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1 Introduction
Physicists have recently discovered materials with exotic properties, which are explained
by topology. This course introduces these exotic materials and some of the mathematics
relevant to their study.
I do not require many prerequisites. I only require the analysis courses of the first

two years in Göttingen, including Analysis on Manifolds and Functional Analysis (see,
in particular, my lecture notes on Functional Analysis from the Summer Term 2018). I
do not expect a strong background in physics. A course in quantum mechanics would
be helpful to follow this course. I will, however, begin with a brief crash course on the
mathematics of quantum mechanics, which suffices for this course. The main topics in
this course are mathematical in nature and are motivated by applications in physics.
The better your background in physics, the more will you be able to see the physical
motivation of the mathematical questions.

The classification of topological insulators will use the language of homotopy theory of
topological spaces. The particular homotopy groups that occur are related to K-theory,
but I will not highlight this because I do not want to assume the audience to know about
K-theory of C*-algebras.

The materials that this course will focus on are called “topological insulators”. “Topo-
logical insulators are electronic materials that have a bulk band gap like an ordinary
insulator but have protected conducting states on their edge or surface.” [5] These sur-
face states conduct electricity, although the interior of the material is insulating. The
current on the surface may be quantised and have other exotic properties. It is believed
that these edge currents are quite robust. In particular, they cannot dissipate into the
interior of the material because it does not conduct. “The surface or edge states of a
topological insulator lead to a conducting state with properties unlike any other known
one-dimensional 1D or 2D electronic systems. In addition to their fundamental interest,
these states are predicted to have special properties that could be useful for applications
ranging from spintronics to quantum computation.“ [5]

We will only do a little quantum mechanics, not enough to derive the electric properties
of materials from anything close to first principles. Our treatment is phenomenological
in nature and gives only a very rough argument why Hamiltonians of a certain type
may model the electronic properties of materials. These Hamiltonians are described
through functions from a d-torus with values in self-adjoint N ×N -matrices, where d is
the dimension of the material and N is the number of internal degrees of freedom per
unit cell of the crystal in our model. Another important point will be the description of
symmetries in quantum mechanics. Some of the most interesting topological materials are
based on symmetries which are realised by anti-unitary operators on the Hilbert space,
such as time-reversal symmetry. “A topological insulator, like an ordinary insulator,
has a bulk energy gap separating the highest occupied electronic band from the lowest
empty band. The surface or edge in two dimensions of a topological insulator, however,
necessarily has gapless states that are protected by time-reversal symmetry.“ [5]
Besides the Hamiltonian, our material comes with a distinguished energy, the Fermi

level. The material is a conductor if the Fermi energy belongs to the spectrum of the
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Hamiltonian. If not, then it is an insulator. Assume that we have an insulator. Then the
energy bands below the Fermi energy define a vector bundle over the d-torus. If there are
no further symmetries to take into account, then the (stable) isomorphism class of this
vector bundle is the topological phase of the material. Interesting effects occur if this
vector bundle is non-trivial. So the first topic after the physical background will be a
study of vector bundles over tori. The stable isomorphism classes of vector bundles over
a compact topological space X form a group, which is the reduced topological K-theory
of X. We shall briefly review some basic properties of K-theory. We need not go far
because we mainly need vector bundles over the d-tori for dimensions d = 1, 2, 3 (and
maybe d = 4 for systems that are also periodic in time).

Then we consider the variations on K-theory that occur in the presence of symmetries.
Here we focus on those symmetries that are either anti-unitary or anti-commute with the
Hamiltonian. There are 10 different combinations of these symmetries. Correspondingly,
all 10 K-theory groups of a space appear. We use Clifford algebras to describe these
different K-theory groups systematically. We compute some of these K-groups for low-
dimensional tori. These computations involve explicit formulas for certain characteristic
classes.
The most interesting features of topological materials appear only when we break

periodicity by adding an edge, that is, when we truncate the Hamiltonians to a half-space.
This replaces one circle by a Toeplitz algebra. This is an example of a C∗-algebra, and
K-theory for C∗-algebras is essential to study the bulk–boundary correspondence, which
determines the conductivity properties of the boundary of a material from the properties
of the bulk. We shall use van Daele’s description of K-theory, which is not the standard
one, and we shall use the K-theory long exact sequence without proof in order to describe
the bulk–boundary correspondence.
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2 A crash course in quantum mechanics
In classical mechanics, the state of a physical system is described by the positions and
velocities of all objects in the system. The possible positions form a submanifold X
of R3N , where N is the number of particles and X describes constraints on the particles.
Usually, if there are no constraints, X = R3N . Taking velocities into account gives points
in the tangent space TX of X (or a subspace of TX if there are more constraints on
the possible velocities). We assume for simplicity that the dynamics of the system is
generated by a potential V : X → R, called potential energy. The total energy is the sum
of the potential energy and the kinetic energy. We assume that the latter is

Ekin =
N∑
j=1

mj
‖ẋj‖2

2 ,

where mj ∈ (0,∞) and ẋj ∈ R3 are the mass and the velocity of the jth particle,
respectively. Then the momentum of the jth particle is mj · ẋj ∈ R3. So in our simple
model momenta and velocities differ only by the constant factors mj . (In general,
momenta belong to the cotangent space T ∗X instead of the tangent space, and the
relationship between momenta and velocities may become non-linear if the formula for
the kinetic energy is more complicated than quadratic.)

2.1 Hilbert space and states in quantum mechanics
The situation in quantum mechanics is quite different. Quantum mechanics only makes
probabilistic statements. An infinite amount of energy would be needed to localise an
object at a single point. Instead, a particle is described by a wave function, which is
already an extended objects. For a single particle moving freely in R3 – without spin,
we will learn about spin a bit later – the wave function is a unit vector ψ in the Hilbert
space L2(R3,dx). And k particles of different type moving in R3 (still without spin)
are described by a unit vector in the Hilbert space L2(R3k,dx). There is a catch if
these particles are all of the same kind. If they are all electrons or all protons or all
neutrons, then we must replace L2(R3k, dx) by the subspace of antisymmetric functions
with respect to exchanging the coordinates. Particles like this are called Fermions. Some
particles, most notably photons, are Bosons, and for them we should use the subspace
of symmetric functions instead. Summing up, there is a mildly complicated recipe for
choosing the Hilbert space that describes a given physical system. The state of the
system is described by a unit vector in that Hilbert space.

Lemma 2.1. Let H1 and H2 be infinite-dimensional, separable Hilbert spaces, that is,
neither is finite-dimensional and both contain countable dense subsets. Let ψi ∈ Hi for
i = 1, 2 be unit vectors. There is a unitary operator U : H1 → H2 with U(ψ1) = ψ2.

Proof. Fix i ∈ {1, 2}. The orthogonal complement of ψi in Hi has an orthonormal
basis. It is countable because the Hilbert space in question is separable and infinite-
dimensional. Add ψi to extend this to an orthonormal basis (ϕ0, ϕ1, ϕ2, . . . ) of Hi with
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ϕ0 = ψi. Writing vectors in Hi in this orthonormal basis gives a unitary operator
Ui : Hi → `2(N), Ui(ξ)(n) := 〈ϕn | ξ〉. It maps ψi to the characteristic function |0〉 of 0.
Now U = U−1

2 U1 : H1 → H2 will do the job.

Roughly speaking, all choices of a Hilbert space and a unit vector in it are equivalent. So
this choice does not yet contain information about the physical system. This information
is in the observables.

2.2 Observables
Definition 2.2. An observable in a quantum mechanical system described by a Hilbert
space H is a possibly unbounded, self-adjoint operator on H.

We are particularly interested in the observables that correspond to the positions and
momenta of the particles in the system because we expect these to determine the state of
the system, as in classical mechanics. Another important observable is the total energy.
Example 2.3. Suppose we are dealing with a single particle in R3 (without spin), described
by a unit vector ψ in the Hilbert space L2(R3,dx). The position observables are the
operators that multiply a wave function with the coordinate functions:

(Xjψ)(x1, x2, x3) := xj · ψ(x1, x2, x3)

for j = 1, 2, 3, x1, x2, x3 ∈ R, and ψ ∈ H, such that xj · ψ ∈ H. We have ψ ∈ H and
xj · ψ ∈ H for j = 1, 2, 3 if and only if∫

R3
(1 + x2

1 + x2
2 + x2

3) · |ψ(x1, x2, x3)|2 dx <∞.

So the operator Xj is only defined on a dense subspace of H. This is typical of unbounded
operators.

Definition 2.4. A (densely defined) unbounded operator on a Hilbert space H is a linear
map T : DT → H for a dense linear subspace DT ⊆ H.

The adjoint T ∗ of an unbounded operator is defined on ψ ∈ H if and only if there is a
vector T ∗ψ ∈ H such that 〈T ∗ψ |ϕ〉 = 〈ψ |Tϕ〉 for all ϕ ∈ DT . An unbounded operator
T : H ⊇ Dom(T )→ H is self-adjoint if T ∗ = T .

The position operator, as defined above, is indeed self-adjoint in this sense. Self-
Adjointness is a subtle notion. It is much stronger than the condition 〈Tψ |ϕ〉 = 〈ψ |Tϕ〉
for all ϕ,ψ ∈ DT (such operators are called formally self-adjoint or symmetric). The
technical nuance is that the domain of T ∗ for a formally self-adjoint operator T may be
much bigger than the domain of T .

Unbounded operators are important for quantum mechanics in general, and so we must
use them in this section. We will later describe topological materials by phenomenological
models where the relevant observables are bounded. So we shall not highlight the technical
difficulties of unbounded operators. An example of a self-adjoint operator for which the
domain is crucial information is discussed in the proof of Theorem 3.3.
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Example 2.5. The momentum operators for a single particle are given by the formula

(Pjψ)(x1, x2, x3) := −i~ ∂

∂xj
ψ(x1, x2, x3)

for j = 1, 2, 3. Here the domain is the maximal subspace of ψ ∈ L2(R3, dx) for which Pjψ
defined as a distribution belongs to L2(R3,dx). More explicitly, Pj is defined at ψ ∈
L2(R3, dx) and maps it to ξ ∈ L2(R3,dx) if

〈ξ |ϕ〉 = 〈ψ |P ∗j ϕ〉

for all smooth functions ϕ : R3 → C of compact support, where

(P ∗j ϕ)(x1, x2, x3) := i~ ∂

∂xj
ϕ(x1, x2, x3).

Roughly speaking, we have shifted the unboundedness of differentiation to the auxiliary
function ϕ. This is how distributions and weak solutions of differential equations
work. The momentum operators are self-adjoint. The quickest proof uses that self-
adjointness is invariant under conjugation by unitaries and that the Fourier transform
on R3 intertwines Pj and the multiplication operatorXj (up to a constant factor depending
on the mass and the conventions used in the Fourier transform).

2.3 Functional calculus and spectral measure
How are “observables” seen in experiments? This depends on the Borel functional calculus.
Let T be a possibly unbounded self-adjoint operator on a Hilbert space H. The Borel
functional calculus for T maps a Borel function f : R → C to a normal operator f(T )
on H. It satisfies f(T ) =

(
f(T )

)∗. So f(T ) is self-adjoint if f is real-valued. The
operator f(T ) is bounded of norm at most ‖f‖∞ if f is bounded. The map f 7→ f(T )
is an algebra homomorphism (this claim must be interpreted suitably for unbounded
functions, but we do not discuss this here). If f ≥ 0, then f(T ) ≥ 0. If f(x) := x, then
f(T ) = T as expected. And the function Rλ(x) := (λ− x)−1 for λ ∈ C \ R is mapped to
the resolvent Rλ(T ) := (λ− T )−1. Actually, f(T ) depends only on the restriction of f to
the spectrum σ(T ) ⊆ R; that is, f(T ) = g(T ) if f |σ(T ) = g|σ(T ).

Proposition 2.6. Let ψ ∈ H be a state, that is, a unit vector, and let T be a possi-
bly unbounded self-adjoint operator on H. There is a unique regular Borel probability
measure µψ on R such that

〈ψ | f(T )ψ〉 =
∫
R
f(x) dµψ(x)

for all bounded Borel functions f : R→ C. The support of µψ is σ(T ).

Proof. Let C0(R) be the space of continuous functions on R that vanish at ∞. We define
a linear functional

ξ : C0(R)→ R, f 7→ 〈ψ | f(T )ψ〉.
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The properties of the functional calculus imply that this linear functional is contractive and
positive, that is, ‖f‖∞ ≤ 1 implies |〈ψ | f(T )ψ〉| ≤ 1 and f ≥ 0 implies 〈ψ | f(T )ψ〉 ≥ 0.
The Riesz–Markov–Kakutani Representation Theorem gives a unique regular Borel
measure µψ on R such that

〈ψ | f(T )ψ〉 =
∫
R
f(x) dµψ(x)

for all f ∈ C0(R). We have not defined the Borel functional calculus. So we cannot really
say why this formula continues to hold for bounded Borel functions. In fact, the Borel
functional calculus is defined to make this formula true. If f is the constant function 1,
then f(T ) is the identity operator on H. Therefore,

∫
R 1 dµψ(x) = µψ(R) = 1, that is,

the measure µψ is a probability measure; here we use that ψ is a unit vector.

The measure defined in Proposition 2.6 is called the spectral measure of T and ψ.
These spectral measures link quantum mechanical theory and experiment:

Assume that an experiment prepares the quantum mechanical system in the
state ψ and then observes T . If this experiment is repeated many times,
then the distribution of the measured values converges to the probability
distribution µψ. In particular, the expectation value of the measurement
is 〈ψ |Tψ〉 because the expectation value of µψ is 〈ψ |Tψ〉. And the measured
values belong to the support of µψ almost surely. Since µψ is supported in σ(T ),
it follows that the measured values belong to σ(T ) almost surely, no matter
which state ψ is used.

Now let X1, . . . , Xn be observables that “strongly” commute, that is, their resolvents
commute as bounded operators. Strong commutation for unbounded operators is a subtle
property, but we do not highlight this here. Bounded operators strongly commute if
and only if they commute in the usual sense. Assuming strong commutation, there
is a joint Borel functional calculus, which defines a densely defined normal operator
f(X1, . . . , Xn) for each Borel function f : Rn → C, which is bounded if f is bounded.
This map from Borel functions to operators has similar properties as for a single self-
adjoint operator. The definition of the spectral measure also extends to several strongly
commuting observables. And so does the link to experiments:

Several strongly commuting observables may be measured simultaneously, and
the probability distribution of the measured values is given by the spectral
measure associated to these observables and the state of the system.

Strongly commuting operators X1, . . . , Xn also have a “joint” spectrum in Rn. To
define it, let

γ : C0(Rn)→ B(H)

be the joint continuous functional calculus for the operators X1, . . . , Xn. The kernel
of γ is an ideal in C0(Rn). There is a closed subset Σ ⊆ Rn such that γ(f) = 0 if and
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only if f |Σ = 0. There is a unique injective ∗-homomorphism γ̇ : C0(Σ) → B(H) with
γ̇(f |Σ) = γ(f) for all f ∈ C0(Rn). The closed subset Σ ⊆ Rn is the joint spectrum of
X1, . . . , Xn. It has the following physical interpretation: the simultaneous measurement
of X1, . . . , Xn almost surely gives values in Σ, no matter which state ψ is used.
Example 2.7. We continue Example 2.3, considering the position observables X1, X2, X3
on the Hilbert space L2(R3,dx) describing a single particle. These three self-adjoint
operators strongly commute. Therefore, they have a joint Borel functional calculus and a
joint spectral measure in any state ψ. If f : R3 → C is a bounded Borel function, then
f(X1, X2, X3) is simply the operator of pointwise multiplication by f :(

f(X1, X2, X3)ψ
)
(x1, x2, x3) := f(x1, x2, x3) · ψ(x1, x2, x3)

for all (x1, x2, x3) ∈ R3, ψ ∈ L2(R3, dx). So the joint spectral measure µψ is given by∫
R3
f(x) dµψ(x) = 〈ψ | f(X1, X2, X3)ψ〉 =

∫
R3
ψ(x)f(x)ψ(x) dx1 dx2 dx3

=
∫
R3
f(x)|ψ(x)|2 dx1 dx2 dx3.

So µψ is the measure with the density function |ψ(x)|2 ∈ L1(R,dx). Therefore, experi-
ments that measure the position of the particle determine exactly the function |ψ|2, as the
density of the probability measure that describes the results of all position measurements.
The above results also show that the joint spectrum of the position observables is all

of R3. Indeed, the position of a particle can be anywhere in R3.
The image of the Borel functional calculus for the position observables is the algebra

L∞(R3, dx), represented on H = L2(R3, dx) by pointwise multiplication operators. This
subalgebra of B(H) is maximal Abelian, that is, an operator T ∈ B(H) that commutes with
all multiplication operators must itself be a multiplication operator. Therefore, any ob-
servable that can simultaneously be measured together with all three position observables
must itself be of the form f(X1, X2, X3) for some Borel function f . When we simultane-
ously measure X1, X2, X3 and f(X1, X2, X3) and get the values x1, x2, x3, y, then almost
surely y = f(x1, x2, x3). So measuring f(X1, X2, X3) in addition to X1, X2, X3 gives no
new information. Roughly speaking, we cannot measure more than the three position
observables at the same time. These simultaneous measurements tell us the absolute
value of ψ, but not its phase ψ/|ψ|. So they do not determine the state ψ uniquely.
Our intuition from classical mechanics says that we should measure both position and
momentum to describe the state of the system completely. The argument above already
shows, however, that they cannot commute with the position observables. So they cannot
be measured simultaneously with position.

2.4 Self-adjoint operators and representations of the real numbers
The joint Borel functional calculus applies to the three momentum operators. This
allows us to define the operators f(P1, P2, P3) for any Borel function f : R3 → C. This
is particularly interesting for the function fk(p) := exp(−ik · p) for k, p ∈ R3. The
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corresponding operator fk(P ) = exp(−ik · P ) is unitary. Since the functional calculus
is a unital ∗-homomorphism and exp(−ik · p) · exp(−il · p) = exp(−i(k + l) · p) and
exp(−i0 · p) = 1 for all k, l, p ∈ R3, these unitaries satisfy fk(P ) · fl(P ) = fk+l(P ) and
f0(P ) = idH. The properties of the Borel functional calculus also imply that the map
R3 3 k 7→ fk(P )ψ ∈ H is continuous for each ψ ∈ H. So k 7→ fk(P ) is a continuous
representation of the additive group R3. Formally,

∂

∂kj
exp(−ik · P )ψ

∣∣∣∣∣
k=0

l = −iPjψ = −~ ∂

∂xj
ψ.

Stone’s Theorem turns this into a precise statement. First, the vector ψ belongs to the
domain of Pj and Pjψ = iϕ if and only if the function R→ H, kj 7→ exp(−ikj · Pj)ψ is
differentiable at 0 with derivative ϕ. So a self-adjoint operator is determined uniquely
by the continuous group representation of R that it generates by functional calculus.
Conversely, any continuous representation of R is of this form for a unique self-adjoint
operator. And this generalises to a canonical bijection between continuous representations
of the additive group Rn and n-tuples of strongly commuting self-adjoint operators.

For the momentum observables, we may guess a continuous representation of R3 with
generators Pj , namely, the translation representation. Define

(τkψ)(x) := ψ(x− ~k)

for all k, x ∈ R3, ψ ∈ L2(R3,dx). The operators τk are clearly unitary and define a
continuous unitary representation of R3 on L2(R3,dx). We compute ∂

∂kj
τkψ(x)

∣∣∣
k=0

=
−~ ∂

∂xj
ψ(x). So the generators of τk are indeed the differential operators Pj := −i~ ∂

∂xj

for j = 1, 2, 3.

2.5 The Hamiltonian
What is the energy observable for a single particle? Clasically, the kinetic energy of a
particle is given by the momentum: Ekin = P 2/2m. This suggests to define it in quantum
mechanics by

Ekin :=
3∑
j=1

1
2mP 2

j = −
3∑
j=1

~2

2m
∂2

∂x2
j

.

The potential energy is a (Borel) function V : R3 → R of position. So it should be described
by the Borel functional calculus as V (X1, X2, X3). We have mentioned in Example 2.7
that this is the operator of pointwise multiplication by V : (V ψ)(x) := V (x) · ψ(x). The
total energy is the sum of both pieces:

H := −
3∑
j=1

~2

2m
∂2

∂x2
j

+ V (x). (2.1)

This very important operator is called the Schrödinger operator. It generates the dynamics
of the quantum mechanical system. Namely, let ψt be the state of the system at time t.
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This function R→ H solves the linear ordinary differential equation

i~dψt
dt = Hψt.

