Exercise sheet 13.

Name	Exercise	1	2	3	Σ
	Points				
Exercise group (tutor's name)					

Deadline: Friday, 31.1.2025, 12:00.

Please use this page as a cover sheet and enter your name and tutor in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. Let \mathbb{S}^n denote the sphere in \mathbb{R}^{n+1} for $n \in \mathbb{N}$. All the algebras of functions below are complex valued with trivial grading.

- 1. Show that there is an extension of Banach algebras: $C_0(\mathbb{R}^n) \xrightarrow{i} C(\mathbb{S}^n) \xrightarrow{p} \mathbb{C}$.
- 2. Compute the groups $K(\mathcal{C}_0(\mathbb{R}^n))$.
- 3. Compute the groups $K(\mathbb{C}(\mathbb{S}^n))$.

Exercise 2. Show that any algebra automorphism of $\mathbb{M}_n(\mathbb{R})$ is inner, that is, if $\alpha \in \operatorname{Aut}(\mathbb{M}_n(\mathbb{R}))$ then there exists $T \in \operatorname{GL}_n(\mathbb{R})$ such that $\alpha = \operatorname{Ad}_T$. Show that the matrix T is unique up to multiplication by a scalar.

Exercise 3. Let A be a complex $\mathbb{Z}/2$ -graded algebra. Show that the algebras $\widehat{\mathbb{M}}_2(\mathbb{C}) \hat{\otimes} A$ and $\widehat{\mathbb{M}}_2(\mathbb{C}) \otimes A$ are isomorphic as $\mathbb{Z}/2$ -graded algebras. Here \otimes is the usual tensor product and $\hat{\otimes}$ is the graded tensor product.