the rest of this sheet, let H be a functor from $\mathbb{Z}/2$ -graded Banach algebras to Abelian groups that is exact and homotopy invariant, such as van Daele's K-theory. Let $H_k(A) := H(\mathbb{C}_0(\mathbb{R}^k, A))$; these are the groups that appear in the long exact sequence for H applied to an extension.

Exercise 2. Let $I \xrightarrow{i} E \xrightarrow{p} Q$ be an extension of $\mathbb{Z}/2$ -graded Banach algebras that that splits by a homomorphism $s: Q \to E$. Show that the boundary map $H(C_0(\mathbb{R}, Q)) \to H(I)$ has to vanish and deduce that the following map is invertible:

$$(H(i), H(s)): H(I) \oplus H(Q) \xrightarrow{\cong} H(E).$$

Briefly, exact homotopy invariant functors are split exact.

Exercise 3. Let $\mathbb{T} := \{z \in \mathbb{C}, |z| = 1\}$ with the trivial grading. Let \mathbb{K} denote \mathbb{R} or \mathbb{C} and let $C_0(X) = C_0(X, \mathbb{K})$. Let $d, j \in \mathbb{N}$. Let \mathbb{T}^d be the *d*-fold Cartesian product, where \mathbb{T}^0 is just a single point.

- 1. Show that there is a split extension of Banach algebras $C_0(\mathbb{R} \times \mathbb{T}^d) \rightarrow C(\mathbb{T}^{d+1}) \twoheadrightarrow C(\mathbb{T}^d)$.
- 2. Deduce that $H_j(\mathcal{C}(\mathbb{T}^{d+1})) \cong H_{j+1}(\mathcal{C}(\mathbb{T}^d)) \oplus H_j(\mathcal{C}(\mathbb{T}^d)).$
- 3. Use induction to express $H_i(\mathbb{T}^d)$ as a direct sum of $H_{i+k}(\mathbb{K})$.