If ψ is the state at time t = 0, then this is solved by

ψt = Ut(ψ), Ut := exp(−iHt/~).

For this to make sense, we need the operator H above to be self-adjoint. This is a subtle
issue. We have not even specified the domain of H carefully, and self-adjointness depends
on the domain. There are, in fact, potentials for which the operator H above is not
self-adjoint. This is related to the problem in classical mechanics that an object may
escape to ∞ (or arrive from ∞) in finite time; then the time-development does not exist
as a one-parameter group of homeomorphisms of phase space. We shall ignore this issue
here and refer to [12,13].
The description of dynamics above uses a picture where the states change and the

observables are constant in time. So measuring the observable S at time t when the
system is in the state ψ at time 0 amounts to measuring S on the state Ut(ψ). This is
equivalent to measuring the observable U−tSUt on ψ. So there is an equivalent picture
where the state is treated as constant and the observables change by S 7→ U−tSUt =
exp(iHt/~)S exp(−iHt/~). This picture is less intuitive, but often useful.

2.6 Bound states
One of the most important questions about a quantum mechanical system concerns its
long-term dynamics. We are particularly interested in the “transport” properties of H:
is a state ψ “moved” by the dynamics generated by H? There are some clear cases
for non-movement and movement, and there is a lot of room in between where more
sophisticated notions are needed to describe the transport behaviour. We begin with the
obvious case of non-movement.

Definition 2.8. A unit vector ψ with H(ψ) = λ · ψ for some λ ∈ R is called a bound
state of the Hamiltonian H.

So a bound state is just an eigenvector of H. Let ψ be a bound state of H with
eigenvalue λ. Then exp(−iHt/~)ψ = exp(−iλt/~) · ψ. So the dynamics generated by H
only multiplies ψ with a time-dependent phase factor. Such a phase factor does not
change the spectral measures for any observable T because

〈exp(−iλt/~) · ψ | f(T ) exp(−iλt/~) · ψ〉 = 〈ψ | f(T )ψ〉

for all operators f(T ) and all t ∈ R. Hence when we prepare the system in the state ψ, then
measuring an observable T at some time t ∈ R gives the same probability distribution for
all times t. In particular, the position of the particle is described by the same probability
distribution for all times t. So the particle described by the wave function ψ does not
move. This justifies calling states as above “bound” states.
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In general, the eigenvectors of a self-adjoint operator on a Hilbert space with different
eigenvalue are orthogonal. There is a maximal orthonormal set of eigenvectors. But
this need not be a basis. To understand what happens, we turn the Hamiltonian into a
multiplication operator. One version of the Spectral Theorem for self-adjoint operators
says that this is possible:

Theorem 2.9. Let H be a Hilbert space and let T be a self-adjoint operator on H. There
are a σ-finite measure space (X,µ), a measurable function T̂ : X → R, and a unitary
U : H → L2(X,µ), such that UTU∗ is the operator of pointwise multiplication with T̂
on L2(X,µ), with its canonical domain {ψ ∈ L2(X,µ) : T̂ · ψ ∈ L2(X,µ)}.

This theorem makes the long-term dynamics of a quantum mechanical system trans-
parent. The functional calculus is compatible with conjugation by unitaries:

U exp(−iTt/~)U∗ = exp(−iUTU∗t/~).

And for the multiplication operator UTU∗, exponentiation simply gives the operator of
multiplication by the function exp

(
−iT̂ t/~

)
.

Now we consider the most obvious case of movement. This is the “free” dynamics,
where the potential energy vanishes, so the Hamiltonian H is just the kinetic energy:

H = −
3∑
j=1

~2

2m
∂2

∂x2
j

.

In a corresponding classical system without potential energy, a particle just moves with
constant speed. In particular, unless its constant speed is exactly 0, the particle will
eventually leave any finite region. In quantum mechanics, the free Hamiltonian H above
commutes with the momentum operators. Therefore, the momentum is constant in time:
exp(−iHt/~)Pj exp(iHt/~) = Pj for j = 1, 2, 3. So the particle moves with constant
momentum. And the probability that this momentum vanishes is 0. So we expect that,
almost surely, the particle will eventually leave any compact region in position space. To
make this precise, we should turn H into a multipliccation operator. This is accomplished
here by the Fourier transform on R3, which turns H into the operator of pointwise
multiplication with the function c · (x2

1 + x2
2 + x2

3) for an unimportant positive constant c
that depends on conventions. In particular, the operator H has no eigenvectors that
are in L2(R3,dx), that is, there are no bound states. The functions x 7→ exp(−ik · x)
for k ∈ R3 are eigenfunctions of the differential operator H with eigenvalue ~‖k‖2/2m,
but these functions are not square-integrable. In a sense, this function outside the
Hilbert space describes a wave that travels with constant speed. The Fourier transform
f̂(x) :=

∫
R3 f(k) exp(−ik · x) dk gives us mixtures of such waves. If f has small support

around k, the function f̂ describes a “wave packet” that consists of waves that have
approximately the same speed. The dynamics will multiply the function f pointwise with
exp(−ict‖k‖2). This factor oscillates more and more wildly on the support of f , even if
the latter is very small. Nevertheless, the support does not change. So the wave packet
will still keep the same distribution of momenta, only the shape of the wave packet may
change as time flows.
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We could now try to make precise in which sense the states of the form f̂(x) :=∫
R3 f(k) exp(−ik · x) dk describe “transport” of a particle with approximately constant
speed, or that the dynamics will eventually move the particle out of any compact region
in R3. But the details get subtle and confusing. There are different ways to define what
it means for a state to remain “localised” (not moving) or to be “delocalised” (moving),
and the different notions do not agree. The existing mathematical theory has its merits,
but it cannot yet explain all the phenomena expected by physicists.

2.7 Rotations and angular momentum
Another important symmetry of space besides translations are rotations. Since the
Lebesgue measure on R3 is invariant under rotations, they act on L2(R3, dx) in an obvious
way by unitaries: if A ∈ SO(3), then the corresponding unitary operator on L2(R3,dx)
is the unitary defined by (σAψ)(x) := ψ(A−1 · x) for all ψ ∈ L2(R3,dx), x ∈ R3. This
defines a unitary representation of SO(3) on L2(R3, dx).
Any rotation may be written as a product of rotations around the coordinate axes

(compare “Euler angles”). Rotations around an axis form a circle, which is a quotient
of R. So a continuous representation of the group SO(3) is determined uniquely by the
generators of rotations around the three coordinate axes. Up to the constant ~, these
generators are the angular momentum operators L1, L2, L3. Rotations around the x1-axis
are of the form

R1(ϕ) :=

1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

 .
They act on L2(R3,dx) by

σ(R1(ϕ))ψ(x) = ψ(R1(−ϕ)x) = ψ(x1, cos(ϕ)x2 + sin(ϕ)x3,− sin(ϕ)x2 + cos(ϕ)x3).

The generator of this continuous representation of R is the angular momentum operator L1:

(L1ψ)(x) = i~ ∂

∂ϕ
σ(R1(ϕ))ψ(x)

∣∣∣∣
ϕ=0

= i~x3
∂ψ

∂x2
− i~x2

∂ψ

∂x3
.

The formulas for the other axes are obtained by cyclic permutation of the coordinates:

L1 = i~x3
∂

∂x2
− i~x2

∂

∂x3
,

L2 = i~x1
∂

∂x3
− i~x3

∂

∂x1
,

L3 = i~x2
∂

∂x1
− i~x1

∂

∂x2
.

2.8 Spin
Our discussion so far only applies to particles of spin 0. Electrons or protons have spin 1/2.
The correct Hilbert space to describe such particles is L2(R3, dx)⊗ C2. Equivalently, we
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take square-integrable functions with values in C2 or pairs of square-integrable scalar-
valued functions. These two functions correspond to the spin-up and spin-down internal
degrees of freedom. More generally, a particle with spin s/2 for s ∈ N is described by the
Hilbert space

H := L2(R3,dx)⊗ Cs+1.

The position and momentum operators are defined on this Hilbert space by exactly the
same formulas as on L2(R3,dx), now applied to functions ψ : R3 → Cs+1. The angular
momentum operators on H are of the form

Ltot
i := Li ⊗ 1 + 1⊗ Si, i = 1, 2, 3,

for certain self-adjoint matrices Si acting on Cs+1. Each Ltot
i is self-adjoint and so

generates a continuous representation σi of R on H. When we interpret σi(ϕ) as the
action of rotation by the angle ϕ, we meet a problem, however: the rotation by 2π = 360◦
is the operator ψ 7→ (−1)sψ, which is not the identity map for half-integer spin. Only
σi(4π) = σi(2π)2 is always the identity map.
Consider the unitary ψ 7→ λ · ψ for some λ ∈ C with |λ| = 1, briefly, λ ∈ U(1). If T

is a self-adjoint operator on H, then 〈ψ |Tψ〉 = 〈λ · ψ |T (λ · ψ)〉. The same holds for
f(T ) for any Borel function. So spectral measures are not changed by the unitary above.
Therefore, applying this unitary has no physical consequences. Multiplication by a scalar
in U(1) is, in a sense, the “identity” automorphism of the physical system. This is best
understood in the picture where a unitary U moves observables instead of states. Instead
of mapping states by ψ 7→ Uψ and leaving observables fixed, we may leave states fixed and
move observables by T 7→ U∗TU . This has the same effect on the inner products 〈ψ |Tψ〉
and is therefore physically equivalent. Now U∗TU = T if U is scalar multiplication with
some λ ∈ U(1). So it describes the identity automorphism of the space of observables. In
fact, the representations of R generated by the total angular momentum operators Ltot

i

generate a representation of SO(3) on observables. That is, when we write g ∈ SO(3) as
a product of rotations around the coordinate axes, say, g = R1(ϕ1)R2(ϕ2)R3(ϕ3), then
the resulting operator σ(g) := σ1(ϕ1)σ2(ϕ2)σ3(ϕ3) on L2(R3, dx)⊗ Cs+1 depends on the
choice of ϕ1, ϕ2, ϕ3, but only by a scalar in U(1). So the operator T 7→ σ(g)Tσ(g)∗ on
observables is well defined. And if g, h ∈ SO(3), then σ(g)σ(h) = τ(g, h)σ(gh) for some
τ(g, h) ∈ U(1) (actually, we even have τ(g, h) ∈ {±1} here). So the action of SO(3) on
observables becomes an ordinary group representation.

Definition 2.10. Let G be a group. A map % : G→ U(H) that satisfies

%(gh) = τ(g, h)%(g)%(h)

for all g, h ∈ G with scalars τ(g, h) ∈ U(1) is called a projective representation of G.

The upshot of the discussion above is that the “representation” of rotations that
is relevant for a particle of spin s/2 is only a projective representation of SO(3) on
L2(R3,dx) ⊗ Cs+1 if s is odd; in particular, this is the case for electrons and protons.
But a projective representation is good enough for quantum mechanics because it induces
an ordinary group representation on the algebra of observables.
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For the group SO(3), we may get rid of the adjective “projective” when we replace it
by its universal covering, which is isomorphic to the group SU(2). In general, a Lie group
with torsion-free fundamental group has no non-trivial projective representations. That
is, any projective representation becomes an ordinary representation when we multiply
the unitaries with suitable scalars in U(1). Therefore, passing to a universal covering
removes the difficulty of projective representations. The price is to replace the rotation
group SO(3) by the less intuitive group SU(2). It also follows that groups such as Rn
or Tn := Rn/Zn have no non-trivial projective representations because Rn has trivial
fundamental group and Tn has the torsion-free fundamental group Zn.
Both SO(3) and SU(2) are compact groups. Therefore, any representation of them

splits as a direct sum of irreducible representations in a unique way, and irreducible
representations are finite-dimensional. The group SU(2) has a unique irreducible repre-
sentation on Cd for each d ≥ 1. This is exactly the representation that is generated by
the spin-angular momentum operators S1, S2, S3 on Cd, that is, with spin s = (d− 1)/2.
So the possible values of the spin are in bijection with the irreducible representations
of the group SU(2) or, equivalently, the irreducible projective representations of the
group SO(3).
I do not plan to go much further into the story of the spin. Honesty requires that

it be mentioned because the most important particles for our course have spin 1/2. So
we should replace the Hilbert space L2(R3,dx) by L2(R3,dx) ⊗ C2. If I knew more
quantum chemistry, I should say much more about the spin because features of the spin
(“spin–orbit coupling”) have been the main idea to find materials that are non-trivial
topological insulators. It must be pointed out also that spin–orbit coupling is a relativistic
effect. The Schrödinger equation treated above does not yet contain it.

2.9 Symmetries
We have already discussed some special symmetries – translations and rotations – and we
have found that these are represented on the Hilbert space of the quantum mechanical
system by a projective representation of the underlying symmetry group. But there are
also symmetries that are represented by anti-unitary operators.

Definition 2.11. An anti-unitary operator on a Hilbert space H is an R-linear bijection
Θ: H → H with 〈Θ(ψ) |Θ(ϕ)〉 = 〈ϕ |ψ〉 for all ϕ,ψ ∈ H. An involution is a map H → H
whose square is the identity map.

By polarisation, the condition 〈Θ(ψ) |Θ(ϕ)〉 = 〈ϕ |ψ〉 for all ϕ,ψ ∈ H holds if and
only if Θ(ψ) is a unit vector for all unit vectors ψ.

Wigner’s Theorem says that any symmetry of a quantum-mechanical system is realised
by a unitary or anti-unitary operator on the Hilbert space (compare [3, Section 1.1]). So
there are no other possibilities. The product of two anti-unitary operators is unitary.
The symmetry of time-reversal cannot act by a unitary operator. This is because it

leaves positions unchanged, but it maps momenta (like velocities) to their negatives.
A unitary operator U doing this cannot leave the canonical commutation relations

15



[Xj , Pj ] = i~ intact:

[U∗XjU,U
∗PjU ] = [Xj ,−Pj ] = −i~ = −U∗i~U.

But if U is anti-unitary, then −i~ = U∗i~U . So time-reversal symmetry must act by an
anti-unitary operator Θ. When we do time-reversal twice, it should be a trivial symmetry,
that is, Θ2 = λ for some λ ∈ U(1). Actually, since Θ2 ◦Θ = Θ ◦Θ2 and λ ◦Θ = Θ ◦λ, we
must have λ = ±1. Both signs occur. Roughly speaking, Θ2 = +1 for a single boson (a
particle with integer spin) and Θ2 = −1 for a single fermion (a particle with half-integer
spin).
Example 2.12. Let Θ be the operator of complex conjugation on L2(R3,dx). That is,
(Θψ)(x) := ψ(x) for all x ∈ R3. This operator is an anti-unitary involution. Let H
be a Schrödinger operator as in (2.1). Then Θ−1HΘ = ΘHΘ = H. This implies
Θ−1 exp(itH)Θ = exp(−itH). So the action of Θ has the effect of replacing a time t
by −t. In fact, Θ is the standard time-reversal symmetry for a particle of spin 0.
If Θ0 and Θ are anti-unitary operators on H, then U := ΘΘ−1

0 is a unitary operator
on H with Θ = UΘ0. In this way, we may rewrite all anti-unitaries Θ on H through
unitaries and a “reference anti-unitary” Θ0. We are particularly interested in anti-unitary
operators with square ±1. If, say, Θ2

0 = 1, then Θ2 = (UΘ0)2 = UΘ−1
0 UΘ0, and we want

this to be ±1. Since UU∗ = 1, this is equivalent to U∗ = ±Θ−1
0 UΘ0 or U = ±(Θ−1

0 UΘ0)∗.
If Θ0 is a complex conjugation operator as in Example 2.12, then Θ−1

0 UΘ0 behaves like
the complex conjugate of U and so (Θ−1

0 UΘ0)∗ behaves like a transpose of U . So the
condition U = ±(Θ−1

0 UΘ0)∗ means that U is symmetric or skew-symmetric. We now
consider a simple case of this.
Example 2.13. For a single electron, the time-reversal symmetry on L2(R3,dx) ⊗ C2

acts by an operator of the form Θ = (1 ⊗ U)Θ0, where Θ0 is complex conjugation
as in Example 2.12 and U ∈ M2(C) is a unitary matrix that satisfies UU = −1, so
that Θ2 = −1; here U means the matrix with the complex conjugate entries. For a
unitary matrix, UU = −1 is equivalent to U = −U∗, and to U = −U t, that is, U is
skew-symmetric. Up to multiplication by scalars, which does not matter, this forces

U =
(

0 −1
1 0

)
.

So
Θ(ψ1, ψ2) =

(
−ψ2, ψ1

)
for ψ1, ψ2 ∈ L2(R3,dx).
Let Θ be a unitary or anti-unitary operator on the Hilbert space H of a quantum

mechanical system. For it to be a symmetry, it is usually required that Θ commutes with
the Hamiltonian, Θ ◦H = H ◦Θ.

Definition 2.14. A time-reversal symmetry of the system is an anti-unitary operator
with Θ ◦H = H ◦Θ and Θ2 = ±1.
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Time-reversal symmetry is a crucial feature for the most interesting topological insula-
tors. Since we are mostly dealing with Fermions, the sign in most cases is Θ2 = −1.

There is no special name for unitary operators with Θ◦H = H ◦Θ, such as rotations or
translations or reflections: these are just called symmetries. In the context of topological
materials, most authors also allow operators that satisfy Θ ◦H = −H ◦ Θ instead of
Θ ◦H = H ◦Θ.

Definition 2.15. An operator with Θ ◦H = −H ◦Θ and Θ2 ∈ U(1) is called a chiral
symmetry when it is unitary, and a particle-hole symmetry when it is anti-unitary.

The name particle-hole symmetry will be explained at the end of Section 2.10. If Π is
a particle-hole symmetry, then Π is anti-unitary and hence Π2 = ±1 as for time-reversal
symmetries. If Ξ is a chiral symmetry, then so is µ · Ξ for any µ ∈ U(1), and this unitary
even describes the same symmetry. Since (µ ·Ξ)2 = µ2 ·Ξ2 = µ2 · λ, the choice µ = λ−1/2

makes (µ · Ξ)2 = 1. So it is no loss of generality to assume Ξ2 = 1 for chiral symmetries.
The condition Ξ ◦H = −H ◦ Ξ is equivalent to Ξ−1 ◦H ◦ Ξ = −H. Then H and −H

have the same spectrum because the spectrum is invariant under conjugating by unitaries
and anti-unitaries. So a particle-hole or chiral symmetry is impossible if the Hamiltonian
is bounded below and not bounded above. Since this is quite common, some authors
consider symmetries with Ξ ◦ H = −H ◦ Ξ to be unphysical and try to avoid them
by describing the system in other ways (see, for instance, [9]). We shall argue below
that Hamiltonians that are unbounded both above and below are physically reasonable
in certain circumstances. And we shall describe materials using tight-binding models.
Since these have bounded Hamiltonians anyway, they admit chiral and particle-hole
symmetries.

A Schrödinger operator with potential does not have any obvious chiral or particle-hole
symmetries. The topological insulator materials studied so far are based on spin–orbit
coupling, which is a relativistic effect. So the Schrödinger operator is not the right
starting point for such systems. In fact, the physics articles usually work in tight-binding
models, work in a very abstract setting without writing down concrete models, or study
a Schrödinger operator with periodic potential.
Let G be the group of generalised symmetries of the physical system, allowing time-

reversal, particle-hole and chiral symmetries. As in [3], we define

ϕ(g) =
{

+1 if g is unitary,
−1 if g is anti-unitary,

c(g) =
{

+1 if Hg = gH,
−1 if Hg = −gH.

for g ∈ G. A simple calculation shows:

Lemma 2.16. The two maps ϕ, c : G ⇒ {±1} are group homomorphisms, that is,
ϕ(gh) = ϕ(g)ϕ(h) and c(gh) = c(g)c(h) for all g, h ∈ G.

We combine the two homomorphisms into a single homomorphism

(ϕ, c) : G→ {±1} × {±1} = {1, θ, π, ξ},
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where 1 = (+1,+1), θ = (−1,+1), π = (−1,−1), ξ = (+1,−1). The range of (ϕ, c)
is a subgroup H ⊆ G. There are five possibilities for H: the trivial group, the whole
group, and the groups {1, x} for x ∈ {θ, π, ξ}. If H = {1}, then the system has only
ordinary symmetries. If H = {θ}, then there is a time-reversal symmetry, but neither a
particle-hole nor a chiral symmetry. If H = {π}, there is a particle-hole symmetry, but
neither a time-reversal nor a chiral symmetry. If H = {ξ}, there is a chiral symmetry,
but neither a time-reversal nor a particle-hole symmetry. If H = {1, θ, π, ξ} then all
kinds of symmetries are present. The argument above shows that if the system has two
of the symmetries {Θ,Π,Ξ}, then it automatically has the third type of symmetry. For
instance, a product ΘΠ of a time-reversal symmetry and a particle-hole symmetry is a
chiral symmetry because θπ = ξ.

Most of the work on topological insulators so far focusses on the case when G = G0×H,
where G0 only contains translations, and (ϕ, c) is the projection to the second factor.
In particular, there are canonical lifts Θ, Π or Ξ in G for the non-trivial elements in H.
And these form an isomorphic copy of H ⊆ {±1}2. In particular, these symmetries
commute with one another (and with G0 as well), and they square to 1. When we treat
symmetries as Hilbert space operators, however, then a relation such as Θ2 = 1 in G
only means that Θ2 ∈ U(1) because all scalars in U(1) give the trivial symmetry of the
quantum mechanical system. For time-reversal and particle-hole symmetries, we know
that Θ2 = ±1 and Π2 = ±1. For a chiral symmetry Ξ it is no loss of generality to assume
Ξ2 = 1. Listing all the possible symmetry types and signs gives the ten cases listed in
Table 1. The rows in this table are ordered in a way that becomes natural when one
describes these symmetries using Clifford algebras.

H Θ2 Π2

{1}
{1,Ξ}
{1,Θ} +1

{1,Θ,Π,Ξ} +1 −1
{1,Π} −1

{1,Θ,Π,Ξ} −1 −1
{1,Θ} −1

{1,Θ,Π,Ξ} −1 +1
{1,Π} +1

{1,Θ,Π,Ξ} +1 +1

Table 1: Table of symmetry types.

2.10 Single-Particle approximation
Recall that a single electron is described by a wave function in H := L2(R3,dx) ⊗ C2.
Then a system of k electrons is described by the exterior power ΛkH, completed to a
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Hilbert space; this is the same as the subspace of antisymmetric vectors in the Hilbert
space tensor product of k copies of H. However, this Hilbert space is so high-dimensional
that it is impossible to work with. Already a sample that weighs only 1 g contains
about 1024 electrons. So we need approximate models for all actual computations.

The models that we shall consider are all “single-particle models”. Roughly speaking,
we pretend that we study one of the many electrons, moving in the potential created by
the other electrons and the atomic nuclei. So we work in the same Hilbert space H as for
a single electron. The Hamiltonian H is an “effective“ Hamiltonian for the electron that
we singled out. It is reasonable to expect H to be a Schrödinger operator as in (2.1) once
again. But now we must use an “effective” mass and an “effective” potential, which take
into account the effects of all the other electrons. When we move our electron, then by the
Coulomb repulsion this will also move the other nearby electrons. So we are effectively
moving several electrons at once. This increases the inertial mass of the electron and
forces us to work with an “effective” mass in the kinetic energy. Physicists also speak
of a quasi-particle because the object that we are describing is not a true particle, but
a particle-like approximation for the behaviour of one electron in the presence of many
others.
A crucial feature is still missing, namely, the Pauli exclusion principle: two electrons

cannot occupy the same state. This is made mathematically precise by the construction
of the Hilbert space for a system of several electrons: we use the antisymmetric subspace
in the tensor product. In the single-particle approximation, states occupied by other
electrons are forbidden for the electron that we are looking at. A flexible Ansatz to
model this is to add an operator R on H with 0 ≤ R ≤ 1, such that the probability
for a state ψ to be occupied is 〈ψ |Rψ〉; this also allows the occupation of states to be
uncertain. Under simplifying assumptions that we shall not discuss, statistical physics
predicts that this operator R is the following function of the Hamiltonian (that is, the
energy) and the temperature:

WT (E) =
(

exp
(
E − µ
kBT

)
+ 1

)−1
,

where kB is the Boltzmann constant, T is the temperature, E is the energy, and µ is the
chemical potential or Fermi energy. The operator R is defined by functional calculus
for the Hamiltonian: R = WT (H). The function WT is also called the Fermi–Dirac
distribution.

For any temperature T , the functionWT is strictly decreasing and satisfiesWT (µ) = 1/2.
This characterises the Fermi energy. And

lim
T↘0

WT (E) =


1 E < µ,

1/2 E = µ,

0 E > µ.

So in the zero temperature limit, the states below the Fermi energy are completely filled
and those states above are empty. Thus our extra electron is forced to occupy a state
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above the Fermi level. If E is not an eigenvalue, then we may model this situation more
easily by shrinking the Hilbert space to the image of χ[µ,∞)(H), the spectral projection
of H for the interval [µ,∞). We shall, however, not use this simplification here.
This completes the description of a single-particle model. It is given by the Hilbert

space H, the Hamiltonian H, and the Fermi energy µ. This is, of course, a very simple and
crude model. It cannot describe truly quantum features of the interaction between the
many electrons, and some interesting physical effects – notably, the fractional quantum
Hall effect – cannot be explained without these. It seems, however, that the explanation
of the fractional quantum Hall effect is still not mathematically rigorous and there
has not yet been much progress in understanding topological phases in more complete
many-particle models. In this course, we will treat many-particle systems only by the
one-particle approximation.

Now we can explain the name “particle-hole symmetry” for an anti-unitary operator Π
with ΠH = −HΠ. Here we are treating a system with Fermi energy 0: this is no true
restriction because adding a constant to H will not change the physics, and this allows us
to shift the Fermi energy. Instead of studying the behaviour of an extra electron, we may
also remove an electron and study the behaviour of a “hole”. This hole may also be viewed
as a positron, the anti-particle of the electron. Replacing electrons by positrons has the
effect of replacing H by −H and of taking complex conjugates everywhere (because of
charge conjugation). An anti-unitary operator Π with ΠH = −HΠ exists if and only if
an electron (particle) and a positron (hole) have the same Hamiltonian, that is, if they
are governed by the same physics.
For an ordinary quantum mechanical system, it is reasonable to assume that the

Hamiltonian is bounded below. A system with a Hamiltonian that is not bounded below
has no ground state. The system can drop to lower and lower energy levels, emitting
radiation all the time (this is caused, say, by interaction with light). So the system
effectively contains an infinite amount of energy. And if the description of the system is
complete, then the Hamiltonian should be unbounded above because otherwise there is
a maximal amount of energy that may be put into the system. But using sufficiently
hard radiation, we can, in principle, put as much energy as we like into any quantum
mechanical system. When we are dealing with the effective Hamiltonian for a Fermionic
system, however, then it is no problem if the Hamiltonian is unbounded below. All states
with an energy below the Fermi energy are filled – or almost filled if the temperature
is finite. At zero temperature, the ground state is given by the lowest energy in the
spectrum that lies above the Fermi energy. Even at finite temperature, we cannot extract
an infinite amount of energy out of the system.
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3 The band theory of conductors and insulators
In this section, we explain that the electronic properties of crystalline materials are
described by periodic Hamiltonians. We describe the structure of the spectrum of such
Hamiltonians: it is a union of intervals, called energy bands. If the Fermi energy belongs
to the interior of the spectrum, the material is a conductor. If the Fermi energy lies
outside the spectrum, the material is an insulator.

3.1 Hamiltonians for crystalline materials
An actual crystal has a finite size. The mathematical description becomes easier, however,
if we pretend its size to be infinite. This is not a bad approximation because even 1 mm
is already pretty large from the point of view of quantum mechanics, and the behaviour
of electrons in the interior of the crystal, sufficiently far from the boundary, may be
described very well by an approximation where we let the crystal extend all the way to
infinity. Special things happen at the boundary of the crystal. In fact, these are what
make topological insulators so interesting. In this section, we disregard boundary effects
and consider a crystal that fills all of space.
The main feature of crystals is periodicity: there is a lattice Λ ⊆ Rd, that is, a

cocompact discrete subgroup, so that the crystal is invariant under translations by Λ. A
crystal is, of course, an object in dimension d = 3. We also treat the cases 1 ≤ d ≤ 2
because they are easier and there are relevant physical situations like thin foils or wires
of materials. And the general theory works for any d ∈ N. Any lattice is of the form

Λ = Za1 + · · ·+ Zad

for some basis a1, . . . , ad ∈ Rd. To simplify notation, we shall often change the basis so
that Λ = Zd. This change of basis is usually not isometric, so it distorts the geometry.
Hence there are situations when we have to remember the actual form of Λ.
We are interested in the electronic properties of a crystalline material. We assume

that these are described well in the single-particle approximation (see Section 2.10).
This gives us a certain Hamiltonian H on the single-particle Hilbert space H, which is
L2(R3, dx)⊗C2 for an electron in R3. When we work non-relativistically, it is reasonable
to assume that the effective Hamiltonian is a Schrödinger operator as in (2.1) with
a potential V . The function V is Λ-periodic because our crystal has this periodicity.
I cannot say how to compute this potential or the effective mass in the Schrödinger
operator. I shall leave out the multiplicity factor C2 in the following. The argument
below still works if we tensor L2(Rd) with CN for any N ≥ 1 and allow the potential to
be a matrix-valued periodic function instead of a scalar-valued function.
Our goal is to understand the structure of the spectrum of the Hamiltonian H. We

first discuss the translation operators because their interaction with H causes the band
structure of the spectrum that we are interested in.
If x ∈ Λ, then there is a unitary operator on H that describes translation by x.

On L2(Rd,dx) ⊗ CN , it acts by (Sxf)(y) := f(y − x). These operators clearly satisfy
SxSy = Sx+y and S−x = S∗x for x, y ∈ Λ, and S0 is the identity map. Therefore, any
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translations Sx for x ∈ Λ may be writen as a product of the translations Sj for 1 ≤ j ≤ d
and their adjoints. The operators Sj are unitary and hence have spectrum in U(1).
We assume that the Hamiltonian H strongly commutes with the translations Sx for all

x ∈ Λ or, equivalently, with Sj for 1 ≤ j ≤ d. This assumption is reasonable because of
the periodicity of the crystal. We should be aware, however, that this is an idealisation.
A real-life crystal always has impurities. And its temperature will be non-zero. This
causes the atomic nuclei to move in a random way. This destroys exact periodicity.

Definition 3.1. Let f ∈ L2(Rd, dx). Let Td := Rd/Zd. The Bloch transform of f is the
function Td × [0, 1]d → C defined by

(Bf)(k, x) :=
∑
n∈Zd

exp(2πik · n) · f(x− n).

The Bloch transform is a relative of the Fourier transform. As for the Fourier transform,
its definition on square-integrable functions is slightly trickly. If f ∈ L2(Rd, dx), then the
sum

∑
n∈Zd exp(2πik · n) · f(x+ n) may diverge for some k, x. The following proposition

shows, however, that the sum exists for almost all k, x and defines a function in L2(Td ×
[0, 1]d, dx).

Proposition 3.2. The Bloch transform defines a unitary operator from L2(Rd,dx) to
L2(Td × [0, 1]d,dx).

Proof. We may decompose Rd as a disjoint union of translates of the unit cube: Rd =⊔
n∈Zd [0, 1)d + n. So Rd ∼= Zd × [0, 1)d, and the Lebesgue measure corresponds to the

product measure of the Lebesgue measure on [0, 1)d and the counting measure on Zd.
We may replace [0, 1)d by [0, 1]d because they differ by a set of measure 0. So we get a
unitary operator

L2(Rd, dx) ∼= `2(Zd)⊗ L2([0, 1]d,dx).

In addition, the Fourier transform is a unitary operator from `2(Zd) to L2(Td), and it
induces a unitary operator

`2(Zd)⊗ L2([0, 1]d,dx)→ L2(Td)⊗ L2([0, 1]d,dx) ∼= L2(Td × [0, 1]d).

The composite unitary operator from L2(Rd) to L2(Td×[0, 1]d) is the Bloch transform.

The definition of the Bloch transform continues to make sense for x ∈ Rd instead of
x ∈ [0, 1]d, and we shall now extend the definition in this way. The resulting function on
Td × Rd satisfies

(Bf)(k, x+ n) = exp(2πik · n) · (Bf)(k, x) (3.1)

for all k ∈ Td, x ∈ Rd, n ∈ Zd. This says that the Bloch transform simultaneously
turns all translation operators for n ∈ Zd into multiplication operators. This is useful
because the Hamiltonian strongly commutes with the translations. A similar strategy is
used to determine the spectrum of, say, the hydrogen atom: first one diagonalises the
angular momentum operators, which strongly commute with the Hamiltonian because of
rotational symmetry.
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A function that satisfies the twisted periodicity condition ϕ(x+n) = exp(2πik ·n) ·ϕ(x)
for all x ∈ Rd, n ∈ Zd for some k ∈ Td is also called a Bloch wave. Let k̂ ∈ Rd lift k.
Then we may rewrite a Bloch wave ϕ as exp

(
2πik̂ · x

)
· u(x) with a Zd-periodic function

u = exp
(
−2πik̂ · x

)
· ϕ(x). on Rd. Summing up, a Bloch wave modulates the plane wave

exp
(
2πik̂ · x

)
of momentum 2πk̂ by a periodic factor.

We now rewrite our Schrödinger operator with Zd-periodic potential using the Bloch
transform. For this purpose, we must discuss some unbounded operator technicalities.
A Schrödinger operator is unbounded and therefore not defined on all functions. In
particular, we need some differentiability for the Laplace operator to be defined. We
prefer to work with a core, that is, a subset of the domain that is dense in the graph
norm. The smooth functions with compact support or the Schwartz functions form such
a core. The actual self-adjoint Schrödinger operator is the closure of the operator on this
core given by the same formula. The Bloch transform of a Schwartz function on Rd is
a smooth function ψ : Td × Rd → C satisfying the above twisted periodicity condition
in the second variable. Conversely, one may show that any such smooth function is the
Bloch transform of a unique Schwartz function on Rd. Thus the smooth Bloch functions
become a core of the Bloch transform of our Schrödinger operator. The Schrödinger
operator acts on a smooth function ψ : Td × Rd → C by the same formula as (2.1):

(Hψ)(k, x) := −
d∑
j=1

~2

2m
∂2ψ

∂x2
j

(k, x) + V (x). (3.2)

This operator leaves the k-variable untouched: there is a family of operators (Hk)k∈Td

such that (Hψ)(k, x) = Hk(x 7→ ψ(k, x)). Actually, it may seem at first sight that the
family of operators Hk is constant because the formula in (3.2) is the same for all k.
This is not the case, however, because the boundary conditions are an integral part of an
unbounded operator. Each Hk is a self-adjoint operator on L2([0, 1]d), and the formula
defining it is the same for all k, but the domains are different: the smooth functions that
satisfy the boundary condition given by (3.1) for a given k ∈ Td form a core for Hk.
We are going to prove that the operators Hk for k ∈ Td are self-adjoint and depend

continuously on k. The relevant notion of continuity here is the continuity of the resolvents
(λ−Hk)−1 for fixed λ ∈ C\R; the operator (λ−Hk)−1 exists for all λ ∈ C\R because Hk

is self-adjoint.

Theorem 3.3. Let V : Rd → R be a Zd-periodic, bounded Borel function. Rewrite the
Schrödinger operator with potential V in terms of operators Hk on Bloch wave functions
for k ∈ Td as above. If k ∈ Td, then the closure of the unbounded operator Hk is
self-adjoint and bounded below by a uniform constant, and its resolvent (λ−Hk)−1 for
λ ∈ C \ R is compact. The map k 7→ (λ−Hk)−1 for fixed λ ∈ C \ R is norm-continuous.

Proof. We first discuss the easy case when the potential is 0. Let H0
k be the operator

in (3.2) with V = 0 and given k ∈ Rd. The functions exp(2πi(k + n) · x) for n ∈ Zd are
Bloch waves with the same quasi-momentum k+ n ≡ k ∈ Td. They form an orthonormal
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basis of the space of L2([0, 1]d). They are eigenfunctions of H0
k :

−
3∑
j=1

~2

2m
∂2

∂x2
j

exp(2πi(k + n) · x)

= − ~2

2m(2πi(k + n))2 exp(2πi(k + n) · x) = 2π2~2

m
(k + n)2 exp(2πi(k + n) · x).

So H0
k has an orthonormal basis of eigenvectors

(
exp(2πi(k+n) ·x)

)
n∈Zd with eigenvalues

(k+n)2 ·2π2~2/m. These eigenvectors and eigenvalues depend continuously on k ∈ Rd. A
simple argument shows now that the resolvents of H0

k are continuous functions of k ∈ Rd.
Since H0

k is periodic, so are the resolvents. Hence this continuous function descends to a
continuous function on Td. The eigenvalues of H0

k are non-negative, and for any C > 0,
there are only finitely many eigenvalues n ∈ Zd with (k + n)2 · 2π2~2/m ≤ C. So H0

k is a
positive operator with compact resolvent, that is, the operators (λ−H0

k)−1 for λ /∈ σ(H0
k)

are compact. We have verified the assertions of Theorem 3.3 in the case V = 0. And
the other claims about H are also easy to check in this case. By the way, the spectrum
of H0 is equal to [0,∞).
Now we are treat the operators Hk with a bounded potential as perturbations of H0

k .
The operator norm ‖(ti−H0

k)−1‖ for t ∈ R is equal to the spectral radius of (ti−H0
k)−1

because this operator is normal. Since the spectrum of H0
k is contained in [0,∞), this

spectral radius is at most |t|−1, which goes to 0 as t→∞. Therefore, given a bounded
Borel function V ∈ L∞(Rd), we have ‖(ti−H0

k)−1V ‖ < 1 for |t| > ‖V ‖∞. Assume that t
is chosen such. Then the Neumann series

∑
((it−H0

k)−1V )n converges absolutely, and

∞∑
n=0

((it−H0
k)−1V )n · (it−H0

k)−1 = (1− (it−H0
k)−1V )−1 · (it−H0

k)−1 = (it−H0
k −V )−1.

Hence (it −H0
k − V )−1 is compact for |t| > ‖V ‖∞, and it depends continuously, even

analytically on k because H0
k does so and the Neumann series converges absolutely. This

implies that the operator H0
k + V is self-adjoint and that its resolvent is compact; that is,

it−H0
k − V remains surjective and (it−H0

k − V )−1 remains compact for all λ ∈ C \ R.
Assume V (x) ≥ c for almost all x ∈ Rd and let ψ ∈ L2(Rd) satisfy ‖ψ‖ = 1. Then

〈ψ |Hkψ〉 = 〈ψ |H0
kψ〉+ 〈ψ |V · ψ〉 ≥ 0 + 〈ψ | c · ψ〉 = c.

So Hk ≥ c is bounded below uniformly in k.

We take some of the assertions made in Theorem 3.3 as the description of an important
class of self-adjoint operators. Let H be a Hamiltonian acting on a Hilbert space of
the form L2(Td,K) by a family of self-adjoint operators Hk, with each Hk acting on K;
so K = L2([0, 1]d) in the discussion above. We also assume that each Hk has compact
resolvent and that these resolvents depend on k by a norm-continuous function. Let
K(K) denote the C∗-algebra of compact operators on K and let C(Td,K(K)) denote the
C∗-algebra of norm-continuous functions Td → K(K). This is a closed subalgebra of

24



B(L2(Td,K)), and our assumptions on H amount to (λ −H)−1 ∈ C(Td,K(K)) for all
λ ∈ C \ R. We briefly say that H is a self-adjoint operator affiliated with C(Td,K(K)).
(This notation is a special case of the general theory in [18]).

Lemma 3.4. If H is affiliated with C(Td,K(K)), then the spectrum of H is the union of
the spectra of the operators Hk for k ∈ Td.

Proof. Let K(K)+ := K(K) ⊕ C · idK. We claim that an element S of C(Td,K(K)+)
is invertible if and only if it is invertible pointwise. First, assume S to be invertible
pointwise. Then the pointwise inverses belong to K(K)+ and depend on k ∈ Td in
a norm-continuous fashion. Therefore, S is invertible. Conversely, assume that Sk is
not invertible for some k ∈ Td. Let ε > 0. Then there is ψ ∈ K with ‖ψ‖ = 1 and
‖Sk(ψ)‖ < ε. Since Sk is norm-continuous, it is strongly continuous. So there is an open
neighbourhood U of k with ‖Sk′(ψ)‖ < ε for all k′ ∈ U . Let h ∈ C0(U) be such that
‖h‖L2 = 1. Then h(k) ·ψ ∈ L2(Td,K) is a unit vector with ‖S(h(k) ·ψ)‖ < ε. Since such
vectors h(k) · ψ exist for any ε > 0, it follows that S is not invertible.

The above claim applies to the resolvent (λ −H)−1 of H for any λ ∈ C \ R. Since
the map z 7→ (λ− z)−1 is a bijection from C \ {λ} to C \ {0}, the spectra of (λ−H)−1

and H determine each other. Hence the spectrum of H must also be the union of the
spectra of the operators Hk.

The resolvent (λ − Hk)−1 of a self-adjoint operator is always normal because Hk

is self-adjoint. It is compact as well if H is affiliated with C(Td,K(K)). Therefore,
(λ−Hk)−1 has an orthonormal basis of eigenvectors, and the eigenvalues, counted with
multiplicity, converge to 0. The eigenvectors of (λ−Hk)−1 are also eigenvectors of Hk,
and the eigenvalues of Hk go to ∞ in absolute value if those of (λ−Hk)−1 go to 0. The
eigenvalues of Hk are real because Hk is self-adjoint.

We also assume now that the operator H is bounded below. This is true for Schrödinger
operators with bounded periodic potential by Theorem 3.3. Then the eigenvalues of Hk

accumulate only at +∞. Therefore, we may order them in an increasing way, and each Hk

has an orthonormal basis of eigenvectors (ψk,n)n∈N, such that Hk(ψk,n) = Ek,n · ψk,n,
Ek,n ≤ Ek,n+1 for all n ∈ N, and limn→∞Ek,n = +∞. The norm continuity of the
resolvents (λ−Hk)−1 implies that the functions En : Td → R, k 7→ Ek,n, are continuous
(we prove this in Section 3.2). Since Td is compact and connected, the range of the
continuous function En is a compact interval [bn, cn] in R. Lemma 3.4 implies

σ(H) = {Ek,n : k ∈ Td, n ∈ N} =
⋃
n∈N

[bn, cn].

We have arranged Ek,n ≤ Ek,n+1 for n ∈ N. This implies bn ≤ bn+1 and cn ≤ cn+1 for
n ∈ N. If cn ≥ bn+1, then [bn, cn] ∪ [bn+1, cn+1] = [bn, cn+1]. Continuing like this, we
may merge overlapping intervals until we reach a gap where cn < bn+1. In this way, we
write σ(H) as a disjoint union of intervals. It may happen that infinitely many of the
intervals overlap and give an unbounded interval [d,∞). In fact, physicists expect this to
happen for large n. So we would expect that the spectrum of H is the disjoint union of
finitely many (possibly zero) compact disjoint intervals [dn, en], n = 0, . . . , N − 1, and
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an unbounded interval [dN ,∞), with dn ≤ en < dn+1 for all 0 ≤ n < N ; from what
we have proven, an infinite sequence of compact intervals, that is, the case N =∞, is
also possible. The disjoint intervals [dn, en] and [dN ,∞) (or maybe also the intervals
[bn, cn]) are called energy bands of the system. The open intervals in between, (en, dn+1)
for 0 ≤ n < N , are called band gaps.
So the spectrum of a Schrödinger operator with a bounded periodic potential is a

union of energy bands with band gaps in between. Now we recall the Fermi energy µ. At
temperature 0, all states of energy below the Fermi energy are filled with electrons. The
energy bands [dn, en] with en ≤ µ are called valence bands. They are filled with electrons.
Energy bands with en > µ are called conduction bands. Now we distinguish two cases.

Assume first that µ ∈ [dn, en) for some n. Then some but not all of the states in [dn, en]
are filled with electrons. We need not much energy to lift one of the electrons above
the Fermi energy into an unoccupied state of the form

∫
w(k) exp(2πik · x)ψk,M (x),

where w(k) is a continuous function supported in a region where the eigenvalue Ek,M
of ψk,M belongs to (µ, en). The function exp(2πik · x) describes a wave travelling with
constant momentum. The factor ψk,M (x) modifies this by some Zd-periodic pattern.
Macroscopically, this function is essentially constant because the crystal unit is so small.
So it does not affect the transport properties of the state. The factor w mixes waves
of different momentum and is needed to produce a square-integrable function. So it
does not cost much energy to excite an electron into a state in which it can move freely
through the material. Thus our material conducts electricity. We have a conductor or a
metal. The argument also justifies calling an energy band with en > µ a conduction band.

Assume next that µ lies in a band gap, en < µ < dn+1. Then all the filled states have
energy at most en, and the energy dn+1 − en is needed to lift an electron into one of the
unoccupied energy bands. Unless the band gap is very small, this makes it impossible for
electrons to reach a conduction band. So the material is an insulator. In the following,
we are mostly interested in insulators, that is, in the case when the Fermi energy lies in
a band gap.
Remark 3.5. In the discussion above, the merging of the intervals [bn, cn] is very natural.
In a more careful analysis, it may be better to keep these intervals separate. Assume
that the spectrum of H contains two intervals [bn, µ+ ε1] and [µ− ε2, cn+1], where µ is
the Fermi energy and ε1, ε2 > 0 are very small. Then there are both filled and unfilled
states near the Fermi energy. Nevertheless, the material is only a semimetal in this case.
Roughly speaking, in a semimetal, there are only very few electron states whose energy is
just below the Fermi energy, and there are only very few conduction states with energy
just above the Fermi energy. So the material conducts electricity poorly.
To understand the behaviour of materials when the Fermi energy lies near a band

gap, we must study finite-volume approximations and allow for small disorder (say, a
small, random perturbation of the potential). A finite-volume approximation is just a
finite matrix, so it has a finite set of eigenvalues. When the volume gets large, these
eigenvalues will be close to the spectrum of the periodic Hamiltonian, and any point
in the latter spectrum is close to some eigenvalue. The distribution of these discrete
eigenvalues in the spectrum is not uniform, however, if we also add some small disorder
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to the system. The “Lifschitz tail” phenomenon says that the density of the states of a
disordered, finite-volume approximation near a band edge of the periodic Hamiltonian is
very small.

3.2 Continuity of eigenfunctions
We continue to study a Hamiltonian affiliated with C(Td,K(K)), such as a Schrödinger
operator with periodic, bounded potential as in Theorem 3.3. We claimed that the
eigenvalues En,k depend continuously on k. We are going to prove this, and we also study
the continuity of the eigenfunctions ψn,k. Actually, continuity of ψn,k is not the right
question. The eigenfunction is unique up to scalar multiple if and only if the eigenvalue
has multiplicity 1. So we can only expect the images of the eigenfunctions ψn,k in the
projective space of L2(Rd) to be continuous, and this can only happen for those k where
the eigenvalue En,k has multiplicity 1. This statement is indeed true. But we aim at a
more elegant statement. First, mapping ψn,k to projective space has the same effect as
taking the rank-1 projection |ψn,k〉〈ψn,k|. Secondly, this is equal to the spectral projection
of Hk for the singleton {En,k} provided the eigenspace has multiplicity 1. So we should
rather ask about continuity of spectral projections. The following lemma asserts this in
the appropriate generality:

Lemma 3.6. Let H be described by a norm-continuous family (Hk)k∈Td of self-adjoint
operators with compact resolvent as in Theorem 3.3. Let a, b ∈ R satisfy a < b and let
k0 ∈ Td be such that a, b /∈ σ(Hk0). Let χ(a,b)(Hk) be the spectral projection of Hk for
the interval (a, b) for k ∈ Td. There is an open neighbourhood U ⊆ Td of k0 such that
a, b /∈ σ(Hk) for all k ∈ U . And then the map k 7→ χ(a,b)(Hk) is norm-continuous on U ,
and its image consists of finite-rank projections.

Proof. The operators (i+Hk)−1 form a norm-continuous function from U to the C∗-algebra
of compact operators on L2([0, 1]d). Let x := (i + a)−1. Since a /∈ σ(Hk0), the operator
(i + Hk0)−1 − x is invertible. Since the set of invertible operators on K is open, there
is a neighbourhood U of k0 so that (i +Hk)−1 − x is invertible for k ∈ U . This means
that a /∈ σ(Hk) for k ∈ U . An analogous argument arranges a, b /∈ σ(Hk) for k ∈ U .
Let D := C(Td,K(K)). We may rewrite the functional calculus for H in terms of
(i + H)−1 ∈ D. Therefore, if f : R → R is a Borel function that is continuous on the
spectrum of H|U and vanishes at ∞, then f(H) ∈ D. The characteristic function of (a, b)
fulfils this because it is only discontinuous at a, b, and these two points do not belong to
the spectrum of H|U by assumption. So χ(a,b)(Hk) is norm-continuous in k and compact.
Since these operators are projections, being compact means that the projections have
finite rank.

If the eigenvalue En,k has multiplicity 1, then we may choose En−1,k < a < En,k <
b < En+1,k, so that the projection χ(a,b)(Hk) has rank 1. Then Lemma 3.6 gives an open
neighbourhood U of k such that k′ 7→ χ(a,b)(Hk′) is continuous on U . Since its rank
is 1 at k, the rank is 1 in a neighbourhood of k. Shrinking U if necessary, we arrange
that the rank is 1 in all of U . That is, Hk for k ∈ U has exactly one eigenvalue in the
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interval (a, b). The continuity of χ(a,b)(Hk′) says, in addition, that the eigenfunction for
this eigenvalue may be chosen continuously.

Lemma 3.7. Assume that H is affiliated with C(Td,K(K)) and bounded below. Then
the eigenvalues En,k defined above depend continuously on k.

Proof. Since H is bounded below, χ(−∞,b)(Hk) has finite rank for all b ∈ R. The argument
above shows that this rank is locally constant at k if b /∈ σ(Hk). Now choose a < En,k < b
so that |b − a| < ε. We have seen above that there is a neighbourhood U of k so that
a, b /∈ σ(Hk′) for k′ ∈ U . And the ranks of χ(−∞,b)(Hk′) and χ(−∞,a)(Hk′) are constant
in U . It follows that the nth eigenvalue of Hk′ satisfies a < En,k′ < b for all k′ ∈ U . Since
|b− a| < ε, this expresses the continuity of En,k as a function in k.

If the spectrum of H is not bounded below, then it may be impossible to order the
eigenvalues continuously throughout Td. This is related to the spectral flow:
Example 3.8. Let d = 1 and identify T1 = [0, 1]/∼ with 0 ∼ 1. We may choose H so that
the spectrum of Hk is k+Z for all k ∈ [0, 1]. This is the same set for k = 0 and k = 1. For
k = 0, it is natural to take En,0 = n. The only way to label the eigenvalues continuously
for k > 0 is by setting En,k := n+ k. But at k = 1, this gives En,1 = n+ 1 6= n. So we
do not get a consistent labelling of the eigenvalues throughout T. The problem is that
given any threshold λ ∈ R \ Z, exactly one eigenvalue will cross it when we move along
the loop Hk for k ∈ [0, 1]. So the spectral flow is 1. This prevents us from labelling the
eigenvalues throughout T.

A consistent labelling of the eigenvalues exactly as above is possible if H has a spectral
gap, say, t /∈ σ(H). Then we may let En,k for n ≥ 0 and n < 0 be the eigenvalues
above t in increasing order and below t in decreasing order, respectively. The same
argument as above shows that these are continuous functions. Problems may only occur
if σ(H) = R. Then we may define continuous functions En,␣ : Rd → R for n ∈ Z that
label the eigenvalues of Hk in increasing order. The spectral flow in the direction x ∈ Zd
is defined as En,x − En,0; this is the same for all n ∈ Z. There is a consistent definition
of En,k for k ∈ Td if and only if En,x − En,0 = 0 for all x ∈ Zd. Actually, the case
where σ(H) = R gives us only conductors, so it is irrelevant for the study of topological
insulators.
The most interesting object for topological phases is the projection χ(−∞,µ)(H) for

the Fermi energy µ. This is the projection onto the filled bands, which describes the
ground state of our many-particle system. The projection χ(−∞,µ)(H) is described by
the projection-valued function k 7→ χ(−∞,µ)(Hk). If the operators Hk are bounded below
and have compact resolvent, then the projections χ(−∞,µ)(Hk) have finite rank. If µ lies
in a spectral gap of H, then these projections depend continuously on k.

3.3 Tight binding models
The one-particle approximation treated above is only an approximation. We made the
Ansatz that the effective Hamiltonian in the one-particle model is a Schrödinger operator
with a bounded, periodic potential. This assumption seems unjustified because spin-orbit
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coupling, the source of the known topological insulators, is a relativistic effect. Band
theory only needs that the Hamiltonian is affiliated with C(Td,K(K)) for some Hilbert
space K. Many articles in physics describe concrete materials by models where K has
finite dimension. In fact, the dimension of K is quite small – such as 2 or 4 – in most
concrete models. An electron has infinitely many degrees of freedom in each cell of the
crystal. But since the Hamiltonian has compact resolvent, there are only finitely many
states in each unit cell whose energy lies below a given bound. We do not lose important
information when we restrict to such a finite-dimensional subspace. The tight-binding
approximation is an Ansatz to choose such a subspace and a corresponding Hamiltonian.
The Ansatz only has a finite number of degrees of freedom, and there are algorithms to
predict these from theory. Actually, these algorithms have variants that differ in which
physical effects they take into account, such as spin-orbit coupling. In the hands of the
experts, some of these algorithms predict the Hamiltonian well enough to detect whether
a given material is an insulator and what its topological phase is.

In a tight-binding model, we first consider a single atom in our material and compute
some of its eigenfunctions. Let a unit cell of our crystal have atoms of type i1 at position
yi ∈ Rd, 1 ≤ i ≤ k, and let ϕti,n for n ∈ N be eigenfunctions of the Schrödinger operator
for an atom of type ti at 0. Choose a finite set of indices (yi, ti, ni), 1 ≤ i ≤ N , and
let K be the N -dimensional subspace spanned by the functions ϕti,ni(x− yi). We think
of ϕti,ni(x− yi) as describing an electron tightly bound to the atom at yi in the orbital ni.
The other atoms in the crystal and their electrons also affect this electron. We include
this in our Hamiltonian by hopping terms ti,j,R = 〈ϕti,ni(x− yi) |H(ϕtj ,nj (x− yj −R))〉,
where R ∈ Zd is a vector in the translation lattice of the crystal. In practice, we only use a
small number of orbitals to get a low-dimensional space K, and we only consider hopping
terms for atoms that are close to each other; often, we only consider the interaction
between nearest neighbours or perhaps next-to-nearest neighbours. Thus we put ti,j,R = 0
for R� 0.
Now we work in the Hilbert space H = `2(Zd,CN ) and use the translation-invariant

Hamiltonian H ′ on H that has the matrix coefficients ti,j,R−S in the standard basis of H.
This is the best approximation to H on `2(Zd,CN ) because

〈δS ⊗ ei |H ′(δR ⊗ ej)〉 = ti,j,R−S = 〈ϕti,ni(x− yi − S) |H(ϕtj ,nj (x− yj −R)〉.

Since ti,j,R = 0 for R � 0, the operator H ′ is a finite sum of operators of the form
SR⊗H ′R for R ∈ Zd, where H ′R ∈MN (C) has matrix coefficients ti,j,−R. Now we identify
the Hilbert space `2(Zd,CN ), with L2(Td,CN ) by the Fourier transform. Then the
operator SR becomes pointwise multiplication with exp(−2πiR · k). So H ′R is unitarily
equivalent to the operator on L2(Td,CN ) of the form (Ĥψ)(k) = Ĥ(k)ψ(k) for k ∈ Td,
ψ ∈ L2(Td,CN ), with

Ĥ : Td →MN (C), t 7→
∑
R∈Zd

exp(2πit ·R)H ′R.

So Ĥ is a matrix-valued trigonometric polynomial. So Ĥ ∈ C(Td,MN (C)). In particular,
H ′ is bounded, and the resulting operators Ĥk for k ∈ Td have exactly N eigenvalues. So
there is no need to pass to resolvents in this case to discuss continuity or self-adjointness.
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Many articles in physics and materials science do not consider a “continuum model”
on L2(Rd), but start directly with a Hamiltonian acting on `2(Zd,CN ) We now consider
some examples.

3.3.1 Graphene

Graphene is a single layer of carbon atoms arranged in a hexagonal lattice (see Figure 1).
Thus it is a 2-dimensional material. It was first produced and observed by Hanns-Peter

Figure 1: Scanning probe miscroscopy image of the graphene lattice taken from Wikipedia

Boehm in 1962 and received the name “graphene” in 1986. Let Λ0 ⊆ R2 be the set of
vertices of the hexagon lattice of graphene. We shall derive a tight-binding model for
graphene based on the symmetries of Λ0. The filled and empty circles in Figure 2 are the
points in Λ0, and the gray lines between them show the hexagon lattice. We we choose
the coordinates in R2 so that two neighbours in Λ0 are at the positions (0, 0) and (1, 0).
Thus the length scale is normalised so that neighbours in Λ0 have distance 1. Each vertex
in Λ0 has three neighbours. In our coordinate system, the three neighbours of (0, 0) ∈ Λ0
are

a1 := (1, 0), a2 := 1
2(−1,

√
3), a3 := 1

2(−1,−
√

3).

These points of Λ0 have six neighbours besides (0, 0) at ±bi for i = 1, 2, 3, where

b1 := a2−a3 = (0,
√

3), b2 := a3−a1 = 1
2(−3,−

√
3), b3 := a1−a2 = 1

2(3,−
√

3).

Notice that a1 + a2 + a3 = 0 and b1 + b2 + b3 = 0. Let

Λ = Zb1 + Zb2 + Zb3 ⊆ R2.
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a1 − a3

a2 − a3

a2 − a1

a3 − a1

a3 − a2

Figure 2: The graphene lattice in gray and the unit cells of the crystal in black.

Actually, any two of b1, b2, b3 already generate this lattice because b1 + b2 + b3 = 0. Each
hexagon in our lattice has six neighbours, and the distance between their midpoints
are ±bi for i = 1, 2, 3. Hence the set Λ0 is invariant under translations by ±bj . This
implies that Λ0 is invariant under translations by Λ, that is, Λ0 + Λ = Λ0.

It is clear that any of the hexagons in our lattice is a possible unit cell for the lattice Λ.
We prefer a diamond unit cell as drawn in Figure 2. Namely, let C ⊆ R2 be the set of all
x ∈ R2 such that the point in Λ0 closest to x is (0, 0) or (1, 0). This subset C is one of
the diamonds in Figure 2. Its translate x + C for x ∈ Λ tesselate the plane. If x ∈ Λ,
then (x+ C) ∩ Λ0 = {x, x+ a1} has exactly two points – much fewer than a hexagon.
This is why we prefer the diamonds. We see also that Λ0 is a disjoint union of two cosets
of the lattice Λ:

Λ0 = Λ t (Λ + a1).

In Figure 2, the points in Λ and Λ + a1 are marked by full circles and empty circles,
respectively. We briefly say that points in Λ and Λ + a1 have types A and B, respectively.
Nearest neighbours in Λ0 always have different type. The midpoints of the hexagons in
the lattice are at the points of Λ− a1, which is disjoint from Λ0.

The subset Λ0 itself is not a subgroup of R2. For instance, a2 +a3 = −a1 /∈ Λ0 although
a2, a3 ∈ Λ0. When we cut the diamonds in Figure 2 into two triangles by the vertical
diagonal, we get a tesselation of the plane by equilateral triangles. These triangles are
the “Voronoi cells” of the set Λ0. These triangles, however, fail to be the “cells” of a
lattice of translations. This cannot be because the triangles centred at the empty and
full circles have different directions in the plane.

31



Let G be the symmetry group of Λ0. It consists of all isometric maps Λ0 → Λ0 or,
equivalently, of all (affine) isometries R2 → R2 that map Λ0 onto itself.

Proposition 3.9. The group G is generated by the translations Tx for x ∈ Λ and by
the 12-element dihedral group D6, acting such that the origin is the midpoint −a1 of
one of the hexagons. The group G acts transitively on Λ0, on the pairs (x, y) ∈ Λ2

0 with
‖x− y‖ = 1, and on the pairs (x, y) ∈ Λ2

0 with ‖x− y‖ =
√

3.

Proof. The dihedral groupD6 consists of the six rotations around−a1 by the angles 2πk/6,
k ∈ Z/6, and the reflections at the six lines that go through −a1 and either a vertex or
the midpoint of an edge of the hexagon centred at −a1. These isometries map Λ0 onto
itself. So do the translations by x ∈ Λ. Hence products Txh belong to G. We claim that
any element g ∈ G is a product Txh for some x ∈ Λ and some h ∈ D6. First, g maps −a1
to the midpoint of some other hexagon: g(−a1) = x − a1 for some x ∈ Λ. Thus T−xg
fixes −a1. In the shifted coordinate system with origin at −a1, T−xg is a linear isometry.
Since it fixes −a1 and maps Λ0 onto itself, it must permute the six vertices of the hexagon
around −a1. Hence it is an element h ∈ D6. So g = Txh.

Our proof already shows that the group G acts transitively on Λ0. The subgroup of G
that fixes 0 ∈ Λ0 is the dihedral group D3. It acts transitively on the three neighbours
a1, a2, a3 of 0 and also on the six next-to-nearest neighbours ±b1,±b2,±b3 of 0. This
implies the transitivity claims in the proposition.

Proposition 3.9 shows that a translation Tx belongs to G if and only if x ∈ Λ. That is,
Λ is the largest group of translations that preserves Λ0.

Now we build a tight-binding model for graphene. We choose to consider only one
orbital or electron state for each carbon atom. Thus the Hilbert space of our model is
`2(Λ0), where the basis vector δx for x ∈ Λ0 means a suitable orbital around the atom
at position x, describing an electron state tightly bound to that atom. The isometry
group G of Λ0 acts on `2(Λ0) by permuting the basis vectors δx for x ∈ Λ0. We assume
that our Hamiltonian commutes with this representation of G.
Since Λ0 = Λ t (Λ + a1), we may identify `2(Λ0) with `2(Λ,C2), where the Dirac

distributions δx and δx+a1 for x ∈ Λ0 become δx⊗e1 and δx⊗e2 in `2(Λ,C2), respectively.
Choosing a lattice basis for Λ, we may further identify Λ ∼= Z2 as a group and arrive
at the Hilbert space `2(Z2,C2). We have worked in the latter Hilbert space when we
developed the general theory. Since this distorts the geometry of the hexagon lattice, we
now stay in the Hilbert spaces `2(Λ0) or `2(Λ,C2).

We describeH through a matrix (Hx,y)x,y∈Λ0 . If x, y ∈ Λ0, thenHx,y = Hy,x becauseH
is self-adjoint, and Hg(x),g(y) = Hx,y for g ∈ G because H is G-equivariant. In addition,
we assume that there is R > 0 so that Hx,y = 0 for ‖x − y‖ > R. In fact, we assume
Hx,y = 0 if ‖x − y‖ > ‖bj‖ =

√
3, that is, we only allow nearest and next-to-nearest

neighbour hopping terms.
Since G acts transitively on Λ0 and on the sets of pairs (x, y) ∈ Λ2

0 with ‖x− y‖ = 1
and ‖x− y‖ =

√
3, the symmetry condition of H implies that there are constants E, t, z

such that Hx,x = E for all x ∈ Λ0, Hx,y = t for all x, y ∈ Λ0 with ‖x − y‖ = 1, and
Hx,y = z for all x, y ∈ Λ0 with ‖x − y‖ =

√
3. These constants E, t, z must be real in
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order for H to be self-adjoint. If we allowed hopping to third neighbours, the possible
Hamiltonians would get more complicated because the group G does not act transitively
on such pairs any more. Let HE,t,z ∈ B(`2(Λ0)) denote the Hamiltonian built above for
given E, t, z ∈ R. We write H if there is no need to mention these constants.
To apply our general theory, we transfer H first to a self-adjoint operator H ′ on the

Hilbert space `2(Λ,C2), and then identify the latter with L2(T2,C2) by a suitable Fourier
transform. We describe H ′ through a 2× 2-matrix of operators (H ′i,j)i,j=1,2 on `2(Λ):

Lemma 3.10. The Hamiltonian on `2(Λ0) corresponds to the following operator on
`2(Λ,C2): (

E +
∑3
j=1 z(Sbj

+ S−bj
) t(S0 + S−b2 + Sb3)

t(S0 + Sb2 + S−b3) E +
∑3
j=1 z(Sbj

+ S−bj
)

)
.

Proof. Since H is Λ-invariant, each matrix entry H ′i,j is a linear combination of the
translation operators Sx for x ∈ Λ. The diagonal terms Hx,x = E in H correspond
to E := E · id`2(Λ) in both diagonal entries of H ′. The nearest neighbour hopping
terms Hx,y = t for ‖x − y‖ = 1 correspond to entries in the off-diagonal entries of H ′
because nearest neighbours have different type. Figure 2 shows that the three nearest
neighbours of an atom in Λ0 of type A are the atoms of type B in the same cell and
in the cells translated by −b3 = a2 − a1 and b2 = a3 − a1, while the three nearest
neighbours of an atom of type B are the atoms of type A in the same cell and in the
cells translated by +b3 and −b2. So we get the terms t · (S0 + S−b2 + Sb3) in H ′12 and
t · (S0 + Sb2 + S−b3) = t · (S0 + S−b2 + Sb3)∗ in H ′21. The next-to-nearest neighbours
of an atom again have the same type, so that the terms Hx,y for (x, y) ∈ Λ2

0 with
‖x− y‖ =

√
3 contribute to the diagonal terms in H ′. Since the relative positions of the

six next-to-nearest neighbours of any vertex are ±bj for j = 1, 2, 3, the contribution is
z ·
∑3
j=1(Sbj

+ S−bj
). This gives the formula asserted in the lemma.

Next, we turn H ′ into an operator of multiplication with a 2×2-matrix-valued function
on L2(T2,C2). Since we did not normalise the translation lattice Λ, the relevant torus is
the quotient R2/Λ∗ for the dual lattice

Λ∗ = {k ∈ R2 : k · b1, k · b2 ∈ Z} = {k ∈ R2 : k · (−b2), k · b3 ∈ Z}.

We choose the sign in the Fourier transform so that the operator Sλ on `2(Λ) for λ ∈ Λ
corresponds to the operator of pointwise multiplication by exp(2πik · λ) on L2(R2/Λ∗).
With this convention, the Hamiltonian H ′ described in Lemma 3.10 corresponds to the
matrix-valued function

H : R2/Λ∗ →M2(C), k 7→(
E +

∑3
j=1 2z cos(2πk · bj) t(1 + exp(−2πik · b2) + exp(2πik · b3))

t(1 + exp(2πik · b2) + exp(−2πik · b3)) E +
∑3
j=1 2z cos(2πk · bj)

)
.

To get simple formulas for the off-diagonal terms, we express k in the dual basis of −b2, b3.
We claim that it consists of the vectors

−2
3a3 = 1

3
(
1,−
√

3
)
, −2

3a2 = 1
3
(
1,+
√

3
)
.
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Write k ∈ R2 as k = −2
3a3x− 2

3a2y with x, y ∈ R. The claim says that

k · (−b2) = x, k · b3 = y,

which is verified directly. This implies k · b1 = x− y because b1 = −b2 − b3. So we may
rewrite the diagonal entries of H(k) = H(x, y) as

H11(x, y) := E + 2z(cos(2π(x− y)) + cos(2πx) + cos(2πy)))

and the off-diagonal entries as

H12 = t(1 + exp(2πix) + exp(2πiy)), H21 = H12.

This function is manifestly Z2-periodic.
To simplify the computation of the spectrum, we express the operator HE,t,z studied

above by the simpler operator K := H0,1,0. This has Hx,x = 0 and Hx,y = 0 for
‖x− y‖ =

√
3 and Hx,y = 1 for ‖x− y‖ = 1. The (x, y)-matrix entry of K2 is the number

of paths x,w, y in the hexagon, that is, the number of w ∈ Λ0 with ‖x−w‖ = ‖w−y‖ = 1.
There is exactly one such path if x, y are next-to-nearest neighbours, there are three such
paths if x = y, and there is no such path otherwise. Thus K2 = H3,0,1. Since H1,0,0 is
the identity operator and HE,t,z depends linearly on E, t, z, we may write

HE,t,z = z ·K2 + t ·K1 + (E − 3z) ·K0.

So we get the spectrum of HE,t,z by applying the quadratic function h 7→ zh2 +th+E−3z
to the spectrum of K. Now K corresponds to the function

K(x, y) =
(

0 1 + exp(2πix) + exp(2πiy)
1 + exp(−2πix) + exp(−2πiy) 0.

)
For given x, y ∈ R/Z, the two eigenvalues of this 2× 2-matrix are

±|1 + exp(2πix) + exp(2πiy)|.

This vanishes if and only if the three points 1, exp(2πix) and exp(2πiy) on the unit
circle are equally spaced, that is, the three third roots of unity; this corresponds to the
two points (x, y) = (1/3, 2/3) and (x, y) = (2/3, 1/3). And the absolute value above is
maximal and equal to 3 if x = y = 0. So K has the spectrum [−3, 3]. And the spectrum
of HE,t,z is {zh2 + th + E − 3z :h ∈ [−3, 3]}, which is always an interval. so there are
no gaps in the spectrum. Graphene is, in fact, described in first approximation by the
simplest Hamiltonian K = H0,1,0 in the family. Since 0 is in its spectrum, it describes a
conductor.
The operator K has an obvious chiral symmetry, namely,

Ξ =
(

1 0
0 −1

)
.

This symmetry is destroyed, however, when E 6= 0 or z 6= 0. So it is not a fundamental
symmetry of our model. It explains nicely, however, why the spectrum of K is symmetric.
Since the matrix coefficients of HE,t,z are all real, it commutes with complex conjugation
on `2(Λ0). This gives a time-reversal symmetry Θ with square +1, which commutes with
the symmetry group G as well.
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3.3.2 Allowing different atoms at sites A and B

Now we generalise the construction above. We still consider a hexagon lattice with one
orbital for each atom, but we allow two different atom types at the sites of type A and B.
So we still consider a self-adjoint Hamiltonian H on the Hilbert space `2(Λ0). But now
we only ask H to be invariant under certain subgroups of G.

First, we assume H to be invariant under the subgroup G2 of G that consists of those
isometries of Λ0 that preserve the decomposition Λ0 = Λ t (Λ + a1). This still contains
the same translation group Λ, but the group D6 in G is now replaced by the subgroup D3
of index 2. By construction, the action of G2 on Λ0 has two orbits Λ and (Λ + a1).
The group G acts transitively on pairs (x, y) ∈ Λ0 with ‖x− y‖ = 1 and on pairs with
‖x − y‖ =

√
3 by Proposition 3.9. Therefore, the subgroup G2 of index 2 has at most

two orbits on both types of pairs. There are also at least two orbits. So the action on
pairs (x, y) ∈ Λ0 with ‖x− y‖ = 1 has two orbits, namely, the pairs with x, y − a1 ∈ Λ
and those with x− a1, y ∈ Λ. And the action on (x, y) ∈ Λ0 with ‖x− y‖ =

√
3 has two

orbits as well, namely, those pairs with x, y ∈ Λ and those with x, y ∈ Λ + a1.
As a result, there is now more flexibility for our Hamiltonian. Namely, there must be

EA, EB ∈ R such that Hx,x = EA for x ∈ Λ and Hx,x = EB for x ∈ Λ + a1. There must
be t ∈ C with Hx,y = t, Hy,x = t for x ∈ Λ, y ∈ Λ + a1 with ‖x − y‖ = 1. And there
must be zA, zB ∈ R with Hx,y = zA for x, y ∈ Λ with ‖x− y‖ =

√
3, and Hx,y = zB for

x, y ∈ Λ + a1 with ‖x − y‖ =
√

3. Here we have also used the constraint Hx,y = Hy,x

for x, y ∈ Λ0 to conclude that EA, EB, zA, zB are real and that the hopping terms for
‖x− y‖ = 1 are t and t for some t ∈ C. The corresponding Hamiltonian on the Hilbert
space `2(Λ,C2) becomes

H ′ =
(
EA +

∑3
j=1 zA(Sbj

+ S−bj
) t(S0 + S−b2 + Sb3)

t(S0 + Sb2 + S−b3) EB +
∑3
j=1 zB(Sbj

+ S−bj
)

)
.

This may be translated to a function on R2/Λ∗ as above.
We may use a coordinate transformation to reduce to the case of a real parameter t.

The operator

U =
(

1 0
0 λ

)
for λ ∈ U(1) is unitary. We compute

UH ′U∗ =
(
EA +

∑3
j=1 zA(Sbj

+ S−bj
) λt(S0 + S−b2 + Sb3)

λt(S0 + Sb2 + S−b3) EB +
∑3
j=1 zB(Sbj

+ S−bj
)

)
.

Letting λ = t/|t|, we see that H ′ is unitarily equivalent to the operator of the same form
with tt/|t| = |t| instead of t. So it suffices to treat the case t ∈ [0,∞). Assuming this, we
may express H ′ in terms of the operator K = H0,1,0 and its chiral symmetry Ξ:

H ′ = EA + EB − 3(zA + zB)
2 · 1 + EA − EB − 3(zA − zB)

2 · Ξ

+ t ·K + zA + zB
2 K2 + zA − zB

2 K2Ξ.
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Since K and Ξ anticommute, K2Ξ = −KΞK = ΞK2.
We are particularly interested in the case where EA = −EB and zA = zB = 0. Then

the function on R2/Λ∗ corresponding to H ′ simplifies to

H(x, y) :=
(

EA t(1 + exp(2πix) + exp(2πiy))
t(1 + exp(−2πix) + exp(−2πiy)) −EA

)
.

This matrix has trace 0 and determinant −E2
A − t2|1 + exp(2πix) + exp(2πiy)|2. So its

spectrum consists of the two points

±
√
E2
A + t2|1 + exp(2πix) + exp(2πiy)|2.

Letting x, y vary, the spectrum splits into two disjoint energy bands ±[EA,
√
E2
A + 3t2],

and 0 is in a spectral gap. Assuming that the Fermi energy is at 0, we have now got an
insulator. It will turn out, however, that this insulator is topologically trivial. To get
something topologically non-trivial, we weaken our symmetry constraint further. Namely,
we let G4 ⊆ G2 be the subgroup of orientation-preserving isometries in G2. This has
index 2 in G2 and hence index 4 in G. The group G4 is generated by the translations Tx
for x ∈ Λ and by the rotation around 0 with angle 2π/3. We still consider only nearest
and next-to-nearest neighbour hoppings. Now we find, first, that there are EA, EB ∈ R
with

Hx,x =
{
EA if x ∈ Λ,
EB if x ∈ Λ + a1;

secondly, that there is t ∈ C with

Hx,y :=
{
t if x ∈ Λ, y − x ∈ {a1, a2, a3},
t if x ∈ Λ + a1, x− y ∈ {a1, a2, a3};

third, that there are zA, zB ∈ C with

Hx,y :=


zA if x ∈ Λ, x− y ∈ {b1, b2, b3},
zA if x ∈ Λ, y − x ∈ {b1, b2, b3},
zB if x ∈ Λ + a1, x− y ∈ {b1, b2, b3},
zB if x ∈ Λ + a1, y − x ∈ {b1, b2, b3};

and Hx,y = 0 for all other x, y ∈ Λ0, that is, if ‖x− y‖ >
√

3. Any choice of the constants
EA, EB, t, zA, zB gives a self-adjoint operator on `2(Λ0) that commutes with G4. As above,
this Hamiltonian is unitarily equivalent to the one for the parameters EA, EB, |t|, zA, zB.
So we may assume without loss of generality that t ≥ 0.
The operator H ′ becomes the operator on L2(T2,C2) that acts on a function of

(x, y) ∈ R2/Z2 by pointwise application by Ĥ(x, y) ∈M2(C) with

Ĥ11(x, y) = EA + 2 Re
(
zA exp(2πi(x− y)) + zA exp(−2πix) + zA exp(2πiy)

)
,

Ĥ12(x, y) = t ·
(
1 + exp(2πix) + exp(2πiy)

)
,

Ĥ21(x, y) = t ·
(
1 + exp(−2πix) + exp(−2πiy)

)
,

Ĥ22(x, y) = EB + 2 Re
(
zB exp(2πi(x− y)) + zB exp(−2πix) + zB exp(2πiy)

)
.
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3.3.3 Comparison to the literature

Some of the Hamiltonians above have already been considered by Semenoff [14] and
Haldane [4]. More precisely, these authors describe the same Hamiltonians on the Hilbert
space `2(Λ0), but give different formulas for the corresponding functions R2 →M2(C).
We now study this discrepancy.

Semenoff studies the generalisation of graphene with two atoms at the sites A and B,
but considering only nearest neighbour hopping. He normalises the energy so that
EA+EB = 0. This may be done by subtracting a constant from the Hamiltonian. He uses
different notation and different names for the constants. In our notation, his Hamiltonian
acting on `2(Λ0) is the G2-invariant Hamiltonian described above with EA + EB = 0,
t ∈ R, and zA = zB = 0. However, the corresponding function H : R2 →M2(C) has the
form

H(k) =
(

EA t ·
∑3
j=1 exp(2πik · aj)

t ·
∑3
j=1 exp(−2πik · aj) −EA

)
(beware that the letters a and b are switched in the notation of [14]). Since 0 = a1 − a1,
−b2 = a1 − a3, b3 = a1 − a2, we may write

S0 + S−b2 + Sb3 =
3∑
j=1

Sa1−aj = Sa1

3∑
j=1

S−aj . (3.3)

So the Fourier transform of S0 + S−b2 + Sb3 in our formula differs from the expression
used in the corresponding matrix entry in [14] by the factor exp(−2πik · a1). This extra
factor does not change the spectrum: it only depends on the absolute value of h̃(k).
The source of the difference in the formulas is the following. Atoms of type A and B

sit at the points of Λ0 and Λ0 + a1, respectively. So hopping from an atom of type A to
one of type B involves a translation Sa1 , whereas hopping from an atom of type B to
one of type A involves the inverse translation S−a1 . The Fourier transform is defined
in [4, 14] and other articles so that this translation is present. In contrast, we treat the
two atoms in a crystal cell as two internal degrees of freedom in the same cell. So we
do not see a hopping between the two atoms in a cell as a translation, and we do not
put a factor of S−a1 into our formulas. This is why the factors exp(±2πik · a1) in the
off-diagonal terms of the Hamiltonian are missing in our computations.

The extra factor in [14] causes several qualitative differences because it is not Λ∗-periodic.
It is only periodic under the dual of the lattice generated by the vectors a1, a2, a3.
The vector a1 together with the lattice Λ generates the same lattice as the vectors
a1, a2, a3; of course, one of a1, a2, a3 is redundant. The quotient (a1Z + Λ)/Λ has three
elements because a1 /∈ Λ and 3 · a1 = b3 − b2 ∈ Λ. Thus the Hamiltonian in [14]
lives on the quotient of R2 by the lattice (a1Z + Λ)∗, which is strictly smaller than Λ∗.
Three suitable copies of a fundamental domain for Λ∗ form a fundamental domain for
(a1Z + Λ)∗. We have found above that there are exactly two points in k ∈ R2/Λ∗
where |1 + exp(−2πik · b2) + exp(2πik · b3)| = 0. These correspond to six such points in
R2/(a1Z + Λ)∗. This is why Semenoff finds six “Dirac cones” in the spectrum of H(k) in
the Brillouin zone (the fundamental domain), while we find only two.
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The goal of Haldane [4] was to produce topological phases. His model was intended
only as a toy model. By now, an experimental setup has been found that is governed by
this Hamiltonian (see [6]). In Haldane’s time, topological phases appeared as an analogue
of the quantum Hall effect that occurs without magnetic field. A crucial observation by
him was that this requires breaking the time-reversal symmetry of the graphene model.
That is, we need a model with complex hopping terms, and complex t does not count
because the phase of this parameter may be gauged away. So his Hamiltonian can only be
invariant under the group G4. In fact, the Hamiltonians he considers are those we built
above with the restrictions EB = −EA and zB = zA; he writes M instead of EA and t1
instead of t, and he writes the parameter zA in polar coordinates as t2 · cos(ϕ) + it2 sin(ϕ).
Moreover, Haldane uses the Pauli matrices to express 2× 2-matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
= −iσ1σ2 = iσ2σ1.

In addition, I in [4] denotes the unit matrix. The matrices σi for i = 1, 2, 3 and I form a
basis for M2(C). With this notation, Haldane’s Hamiltonian is

HHaldane(k) := 2t2 cosϕ

 3∑
j=1

cos(k · bj)

 · I + t1

 3∑
j=1

cos(k · aj)σ1 + sin(k · aj)σ2


+

M − 2t2 sinϕ
3∑
j=1

sin(k · bj)

 · σ3. (3.4)

(The online course “Topology in Condensed Matter” specialises further to the case
when zA is purely imaginary, that is, cosϕ = 0.) Compared to our formula, (3.4) differs
only by renaming the constants and by an extra factor exp(±2πik · a1) in the off-diagonal
terms. The source of this extra factor is the same as in [14].
The graphene Hamiltonian introduced above is refined in [19] in order to estimate

the effect of spin-orbit coupling. It is argued in [7] that this effect opens a gap in the
spectrum. The estimate of the size of the gap in [7] is found to be wrong by orders of
magnitude in [19]: it is so small as to be negligible. The computation in [19] starts with
a model with 8 orbitals for each atom, giving 16 degrees of freedom for each unit cell.
Many of these orbitals have energies so far from the Fermi level that they can be safely
ignored. The approximate Hamiltonian that is reached in the end has two orbitals per
atom, corresponding to spin up and spin down versions of the orbital in the computation
above. These two orbitals do not interact with each other. Both are described by Haldane
models as above with different constants depending on the spin.

3.3.4 The Bernevig–Hughes–Zhang model

Bernevig, Hughes and Zhang [1] were the first to propose a material that behaves like a
topological insulator in the “quantum spin Hall state”. Their material is a thin layer of
HgTe in between CdTe, which they call a quantum well; the system behaves differently
depending on the thickness of the HgTe-layer. It is again a 2-dimensional material.
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Their model starts with six states per unit cell, which are the spin-up and spin-down
components of three orbitals. It is argued, however, that the two components of one
orbital have energies far from the other four and may safely be ignored. So their model
has four degrees of freedom per unit cell, modelled on the Hilbert space `2(Z2,C4); this
is isomorphic to L2(T2,C4) by Fourier transform.
Two of the four bands are symmetric and two are antisymmetric with respect to the

third z-variable. This makes certain matrix coefficients of the Hamiltonian vanish; namely,
it has the block diagonal form

Heff =
(
H1 0
0 H2

)

with H1, H2 ∈ B(`2(Z2,C2)). The model also has a Fermionic time-reversal symmetry Θ
with Θ2 = −1. It is acting only on the C4-factor (constant on Z2) and has the form

Θ: C4 → C4, (ξ1, ξ2, η1, η2) 7→ (−η1,−η2, ξ1, ξ2),

as in Example 2.13. The time-reversal symmetry forces H2 = H1. For the function on T2,
this means that H2(k) = H1(−k). Rotation by 2π/4, mapping (x, y) 7→ (−y, x), is a
symmetry of the lattice Z2. This is a twisted symmetry of the matrix H1, that is, the
latter commutes with the operator

RU : `2(Z2,C2)→ `2(Z2,C2), (RUf)(x, y) =
(

1 0
0 −i

)
· f(−y, x).

When we restrict attention to next-neighbour hopping terms, the symmetry constraints
above force H1 to have the form

H1 =
(
αS0 + β(Sx + S−x + Sy + S−y) γ(Sx − S−x − i(Sy − S−y))
γ(Sx − S−x + i(Sy − S−y)) δS0 + ε(Sx + S−x + Sy + S−y)

)

with constants α, β, δ, ε ∈ R and γ ∈ C. The phase of γ may be changed by conjugating
H1 (and hence H) with a suitable diagonal matrix. So it is no loss of generality to assume
γ ∈ iR as well. The Hamiltonian above is the model Hamiltonian considered in [1] except
for the naming of the constants. First, in [1] 2× 2-matrix valued functions are written
as linear combinations of Pauli matrices. Secondly, the discussion in [1] starts with the
second Taylor polynomial at 0 of the function T2 → M2(C) corresponding to H. The
parameters are chosen as the Taylor coefficients of the coefficients of H(k) in the Pauli
matrix basis. Namely, the model in [1] is

H1 = (C − 2D) · (S0 ⊗ I) +D · (Sx + S−x + Sy + S−y)⊗ I

+ A

2i · (Sx − S−x)⊗ σ1 + A

2i · (Sy − S−y)⊗ σ2

(M − 4B +B(Sx + S−x + Sy + S−y))⊗ σ3. (3.5)
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More precisely, we should look at [1, Equations (2) and (6)]. They describe the periodic
function H(k) : T2 →M4(C) through sines and cosines of the quasi-momenta kx, ky as

H1(k) =
(
C − 2D

(
2− cos(kx)− cos(ky)

))
· I +A sin(kx)σ1 +A sin(ky)σ2

− 2B
(
2− (M/2B)− cos(kx)− cos(ky)

)
σ3,

with real constants A,B,C,D,M . This function corresponds to the operator on `2(Z2,C2)
in (3.5).

3.3.5 The Su–Schrieffer–Heeger model

The Su–Schrieffer–Heeger model [15,16] describes the electric properties of polyacetylene.
This is a linear polymer, that is, a long chain of CH joined with alternating simple and
double bonds. Being a long chain, this is a 1-dimensional material. The tight-binding
model for it has two orbitals for each crystal cell. So the Hilbert space is `2(Z,C2).
This system has the chiral symmetry Ξ given by the diagonal matrix with entries 1,−1.
The model has only nearest-neighbour hopping terms. The most general form of such a
Hamiltonian is (

0 aS + b+ cS∗

aS∗ + b+ cS 0

)
The Su–Schrieffer–Heeger model has a = 1, b = im, c = 0 for some m ∈ R (we follow [11]).
In terms of Pauli matrices, this becomes

H = 1
2(σ1 + iσ2)⊗ S + 1

2(σ1 − iσ2)⊗ S∗ +mσ2 ⊗ 1.

The corresponding matrix-valued function on R/Z is

H(k) =
(

0 exp(2πik) + im
exp(−2πik)− im 0

)
. (3.6)

The eigenvalues of this matrix are

E±(k) := ±|exp(2πik) + im| = ±
√
m2 + 1 + 2m sin(2πk).

The value 0 is an eigenvalue for some k ∈ [0, 1] if and only if |m| = 1. Then the spectrum
is the interval [|m| − 1, |m|+ 1]. If |m| > 1, the spectrum of H is the union of the two
intervals ±[|m| − 1, |m|+ 1]. So there is a spectral gap (−|m| − 1, |m|+ 1) around 0. If
|m| < 1, then the spectrum of H is the union of the two intervals ±[1− |m|, |m|+ 1], and
there is a spectral gap

(
−(1− |m|), 1− |m|

)
around 0.

The Hamiltonian H has an obvious chiral symmetry, which explains why the spectrum
is symmetric around 0.
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4 Topological phases
In this section, we are going to define the equivalence relation of homotopy on the set
of Hamiltonians that describe insulators. This is used by many physicists to define
“topological phases” (see, for instance, [8]). I prefer coarser equivalence relations such
as “stable homotopy” instead of homotopy. Since these are more complicated, I discuss
homotopy first.

We fix a Hilbert space K and consider self-adjoint operators on `2(Zd,K) ∼= L2(Td,K).
A homotopy between such operators should be a family (Ht)t∈[0,1] of self-adjoint operators
that depends continuously on t. Here the right notion of continuity is the norm continuity
of resolvents: the map t 7→ (λ−Ht)−1 is continuous in the norm topology on bounded
operators for λ ∈ C \

⋃
t∈[0,1] σ(Ht); if this holds for one λ /∈

⋃
t∈[0,1] σ(Ht), then it holds

for all such λ. For instance, the rescaling homotopy (1 − t) · H is a homotopy from
any self-adjoint operator H to the zero operator. We are only interested in self-adjoint
operators with some extra properties: they should be bounded below, affiliated with
C(Td,K(K)) (see Theorem 3.3) and have a spectral gap at the Fermi energy µ. There
are ways to tune the Fermi energy, so that it is quite reasonable to allow homotopies to
also shift the Fermi energy. To simplify the setup, however, we shift the Fermi energy
to 0 by subtracting µ from the Hamiltonian. This normalisation allows us to restrict
attention to the case where the Fermi energy is 0. Thus we describe experiments that
tune the Fermi energy by changing the Hamiltonian instead.

Definition 4.1. Let H0, H1 be self-adjoint operators on L2(Td,K) that are affiliated
with C(Td,K(K)), bounded below, and invertible. We call H0, H1 homotopic if there is
a homotopy (Ht)t∈[0,1] between them (continuous in the topology of norm convergence
of resolvents) such that all Ht are self-adjoint operators affiliated with C(Td,K(K)),
bounded below, and invertible.

I am not aware of a mathematically precise treatment of topological phases in the
situation where K has infinite dimension. We are going to discuss the subtle issues that
arise in this case. The realistic Hamiltonians that occur in this case are unbounded. We
also assume them to be bounded below – otherwise the classification breaks down, as we
shall see.

4.1 The case of infinite-dimensional fibre Hilbert space
Let H be a self-adjoint, bounded below, invertible operators affiliated with C(Td,K(K)).
Let −c < 0 be a lower bound on H, that is, H + c ≥ 0. Then the spectral projec-
tion χ(−∞,0)(H) is equal to χ(−c,0)(H). This belongs to C(Td,K(K)) because it is given
by functional calculus with a continuous function on the spectrum of H that vanishes
at ±∞. So we get a projection χ(−∞,0)(H) in C(Td,K(K)). If (Ht)t∈[0,1] is a homotopy
of Hamiltonians as in Definition 4.1, then the family of projections t 7→ χ(−∞,0)(Ht)
is norm continuous. We call such a norm-continuous map a homotopy of projections,
and two projections in C(Td,K(K)) are called homotopic if they are connected by a
norm-continuous homotopy of projections.
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Theorem 4.2. Any projection in C(Td,K(K)) is of the form χ(−∞,0)(H) for a self-
adjoint, bounded below, invertible operators affiliated with C(Td,K(K)). Let H0, H1 be
self-adjoint, bounded below, invertible operators affiliated with C(Td,K(K)). Then H0
and H1 are homotopic if and only if the corresponding spectral projections χ(−∞,0)(H0)
and χ(−∞,0)(H1) are homotopic.

Proof. We first prove the statements in the easy case where dimK < ∞. Then any
linear operator on K is compact, and a Hamiltonian affiliated with C(Td,K(K)) is
bounded. Let P ∈ C(Td,K(K)) be a projection. Then F := 1− 2P satisfies F = F ∗ and
F 2 = 1−4P + 4P 2 = 1. So F is invertible with F−1 = F , and the spectrum of F is {±1}.
The spectral projection χ(−∞,0)(F ) is P . We have already seen above that a homotopy
between two invertible Hamiltonians H0 and H1 generates a homotopy between the
spectral projections Pt := χ(−∞,0)(Ht) for t = 0, 1. Conversely, assume that P0 and P1
are homotopic through a norm-continuous homotopy of projections (Pt)t∈[0,1]. Then
Ft := 1−2Pt is a homotopy of invertible, self-adjoint operators affiliated with C(Td,K(K))
that connects F0 = sign(H0) and F1 = sign(H1). The operator Ft is homotopic to Ht

by functional calculus with the functions x 7→ s · x + (1 − s) sign(x), which also gives
only invertible, self-adjoint operators affiliated with C(Td,K(K)). Concatenating these
homotopies gives a homotopy from H0 to H1.
Now we treat the more difficult case dimK = ∞. Let A := C(Td,K(K)). First

let P ∈ A be a projection. Let P⊥ := 1 − P . The corner P⊥AP⊥ is separable and
hence contains a strictly positive element x ∈ P⊥AP⊥. The corresponding operator on
P⊥ · L2(Td,K) is positive and injective. So its inverse is a densely defined unbounded
operator, which is positive and hence self-adjoint, and affiliated with P⊥AP⊥. Let
H := −P + x−1. This is a self-adjoint, bounded below, invertible operator affiliated with
C(Td,K(K)), and χ(−∞,0)(H) = P .

Now let H0 and H1 be self-adjoint, bounded below, invertible operator affiliated with
C(Td,K(K)). Let Pt := χ(−∞,0)(Ht) for t = 0, 1, and let (Pt)t∈(0,1) be a homotopy of
projections in C(Td,K(K)) between P0 and P1. This is a projection in C([0, 1]×Td,K(K)).
As above, we may find a self-adjoint, bounded below, invertible operator affiliated with
C([0, 1]× Td,K(K)) with spectral projection (Pt)t∈[0,1]. And this is a homotopy between
some self-adjoint, bounded below, invertible operator H ′0 and H ′1 that are affiliated with
C(Td,K(K)) and that have the same spectral projections P0 and P1 as H0 and H1. So it
remains to prove that H0 and H ′0 are homotopic and that H1 and H ′1 are homotopic. This
reduces the general case to the case where H0 and H1 have the same spectral projections
P := χ(−∞,0)(H0) = χ(−∞,0)(H1). We claim that

Ht :=
(
(1− t)H−1

0 + tH−1
1
)−1

is a norm continuous path of self-adjoint, bounded below, invertible operators affiliated
with C(Td,K(K)) that connects H0 and H1. First, both H−1

0 and H−1
1 commute with P .

And PH0P and PH1P are strictly negative elements in the unital C∗-algebra PAP .
Then PH−1

i P is the inverse of Hi in PAP , which is again strictly negative. The linear
homotopy between these strictly negative elements is strictly negative in PAP , and
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hence again invertible. The inverse is PHtP . So this is a norm continuous path of
invertible elements in PAP . The operators P⊥HjP

⊥ for j = 0, 1 are strictly positive,
self-adjoint, unbounded operators on P⊥L2(Td,K) with resolvent in P⊥AP⊥. Thus
P⊥H−1

j P⊥ ∈ P⊥AP⊥ for j = 0, 1 are strictly positive elements of P⊥AP⊥. Then the
linear path between them is a norm continuous homotopy of strictly positive elements
in C([0, 1], P⊥AP⊥). Taking the inverse then gives a well defined norm continuous
homotopy of unbounded self-adjoint operators on P⊥L2(Td,K); this path is exactly
P⊥HtP

⊥. Putting the positive and negative parts together gives the result.

If dimK <∞, then the main idea in the proof of Theorem 4.2 is to replace an invertible,
self-adjoint operator H by sign(H). This operation is called spectral flattening because it
mostly forgets the spectrum; only the projections on the positive and negative parts of
the spectrum remain. The proof shows that H is homotopic to sign(H). Our assumptions
in the case dimK = ∞ are such that the same result remains true, although spectral
flattening now leaves the class of allowed Hamiltonians: the operator sign(H) is bounded
and therefore does not have compact resolvent if dimK =∞. The proof shows that a
positive unbounded operator with compact resolvent can always be found that goes with
the spectral projection to make an allowed Hamiltonian with the given negative spectral
projection.
Assuming Hamiltonians to be bounded below is reasonable because of Theorem 3.3.

Nevertheless, we would rather avoid this assumption because it rules out Hamiltonians
with dimK =∞ and with a chiral or a particle-hole symmetry. We need H to be bounded
below in order for the spectral projection χ(−∞,0)(H) to belong to C(Td,K(K)). In fact,
we get a rather trivial homotopy relation if we allow Hamiltonians that are not bounded
below during the paths:

Proposition 4.3. Assume dimK =∞. Let H be a Hamiltonian that is bounded below.
Then there is a continuous path of Hamiltonians (Ht)t∈(0,1) that are self-adjoint, invertible,
and affiliated with C(Td,K(K)), bounded below – but not uniformly – and such that H0
and H1 ≥ 0.

Proof. This proof uses a non-trivial result, namely, the Kasparov Stabilisation Theorem for
Hilbert modules over C∗-algebras. We shall use this theory without further explanations
because it only gives us a “no-go theorem”, so no positive results in the future will depend
on it. Let P = χ(−∞,0)(H). Then P · C0([0, 1) × Td,K) is a Hilbert module over the
C∗-algebra C([0, 1] × Td). By the Kasparov Stabilisation Theorem, there is a unitary
operator

U : P · C0([0, 1)× Td,K)⊕ C([0, 1]× Td,K)→ C([0, 1]× Td,K).

Let x and y be strictly positive, compact operators on P ·C0([0, 1)×Td,K) and C([0, 1]×
Td,K), respectively. Then x ⊕ y is a strictly positive operator on the direct sum,
which gives a strictly positive operator on C([0, 1]× Td,K) by conjugation with U . Let
L := (U((−x) ⊕ y)U∗)−1. This is a well defined, unbounded self-adjoint, invertible
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element affiliated with C([0, 1] × Td,K(K)). Its inverse is U((−x) ⊕ y)U∗, which is a
norm continuous function on the interval [0, 1] with values in C(Td,K(K)) because

C([0, 1]× Td,K(K)) ∼= C([0, 1],C(Td,K(K))).

Hence it is equivalent to a homotopy of self-adjoint, invertible operators affiliated
with C(Td,K(K)). The negative spectral projections of these invertible Hamiltonians
are Ut(P ⊕ 0)U∗t for t ∈ [0, 1) and 0 for t = 1. Since these spectral projections are all
compact, the corresponding unbounded operators cannot help being bounded below. But
the lower bound will go to −∞ for t↗ 1. This is how the resolvent may remain norm
continuous although the spectral projections manifestly fail to be norm continuous. The
starting point of the homotopy above is a self-adjoint, invertible, bounded below operator
affiliated with C(Td,K(K)) with spectral projection U0(P ⊕ 0)U∗0 .
By Theorem 4.2, it now remains to show that the projections P and U0(P ⊕ 0)U∗0

are homotopic. In fact, we will show that we may choose U0 so that P = U0(P ⊕ 0)U∗0 ,
after replacing P by a homotopic projection, which is allowed by Theorem 4.2. Here we
use some basic ideas from the K-theory of C∗-algebras. Identify K ∼= `2(N). There are
n ∈ N and P ′ ∈ C(Td,Mn(C)) with ‖P ′ − P‖ < 1/100, say. Then the spectrum of P ′ is
close enough to {0, 1} that functional calculus with a continuous function turns P ′ into a
projection close to P ′ and hence to P . These nearby projections are homotopic. So we
may assume without loss of generality that already P ∈ C(Td,Mn(C)). Let P⊥ = 1n−P
be the complementary projection in C(Td,Mn(C)). Then reordering the summands gives
a unitary operator

C(Td,K) =
⊕
j∈N

C(Td,Cn) ∼=
⊕
j∈N

(
P · C(Td,Cn)⊕ P⊥ · C(Td,Cn)

)
∼= P · C(Td,Cn)⊕

⊕
j∈N

(
P⊥ · C(Td,Cn)⊕ P · C(Td,Cn)

)
∼= P · C(Td,Cn)⊕ C(Td,K).

This unitary has the special feature that it maps P · C(Td,K) onto the first direct
summand P ·C(Td,Cn). Now we may arrange in the construction of U that Ut is constant
equal to this unitary for t ∈ [0, ε]. If we arrange this so, then P = U0(P ⊕ 0)U∗0 .

Even in the finite-dimensional case, the invertibility assumption on Hamiltonians is
crucial. We may connect any two bounded self-adjoint operators by the straight path
Ht := tH1 + (1 − t)H0. Therefore, there is a homotopy between any two self-adjoint
operators. If, however, H0 and H1 correspond to insulators and are not homotopic as
such, then for any homotopy (Ht)t∈(0,1) between them, there must be t ∈ (0, 1) so that Ht

is not invertible, that is, 0 ∈ σ(Ht). This is already a reason why homotopy is interesting.
Most of the model Hamiltonians considered above contain some parameters, which may
be modified in experiments. Assume that the Hamiltonian depends continuously on a
parameter a ∈ R and that Ha0 and Ha1 for a0 < a1 are invertible and not homotopic
among invertible self-adjoint operators. Then there must be t ∈ (a0, a1) for which
0 ∈ σ(Ht) because otherwise Ha0 and Ha1 would be homotopic. If 0 ∈ σ(Ht), then Ht is
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a conductor (or at least a semimetal). Physicists say that two insulators are homotopic
if and only if they may be “adiabatically connected” (see, for instance, [8]).
We are also interested in the following situation. Cut the space into two halfs and

fill one with an insulator governed by H0, the other with an insulator governed by H1;
often, H1 is a “trivial” system describing the vacuum. Let H be the Hamiltonian of this
total system. It is no longer periodic unless H0 = H1. So band theory as developed so
far does not apply to it. We will treat such systems in Section 6. It may happen that H
is not invertible although H0 and H1 are. That is, putting two insulators together may
give a conductor. When this happens, we may wonder how robust the effect is: can we
modify H near the boundary that separates the two regions so as to remove the spectrum
near 0? Sometimes, it can be shown that this is impossible by topological arguments.
Roughly speaking, there are topological invariants that differ for H0 and H1, and this
implies that H cannot be invertible. It is not true that the mere lack of a homotopy
already suffices for this. There is, however, a vague physical argument why the lack of a
homotopy between H0 and H1 implies that a sufficiently “smooth” transition H between
them cannot be invertible. Here we mean that the Hamiltonian is varying quite slowly:
for some sufficiently large ` > 0, the Hamiltonian is very close to the restriction of a
periodic Hamiltonian in the strips x1 ∈ [a, a+ `] for all a ∈ R, and equal to the restriction
of H0 or H1 for x1 � 0 or x1 � 0, respectively. Let Ha be a periodic Hamiltonian to
which H is close in the strip x1 ∈ [a, a + `]. Then Ha and Hb must be close for a ≈ b
and so we get a homotopy between H0 and H1. This homotopy cannot consist entirely
of insulators. So an operator close to Ha for some a ∈ R describes a conductor. Since H
is close to Ha in the strip x1 ∈ [a, a+ `], we expect that H cannot be invertible. This
argument is vague, and a smooth transition between two materials is uncommon. So we
will not pursue this idea further.

4.2 Some basic homotopy theory
We now return to the mathematical theory. We fix the Hilbert space K. Theorem 4.2
says that the homotopy classification of Hamiltonians of insulators is equivalent to the
homotopy classification of projections in C(Td,K(K)). A projection in C(Td,K(K)) is
simply a continuous map from Td to the space of finite-rank, orthogonal projections
on the Hilbert space K. These orthogonal projections correspond bijectively to finite-
dimensional, closed subspaces of K. Since Td is connected, the rank of these projections
is constant, say, r. Physically, r is the number of filled bands in our model. By definition,
the topological space of such orthogonal projections of rank r is the Grassmann manifold
Gr(r, dimK). This is a famous example of a compact manifold if dimK <∞. It is an
infinite-dimensional “manifold” if dimK =∞. So homotopy classes of Hamiltonians of
insulators with r filled bands and dimK bands altogether are in bijection with homotopy
classes of continuous maps Td → Gr(r, dimK).
Given two topological spaces X and Y , let [X,Y ] denote the set of homotopy classes

of continuous maps X → Y . So our problem is to describe the set [Td,Gr(r, n)] for
r ≤ n ≤ ∞. This is a prototypical problem of homotopy theory. A basic idea in
homotopy theory is to reduce the computation of [X,Y ] to similar groups where X is
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simpler, namely, a sphere. In the case at hand, we may also simplify the target space
Gr(r, n), replacing it by suitable unitary groups. Let U(n) be the group of unitary
operators on an n-dimensional Hilbert space (unitary group), and let SU(n) be the
subgroup of unitary matrices of determinant 1 (special unitary group). We assume for
simplicity that dimK <∞ and identify K with `2({1, . . . ,dimK}).

Lemma 4.4. Let r ≥ 0. Let P0 be the projection onto the subspace of K spanned
by the first r basis vectors. The map SU(n) → Gr(r, n), U 7→ UP0U

∗, descends to a
diffeomorphism

SU(n)
/ (

U(r)×U(n− r) ∩ SU(n)
)
→ Gr(r, n).

Proof. Let P1 be any orthogonal projection on K of rank r. Choose bases for the image
of P1 and its orthogonal complement. This defines a unitary operator U ∈ U(H) that
maps the image of P0 onto the image of P1. Equivalently, P1 = UP0U

∗. Multiplying
one of the basis vectors by a phase, we may arrange that det(U) = 1. So the map
SU(n)→ Gr(r, n), U 7→ UP0U

∗, is surjective. If U, V ∈ SU(n) satisfy UP0U
∗ = V P0V

∗,
then U∗V commutes with P0. Equivalently, U∗V ∈ U(r)× U(n− r) ∩ SU(n). Hence our
map descends to a bijection from SU(n)

/ (
U(r)×U(n− r)∩ SU(n)

)
onto Gr(r, n). Now

some further calculus shows, first, that the set of orthogonal projections in Mn(C) is a
smooth submanifold. This is the original manifold structure on Gr(r, n). Secondly, the
surjection SU(n) → Gr(r, n) is a submersion. This implies that the induced bijection
from SU(n)

/ (
U(r)×U(n− r) ∩ SU(n)

)
onto Gr(r, n) is a diffeomorphism.

The computation of [Td,Gr(r, n)] must be done by a recursion over d. This is because
the d-torus contains the d − 1-torus as a retract, that is, there are continuous maps
Td−1 → Td → Td−1 that compose to the identity map on Td−1. These continuous maps
induce continuous maps [Td−1,Gr(r, n)]→ [Td,Gr(r, n)]→ [Td−1,Gr(r, n)] that compose
to the identity map. As a result, any computation of [Td,Gr(r, n)] must contain the
computation of [Td−1,Gr(r, n)]. So to describe [Td,Gr(r, n)] in the physically interesting
cases d = 2, 3, we must begin with the easier cases d = 0 and d = 1. The space T0 is a
single point. So a continuous map T0 → Y is a single point in Y , and a homotopy of
such maps is a continuous path between these points. As a result, [T0, Y ] is the set of
path components of Y , which is usually denoted by π0(Y ).

Lemma 4.5. The groups SU(n) and U(r)×U(n− r)∩ SU(n) and the space Gr(r, n) are
path connected.

Proof. Let U ∈ SU(n). We may choose a basis in which U is diagonal. Taking a
logarithm for each eigenvalue gives a matrix log(U) with exp(logU) = U . Since det(U) =
exp(tr(logU)) = 1, the trace of log(U) belongs to 2πiZ. We may subtract this from one
of the diagonal entries to get a matrix log(U) with tr log(U) = 0 and exp(logU) = U .
Then Ut := exp(t log(U)) is a smooth path from the unit matrix to U , consisting of
matrices of determinant 1. This shows that SU(n) is path connected. For a matrix in
U(r)×U(n− r) ∩ SU(n), we may choose the eigenbasis above so that logU commutes
with the projection P0 in the proof of Lemma 4.4. Then the homotopy above belongs to
U(r)×U(n− r) ∩ SU(n). So this space is path connected as well. Now let P1 ∈ Gr(r, d).
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Then P1 = UP0U
∗ for some U ∈ SU(n) by Lemma 4.4. And Pt := UtP0U

∗
t for the path

built above is a smooth path from P0 to P1 in Gr(r, d). Thus Gr(r, d) is path connected
as well.

As a consequence, [T0,Gr(r, d)] has a single point.
Next we consider the case d = 1. The space T1 is a circle. We shall describe it as

the quotient [0, 1]/∼ where 0 ∼ 1. We first study [T1, Y ] for a general space Y . Recall
that T0 is a retract in T1. So [T0, Y ] = π0(Y ) is a retract of [T1, Y ]. In other words, there
is a disjoint union decomposition of [T1, Y ] into subsets indexed by π0(Y ). To single
out one of these subsets, we fix y0 ∈ Y and restrict attention to maps f : T1 → Y with
f([0]) = 1. These are equivalent to continuous maps f : [0, 1]→ Y with f(0) = f(1) = y0.
Such a map is called a loop in Y based at y0.

A homotopy between two loops f0, f1 is a continuous map f : [0, 1]2 → Y with f(s, t) =
fs(t) for s = 0, 1, t ∈ [0, 1] and f(s, 0) = f(s, 1) = y0 for all s ∈ [0, 1]. Homotopy
is an equivalence relation on loops, and the set of equivalence classes is denoted by
π1(Y, y0). Two loops may be concatenated by running through them one ofter the
other: f0 ∗ f1(t) = f0(2t) for 0 ≤ t ≤ 1/2 and f0 ∗ f1(t) = f1(2t − 1) for 1/2 ≤ t ≤ 1.
Concatenating three loops like this is multiplicative up to a reparametrisation. So the
induced multiplication on π1(Y, y0) is associative. The constant loop f(t) = y0 for
t ∈ [0, 1] is a unit element for this operation. And any loop f has an inverse (up to
homotopy of loops), namely, the loop defined by f−1(t) = f(1− t). Thus π1(Y, y0) is a
group; it is called the fundamental group of Y based at y0. The homotopy relation on
loops is not quite the same as the homotopy relation in the definition of [T1, Y ] because
we require f(s, 0) = f(s, 1) = y0 for all s ∈ [0, 1] for a homotopy of loops.

Let f0, f1 : [0, 1]/∼ → Y be two loops based at y0. A homotopy between them as in the
definition of [T1, Y ] is equivalent to a continuous map f : [0, 1]2 → Y with f(s, t) = fs(t)
for s = 0, 1 and t ∈ [0, 1] and f(s, 0) = f(s, 1) for all s ∈ [0, 1]; but f(s, 0) = f(s, 1) may
differ from y0. Hence the restriction of f to the faces [0, 1]× {t} for t = 0, 1 is another
loop γ ∈ π1(Y, y0). We may reparametrise the function f on [0, 1]2 so that it becomes
a homotopy between f0 and the loop γ ∗ f1 ∗ γ−1. In fact, one can show that f0, f1 are
equal in [T1, Y ] if and only if there is γ ∈ π1(Y, y0) with f0 = γ ∗ f1 ∗ γ−1 in π1(Y, y0).
Even more,

[T1, Y ] ∼=
⊔

y0∈π0(Y )
π1(Y, y0)/conjugation, (4.1)

where π1(Y, y0)/conjugation denotes the set of conjugacy classes of the group π1(Y, y0).
The groups π1(Y, y0) and π1(Y, y1) for y0, y1 in the same conjugacy class are isomorphic,
so that this set does not depend on the choice of y0 in its path component.

A topological space is called simply connected if it is path connected and any two loops
are homotopic (as loops). If Y is simply connected, then (4.1) implies that [T1, Y ] has
only one point. Hence the following lemma completes the computation of [T1,Gr(d, n)]:

Lemma 4.6. The spaces SU(n) and Gr(r, n) are simply connected.

Proof. We have already seen in Lemma 4.5 that these spaces are path connected. We
may choose the base points at will and take 1 ∈ SU(n) and P0 ∈ Gr(r, n). We need a
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new tool to compute the fundamental group of SU(n), namely, the long exact sequence of
homotopy groups for a fibration. An example of a fibration is the surjective submersion
q : SU(n)→ Gr(r, n) used above. To explain how the long exact sequence works, we first
apply it to this fibration and show that Gr(r, n) is simply connected provided SU(n) is
simply connected.
Let f : [0, 1] → Gr(r, n) be a loop based at P0, that is, f(0) = f(1) = P0. Since

the map q is a surjective submersion, we may lift f locally to a continuous map to
SU(n). Since [0, 1] is compact, a finite number of such liftings produces a continuous map
f̃ : [0, 1]→ SU(n) with q ◦ f̃ = f and f̃(0) = 1. Since f(0) = f(1), the other end point
f̃(1) must belong to the subgroup G := U(r) × U(n − r) ∩ SU(n). Lemma 4.5 asserts
that G is path connected. So there is a continuous path g : [0, 1]→ G with g(0) = 1 and
g(1) = f̃(1). Then f̃(t) · g(t)−1 is a loop in SU(n) based at y0 with q(f̃(t) · g(t)−1) = f(t).
If SU(n) is simply connected, then this loop is homotopic to a trivial loop. Applying q
to such a homotopy gives a homotopy between f and a trivial loop. So Gr(r, n) is simply
connected.

Now let q : Y → Z be any surjective submersion between two path-connected, smooth,
compact manifolds. Let F := q−1(z0) ⊆ Y for some z0 ∈ Z be its “fibre”. Choose
y0 ∈ F ⊆ Y . The inclusion F ↪→ Y and q : Y → Z induce the solid maps in the following
line:

π1(F, y0)→ π1(Y, y0)→ π1(Z, z0) δ
99K π0(F, y0)→ π0(Y, y0)→ π0(Z, z0). (4.2)

We are going to build the dashed arrow δ as well. The key point is that this sequence
is “exact” where this makes sense. Namely, an element in π1(Y, y0) goes to the neutral
element of π1(Z, z0) if and only if it comes from π1(F, y0); an element in π1(Z, z0) goes to
the path component of y0 in F if and only if it comes from π1(Y, y0); and an element in
π0(F ) goes to the path component of y0 in π0(Y ) if and only if it comes from π1(Z, z0).
The construction of the map δ follows a key step in the proof above that Gr(r, n) is simply
connected provided SU(n) is simply connected. Let f : [0, 1]→ Z be a loop in Z based
at z0. A local lifting construction gives a continuous map f̃ : [0, 1]→ Y with f̃(0) = y0
and q ◦ f̃ = f . So f̃(1) ∈ q−1(z0) = F because f is a loop. Let δ([f ]) be the path
component of f̃(1) in π0(F ). We should show that this depends only on the homotopy
class of f and not on the choice of f̃ . So let f0, f1 be two loops that are homotopic through
a homotopy h. Let f̃0, f̃1 be liftings of f0, f1 as above. The local lifting construction also
applies to the homotopy h, giving a continuous map h̃ : [0, 1]2 → Y with q ◦ h̃ = h. Even
more, we may choose h̃ with h̃(0, t) = y0 for all t ∈ [0, 1] and h̃(s, t) = f̃t(s) for t = 0, 1
and all s ∈ [0, 1]. Now h(1, t) is a continuous path in the fibre F between f̃0(1) and f̃1(1).
This shows that δ is well defined.

Now we have to check the various claims asserted by the exactness of the sequence (4.2).
First, let f : [0, 1] → Y be a loop in Y based at y0 that goes to the neutral element
in π1(Z, z0). Then there is a homotopy from q ◦ f to the constant loop. Lifting this
homotopy as above gives a homotopy from f to a loop with q ◦ f ′(t) = z0 for all t ∈ [0, 1].
In other words, f is homotopic to a loop in F . This is the exactness of (4.2) at π1(Y, y0).
Secondly, let f : [0, 1] → Z be a loop in Z based at z0. If f comes from a loop in Y ,
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then we may use this loop to define δ([f ]), showing that δ([f ]) = z0. Conversely, assume
that δ([f ]) is z0. Let f̃ : [0, 1]→ Y0 be a continuous map with q ◦ f̃ = f and f̃ = y0. By
assumption, there is a continuous map g : [0, 1] → F with g(0) = z0 and g(1) = f̃(1).
Concatenating f̃ and g−1 gives a loop g−1 ∗ f̃ in Y with q ◦ (g−1 ∗ f̃) = f ∗ constz0 . Since
f is homotopic to f ∗ constz0 , this means that [f ] comes from π1(Y, y0). Finally, let y ∈ F .
Then [y] = [y0] ∈ π0(Y ) if and only if there is a continuous map f̃ : [0, 1] → Y with
f̃(0) = y0 and f̃(1) = y. Now q ◦ f̃ is a loop in Z because q(y) = q(y0), and y = δ([f ])
by construction. This finishes the proof of the exact sequence (4.2).

This exact sequence exists for any map with a suitable lifting property, the homotopy
lifting property. Topologists call such maps fibrations. Ehresmann’s Fibration Theorem
says that proper surjective submersions between smooth manifolds are locally trivial
fibrations, that is, they have the appropriate homotopy lifting property. The map is
proper if preimages of compact subsets are again compact.

Now we are going to use the exact sequence (4.2) for suitable surjective submersions to
compute the fundamental group of SU(n). The unit sphere in Cn is a 2n− 1-dimensional
sphere S2n−1. The group SU(n) acts transitively on it, and the stabiliser of the point
e1 = (1, 0, . . . , 0) is a subgroup isomorphic to SU(n − 1). Hence (4.2) gives an exact
sequence

π1(SU(n− 1), 1)→ π1(SU(n), 1)→ π1(S2n−1, e1)→ π0(SU(n− 1)).

Now we recall that the spheres Sk for k ≥ 2 are simply connected. And SU(1) is the
trivial group, hence simply connected. Since 2n− 1 ≥ 2 for n ≥ 2, the exact sequence
above implies by induction that π1(SU(n), 1) is the trivial group for all n ≥ 1. This
finishes the proof.

Remark 4.7. The group U(n) is not simply connected. The group extension SU(n) ↪→
U(n)� U(1) splits by a Lie group homomorphism. So U(n) is diffeomorphic to SU(n)×S1.
Hence its fundamental group is isomorphic to Z. This is why we were careful to work
with SU(n) in the proofs above.

Now we come to the dimension d = 2, which is already physically relevant. Here we
need the higher-dimensional homotopy group π2(Gr(r, n)). In general, the k-th homotopy
group πk(Y, y0) of a pointed topological space (Y, y0) is the group of homotopy classes
of base-point preserving maps (Sk, p)→ (Y, y0), where it is understood that homotopies
must also preserve base points. Briefly,

πk(Y, y0) := [(Sk, p), (Y, y0)].

This reduces to our definition of the fundamental group π1(Y, y0) for k = 1 and also
gives the set π0(Y ) for k = 0 when we understand that S0 = {±1} has two points, one of
which is the base point. If k ≥ 2, then πk(Y, y0) is an Abelian group. Given a fibration
q : Y → Z with fibre F , the exact sequence (4.2) extends to a long exact sequence

· · · → πk(F, y0)→ πk(Y, y0)→ πk(Z, z0)
→ πk−1(F, y0)→ πk−1(Y, y0)→ πk−1(Z, z0)→ · · · . (4.3)
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The homotopy groups of a contractible space vanish. In particular, Rn for n ∈ N has
trivial homotopy groups.
The group πk(Sn) is trivial for n > k and is isomorphic to Z for k = n. Of course,

the higher homotopy groups are trivial for discrete spaces, so that πk(S0) = 0 for k ≥ 1.
The exponential map gives a locally trivial fibration R → S1 with discrete fibre. The
long exact sequence (4.3) applied to this fibration shows that πk(S1) = 0 for all k > 1
because R is contractible, so that πk(R) = 0 for all k ∈ N.
For k > n > 1, the homotopy groups of spheres are quite complicated and need not

be 0. Much work in algebraic topology has been put into understanding these groups.
Besides the computations above, we mention one more computation in the case k > n, as
another application of the long exact sequence (4.3). The group SU(2) is diffeomorphic
to the sphere S3. The matrices that are diagonal in the standard basis give a subgroup
that is diffeomorphic to S1, and the quotient group is the complex projective space CP1,
which is diffeomorphic to the sphere S2. So we get a locally trivial fibration S3 → S2

with fibre S1, called the Hopf fibration. Since πk(S1) = 0 for k ≥ 2, the long exact
sequence (4.3) for the Hopf fibration implies πk(S3) ∼= πk(S2) for all k ≥ 3. In particular,

π3(S2) ∼= π3(S3) ∼= Z

is non-trivial. There are canonical maps πn+k(Sn)→ πn+1+k(Sn+1) for all k, n, Freuden-
thal’s suspension maps. Freudenthal’s theorem says that the suspension map is an
isomorphism for n > k + 1. The common values of these homotopy groups are called the
stable homotopy groups of the spheres. In particular, πn+1(Sn) ∼= π4(S3) for n ≥ 3. The
suspension map π3(S2)→ π4(S3) is not an isomorphism. It turns out that it is surjective
and that its kernel is the subgroup generated by 2. So πn+1(Sn) ∼= Z/2 for n ≥ 3. The
last claims are proven in [17], which computes the homotopy groups πn+k(Sn) for k ≤ 19.

Next we study the homotopy groups of SU(n). The long exact sequence (4.3) applied
to the fibration SU(n)→ S2n−1 with fibre SU(n− 1) shows πk(SU(n)) ∼= πk(SU(n− 1))
for k ≤ 2n− 3. Equivalently,

πk(SU(n)) ∼= πk
(
SU
(
d(k + 1)/2e

))
(4.4)

for all n ≥ d(k + 1)/2e. The group SU(2) is diffeomorphic to the sphere S3. Hence

π2(SU(n)) = 0, π3(SU(n)) ∼= Z

for all n ≥ 2 by (4.4). If k = 4, 5, then (4.4) implies πk(SU(n)) ∼= πk(SU(3)) for n ≥ 3.
And (4.3) for our standard fibration for n = 3 contains the exact sequence

· · · → π6(S5)→ π5(SU(2))→ π5(SU(3))→ π5(S5)
→ π4(SU(2))→ π4(SU(3))→ π4(S5)→ · · · .

Since SU(2) ∼= S3, the results on homotopy groups of spheres mentioned above turn this
into an exact sequence

· · · → Z/2→ π5(S3)→ π5(SU(3))→ Z→ Z/2→ π4(SU(3))→ 0→ · · · .
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As it turns out, the boundary map Z/2 → π5(S3) here is an isomorphism, and the
boundary map Z→ Z/2 is non-zero. Hence π4(SU(3)) = 0 and π5(SU(3)) ∼= Z, and this
implies

π4(SU(n)) = 0, π5(SU(n)) ∼= Z for all n ≥ 3.

And π4(SU(2)) ∼= Z/2 and π5(SU(2)) ∼= Z/2. An important phenomenon is Bott
periodicity, which asserts that

πk(U(n)) ∼=
{

0 if k is even,
Z if k is odd,

for k ∈ N and n ≥ d(k + 1)/2e. Further computations of homotopy groups of SU(n) may
be found in [10].
Now we turn to the homotopy groups of Gr(r, n). This space is a point if r = 0 or

r = n, so that we may ignore these two cases and assume 1 ≤ r ≤ n − 1. We want to
use the fibration SU(n)→ Gr(r, n), which has the fibre G := U(r)×U(n− r) ∩ SU(n).
There is an obvious group extension SU(r)× SU(n− r) ↪→ G� U(1), which splits by a
group homomorphism. Hence G is diffeomorphic to the product

G ∼= SU(r)× SU(n− r)× S1.

The homotopy groups are compatible with products, so that

πk(G) ∼= πk(SU(r))× πk(SU(n− r))× πk(S1).

In particular, π1(G) ∼= Z because SU(n) is simply connected for all n ≥ 1 by Lemma 4.6.
And the factor πk(S1) vanishes for k ≥ 2. Recall that the groups πk(SU(n)) do not
depend on n any more for n ≥ d(k + 1)/2e. The isomorphism is induced by the inclusion
map, and this is also the map that appears in the long exact sequence for the fibration
SU(n) → Gr(r, n). Hence the groups πk(SU(n − r)) and πk(SU(n)) in the long exact
sequence cancel if n − r ≥ d(k + 1)/2e. Therefore, the boundary map induces an
isomorphism

πk(Gr(r, n)) ∼= πk−1(SU(r)) (4.5)

if n− r ≥ d(k + 1)/2e and k ≥ 3, and an isomorphism

π2(Gr(r, n)) ∼= π1(SU(r))× Z ∼= Z (4.6)

if k = 2 and n − r ≥ 2. In particular, π3(Gr(r, n)) = 0 for 1 ≤ r ≤ n − 2 because
π2(SU(n)) = 0 for all n ≥ 2. Taking orthogonal complements is a diffeomorphism
Gr(r, n) ∼= Gr(n− r, n). Hence we get

π2(Gr(r, n)) ∼= Z, π3(Gr(r, n)) ∼= 0

for 1 ≤ r ≤ n−1 provided n > 2. If n = 2 and r = 1, then Gr(1, 2) = CP1 is diffeomorphic
to the sphere S2. So π2(Gr(1, 2)) ∼= Z and π3(Gr(1, 2)) ∼= Z. The last isomorphism is
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exceptional because π3(Gr(r, n)) ∼= 0 if n ≥ 3 and 0 ≤ r ≤ n. Bott periodicity implies
that

πk(Gr(r, n)) ∼=
{
Z if k is even,
0 if k is odd,

for k ∈ N and r, n− r ≥ d(k + 1)/2e.
Next we compute [T2,Gr(r, n)] using the low-dimensional homotopy groups of Gr(r, n).

We continue to assume 1 ≤ r ≤ n− 1 to rule out trivial cases.

Lemma 4.8. Let Y be a simply connected topological space. Then there is a canonical
bijection [T2, Y ] ∼= π2(Y ).

Proof. We describe T2 = [0, 1]2/∼T and S2 = [0, 1]2/∼∂ and where ∼T identifies (0, t) ∼T
(1, t) and (s, 0) ∼T (s, 1) for all s, t ∈ [0, 1], whereas ∼∂ identifies all points on the
boundary ∂[0, 1]2 with each other. So the identity map on [0, 1]2 induces a quotient map
T2 → S2, which induces a map π2(Y ) := [(S2, 0), (Y, y0)]→ [(T2, 0), (Y, y0)]. Here we use
the equivalence class of 0 as the base point in S2 and T2. Forgetting to preserve base points
defines a forgetful map [(T2, 0), (Y, y0)] → [T2, Y ]. We claim that the composite map
π2(Y )→ [T2, Y ] is a bijection. This is a higher-dimensional analogue of the computation
of [T1, Y ] in (4.1), under the simplifying assumption that the target space be simply
connected.
Let y0 ∈ Y be a base point and let f : [0, 1]2/∼T → Y be a continuous map. Then

f(0, 0) = f(0, 1) = f(1, 0) = f(1, 1). Since Y is connected, we may choose a path g from y0
to this point. Concatenating the paths g, f(t, 0) = f(t, 1) for t ∈ [0, 1], and g−1 gives a loop
at y0. Since Y is simply connected, this loop is homotopic to the constant loop at y0. Hence
there is a continuous map h1 : [0, 1]2 → Y with h1(0, t) = y0, h1(t, 0) = h1(t, 1) = g(t)
and h1(1, t) = f(t, 0) = f(t, 1) for all t ∈ [0, 1]. Similarly, there is a continuous map
h2 : [0, 1]2 → Y with h2(0, t) = y0, h2(t, 0) = h2(t, 1) = g(t) and h2(1, t) = f(0, t) = f(1, t)
for all t ∈ [0, 1]. We may use these maps to define a continuous map on an enlarged
square [−1, 2]2, decomposed as follows:

Here each quadrilateral is identified with the square by an affine map, and we use the
maps h1 on the left and right, h2 on the top and bottom quadrilateral, and f in the
square in the middle. The resulting function is constant equal to y0 on the boundary of
[−1, 2]2. Scaling gives a homotopy of maps T2 → Y from the original map f to the map
on [−1, 2]2. The latter maps ∂[0, 1]2 to y0, so it defines an element in π2(Y ). Hence the
map π2(Y )→ [T2, Y ] is surjective.
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To prove that this map is injective, take two maps f0, f1 : [0, 1]2/∼∂ → Y mapping
all boundary points to y0 and a homotopy between them as maps h : [0, 1]2/∼T → Y .
This homotopy is a map defined on [0, 1]3. An argument as above gives a homotopy
between h and a map h̃ on [0, 1]3 that is constant equal to y0 on each one-dimensional
face of ∂[0, 1]3. That is, the restrictions of h̃ to the six faces of the cube are elements
of π2(Y ). The continuous map h̃ witnesses that the oriented sum of these restrictions of h̃
vanishes in π2(Y ). The new homotopy h̃ is still defined on T2 × [0, 1]. So its restrictions
to the front and back faces and to the left and right faces are equal, respectively, and
they cancel in the oriented sum in π2(Y ). And the restrictions to the top and bottom
faces are the given maps f0 and f1. Hence [f0] = [f1] in π2(Y ) as desired.

Putting our computations together gives

[T2,Gr(n, r)] ∼= Z

for all n ∈ N and 1 ≤ r ≤ n − 1. Thus there are non-trivial topological phases in
dimension 2.
A similar computation would show [T3, Y ] ∼= π3(Y ) if πk(Y ) = 0 for k = 0, 1, 2. But

the spaces Gr(n, r) that we care about have non-trivial π2 and (usually) trivial π3. Hence
we use a different idea to study [T3,Gr(n, r)]. A map T3 → Y is equivalent to a map
[0, 1]3/∼T → Y , where ∼T describes periodic boundary conditions, (0, s, t) ∼T (1, s, t),
(s, 0, t) ∼T (s, 1, t), (s, t, 0) ∼T (s, t, 1) for all s, t ∈ [0, 1]. If Y is simply connected, then we
may replace any map T3 → Y by one that is constant equal to y0 on all one-dimensional
faces of the boundary ∂[0, 1]3, and we may restrict to homotopies with this property as
well.

Lemma 4.9. Let Y be a simply connected space with π3(Y ) = 0. A continuous map
∂[0, 1]3 → Y defines an element in π2(Y ), and it extends to a continuous map [0, 1]3 → Y
if and only if this class is 0. Any two such extensions are homotopic with a homotopy
that is constant on the boundary.

Proof. The cube [0, 1]3 is homeomorphic to the closed disk

D3 = {(x, y, z) ∈ R3 :x2 + y2 + z2 ≤ 1}

in R3, such that the boundary ∂[0, 1]3 is mapped onto the boundary ∂D3 of D3. One
way to prove this is to shift and rescale the cube to map it onto the unit ball of the
∞-norm, which is a cube of side length 2 centred at 0. The map x 7→ ‖x‖2 · ‖x‖−1

∞ · x is
a homeomorphism from the unit ball of the ∞-norm onto D3, which is the unit ball of
the 2-norm. The diffeomorphism above identifies the boundary ∂[0, 1]3 with S2. Thus
a continuous map ∂[0, 1]3 → Y defines a map f : S2 → Y . Since Y is path connected,
we may modify this map in a little neighbourhood of the base point ∗ in S2 so that
it becomes base-point preserving. This modification depends on the choice of a path
between f(∗) and the base point in Y . Since Y is simply connected, the choice does not
influence the resulting class in π2(Y ).
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A map on S2 extends to a map on D3 if and only if it is homotopic to the constant map.
So a map on ∂[0, 1]3 extends to [0, 1]3 if and only if the associated class in π2(Y ) vanishes.
Now consider two extensions f± : D3 → Y . We may build a 3-sphere S3 by glueing two
copies of D3 along their boundaries S2. The two copies of D3 become the northern
and southern hemispheres and S2 becomes the equator in S3. So the two maps f± that
coincide on the boundary combine to a map S3 → Y . Since π3(Y ) = 0, this map extends
to a continuous map on the closed unit disk D4 ⊆ R4. Now the embeddings of D3 into D4

as the northern and southern hemispheres are homotopic through a homotopy that is
constant on the boundary sphere S2. A particular homotopy that does it has the form

D3 → D4, (x, y, z) 7→
(
x, y, z, t ·

√
1− x2 − y2 − z2

)
,

for −1 ≤ t ≤ 1. Hence a continuous map on D4 that agrees with the maps f± on the two
boundary hemispheres gives a homotopy between the two maps f± that is constant on
the boundary S2.

Proposition 4.10. Let Y be a simply connected topological space with π3(Y ) = 0. Then
there is a bijection between [T3, Y ] and the product π2(Y )3 of three copies of π2(Y ).

Proof. The three embeddings R2 → R3 as the xy-, xz- and yz-planes induce three
embeddings of the torus T2 into T3. We describe T3 as [0, 1]3/∼T, where the equivalence
relation ∼T identifies opposite faces in the boundary ∂[0, 1]3. So the six boundary faces
of the cube [0, 1]3 are only three different faces. And these are the images of the three
embedded tori T2 ⊆ T3. Restricting a map on T3 to one of the embedded tori gives a map
[T3, Y ] → [T2, Y ]. Lemma 4.8 identifies the target of this map with π2(Y ). Therefore,
the three maps [T3, Y ] → [T2, Y ] combine to a map [T3, Y ] → π2(Y )3. We claim that
this map is bijective. To begin with, three elements in π2(Y ) may be represented by
three maps [0, 1]2 → Y that are constant equal to the base point y0 of Y on ∂[0, 1]2. We
take the first of these maps on the front and back faces of the cube, the second on the top
and bottom faces, and the third on the left and right faces of the cube. This gives a well
defined map because all the three maps are constant equal to y0 on the boundaries of
the faces, where different faces meet. So we get a well defined map on ∂[0, 1]3. The map
in π2(Y ) associated to this map is an alternating sum of the maps on the six boundary
faces, where opposite faces appear with different signs. Since we have used the same
map on opposite faces, the class in π2(Y ) always vanishes. By Lemma 4.9, we may
extend our map on ∂[0, 1]3 to [0, 1]3. The extension preserves the equivalence relation ∼T,
which only concerns the boundary values. So it defines a map on T3. Thus the map
[T3, Y ] → π2(Y )3 is surjective. In addition, the uniqueness of the extension stated in
Lemma 4.9 shows that this map is injective.

The formulas for π3(Gr(r, n)) show that Proposition 4.10 applies to Gr(r, n) for n ≥ 3
and 0 ≤ r ≤ n, but not for (r, n) = (1, 2). So [T3,Gr(r, n)] = Z3 if 1 ≤ r ≤ n − 1 and
3 ≤ n. I think that π3(Gr(1, 2)) ∼= Z implies that [T3,Gr(1, 2)] = Z4.
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5 Hamiltonians with symmetry
Our classification of Hamiltonians so far only takes into account translation symmetry.
Now we assume that the system has some other symmetries and restrict homotopies
accordingly. This leads to a very different classification. We first define the relevant
notion of homotopy. Then we specialise to the simplest case of chiral symmetry. Other
types of symmetry lead to equivariant as opposed to ordinary homotopy theory. We only
touch upon this briefly here.

Assume that a group G is represented projectively on the Hilbert space K by unitary
or anti-unitary operators. These induce unitary or anti-unitary operators on L2(Td,K),
which again form a projective representation of G. Let c : G → {±1} be a group
homomorphism. We restrict attention to Hamiltonians that satisfy gHg−1 = c(g)H, that
is, H commutes with elements of G with c(g) = 1 and anticommutes with elements of G
with c(g) = −1.

I am not aware of a mathematically precise treatment of homotopy for Hamiltonians
on an infinite-dimensional Hilbert space K and with chiral or particle-hole symmetries.
The assumption that Hamiltonians are bounded below forbids this case.

Definition 5.1. Let H0, H1 be invertible, self-adjoint, bounded below operators on
L2(Td,K) with compact resolvent that satisfy gHtg

−1 = c(g)Ht for all g ∈ G and t = 0, 1.
A (G-equivariant) homotopy between H0 and H1 is a family of invertible self-adjoint
operators (Ht)t∈(0,1) with compact resolvent that satisfy gHtg

−1 = c(g)Ht for all t ∈ (0, 1),
such that the resolvents (λ−Ht)−1 define a norm-continuous map [0, 1]→ K(L2(Td,K)).
If such a homotopy exists, we call H0 and H1 (G-equivariantly) homotopic.

Roughly speaking, if two Hamiltonians have some symmetries, we may restrict attention
to homotopies consisting of Hamiltonians with the same symmetries. Which of the
symmetries we require for homotopies is a choice. If perturbations of the Hamiltonian that
break some particular symmetries are relevant, then we may disregard these symmetries.
For instance, a magnetic field usually breaks time-reversal symmetry. Therefore, if your
Hamiltonian is time-reversal symmetric, then we may choose to disregard this in the
homotopy classification if external magnetic fields occur in experiments.
The following lemma is a variant of Theorem 4.2:

Lemma 5.2. Let dimK < ∞ and let H0, H1 be invertible, self-adjoint operators on
L2(Td,K) that satisfy gHtg

−1 = c(g)Ht for all g ∈ G and t = 0, 1. Let Ft := sign(Ht).
This a self-adjoint operator with F 2

t = 1 (“self-adjoint involution”) that satisfies gFtg−1 =
c(g)Ft for all g ∈ G and t = 0, 1. The operators H0, H1 are G-equivariantly homo-
topic among invertible self-adjoint operators on L2(Td,K) if and only if F0, F1 are
G-equivariantly homotopic among self-adjoint involutions on L2(Td,K).

Proof. The proof is essentially the same as for Theorem 4.2. The only new point is that
sign(Ht) (anti)commutes with any operator that (anti)commutes with Ht because the
sign function is odd. In contrast, the spectral projections used in Theorem 4.2 do not
anticommute with operators that anticommute with Ht.
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5.1 Chiral symmetry
As a first case of symmetry, we consider Hamiltonians with a chiral symmetry. That is,
we are given a unitary involution Ξ: K → K, and we restrict attention to Hamiltonians
that anti-commute with Ξ. In the general scheme above, this corresponds to the case
where G = {±1} acts by unitary operators and c : G→ {±1} is the identity map. We
assume that K is finite-dimensional.
The unitary involution Ξ has spectrum {±1}. So it induces a decomposition K =
K+⊕K− such that Ξ restricts to ±1 on K±. Conversely, such a direct sum decomposition
defines a unique self-adjoint involution. A self-adjoint operator that anticommutes with Ξ
is a block matrix of the form

H =
(

0 T ∗

T 0

)
in the decomposition K = K+ ⊕K−, with some operator T : K+ → K−. Thus a matrix-
valued function H : Td → K(K) that anti-commutes with id ⊗ Ξ is equivalent to a
matrix-valued function H : Td → K(K+,K−). By spectral flattening (Lemma 5.2), we
may replace invertible self-adjoint operators by self-adjoint unitaries (involutions). The
operator H is unitary if and only if H2 = 1, if and only if the corresponding operator T
is unitary. So homotopy classes of invertible Hamiltonians in dimension d with chiral
symmetry Ξ are naturally in bijection with the set [Td,U(K+,K−)] of homotopy classes
of maps from Td to the set of unitary operators K+ → K−.
This set is empty unless dimK+ = dimK−. So we assume this and call the common

dimension n. Then there are unitaries Cn ∼= K+ and Cn ∼= K−. Using these, we
may identify U(K+,K−) ∼= U(n). So we must study the space [Td,U(n)]. Fortunately,
we have already done this when studying the case without symmetries. Recall that
U(n) ∼= SU(n)× S1. So

[Td,U(n)] ∼= [Td, SU(n)]× [Td,S1].

We have seen in Section 4.2 that SU(n) is simply connected and that π2(SU(n)) = 0 and
π3(SU(n)) = Z for all n ≥ 2. Hence Lemma 4.8 implies that [T2, SU(n)] is a single point.
And an argument as in the proof of Lemma 4.8 implies [T3, SU(n)] ∼= π3(SU(n)) ∼= Z for
n ≥ 2. We are, in fact, more interested in the second factor [Td,S1]. This is the only
piece if n = 1 because then SU(1) = {1} and U(1) = S1.

Lemma 5.3. There is a natural bijection between [Td,S1] and the set of group homo-
morphisms Zd → Z.

Proof. We first pick base points x0 ∈ Td, y0 ∈ S1 at will and restrict attention to
base-point preserving maps and homotopies. A base-point preserving continuous map
X → Y induces a homomorphism between the fundamental groups π1(X) → π1(Y ),
and homotopic maps induce the same homomorphism of fundamental groups. So we
get a canonical map from [(Td, x0), (S1, y0)] to Hom(π1(Td), π1(S1)). Now recall that
π1(Td) = Zd, π1(S1) = Z. The spaces Td have the special property that their universal
coverings are contractible. Namely, these are the quotient maps qd : Rd → Rd/Zd ∼= Td.
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Since T1 = S1, the same is true for S1. The theory of covering spaces implies that two
continuous maps between aspherical spaces are homotopic if and only if they induce
the same maps between the fundamental groups. A crucial step here is a local lifting
construction, showing that a map Td → S1 lifts to a map Rd → R, which is unique if we
specify the value at one point of Rd.
Now it remains to study what happens when we allow maps that do not preserve

base points. Since Td and S1 are connected, any map Td → S1 is homotopic to a map
that sends x0 to y0; the homotopy changes the map only on a very small neighbourhood
of y0, which we take to be homeomorphic to a closed ball in Rd and so that the image is
contained in a very small, contractible open subset of S1. A homotopy between base-point
preserving maps is, in particular, a base-point preserving map Td × [0, 1]→ S1, where we
may take the base point in Td × [0, 1] to be either (x0, 0) or (x0, 1). The fundamental
groups for these two base points are the same, and the induced maps Zd → Z on
fundamental groups are also the same. So homotopic maps induce the same map on
fundamental groups, even if we allow homotopies that do not preserve base points.

Of course, Hom(Zd,Z) ∼= Zd by specifying the values of a homomorphism on the
generators of Zd. So

[T1,U(n)] ∼= Z, [T2,U(n)] ∼= Z2, [T3,U(n)] ∼= Z4.

In particular, non-trivial topological phases for Hamiltonians with chiral symmetry exist
already for d = 1. Indeed, the Hamiltonians of the Su–Schrieffer–Heeger model studied
in Section 3.3.5 for m ∈ (−1, 1) and m > 1 are not homotopic. Let Hm denote this
Hamiltonian. Recall that Hm has chiral symmetry and that it is invertible for |m| 6= 1. So
(Hm)m∈[a,b] is a homotopy between Ha and Hb provided a, b ∈ (−1, 1) or a, b ∈ (−∞,−1)
or a, b ∈ (1,∞). If, say, a < 1 < b, then the homotopy (Hm)m∈[a,b] is not allowed
because H1 is not invertible.

To see that there really are phase transitions at ±1, we need to understand the bijection
[T1,U(n)] ∼= Z. The Su–Schrieffer–Heger model has n = 1, where U(1) = S1. Actually,
for n ≥ 2, the first step in the bijection [T1,U(n)] ∼= Z is the canonical map

[T1,U(n)]
∼=→ [T1,U(1)]

that simply composes a loop in U(n) with the projection det : U(n) → U(1) ⊆ C with
kernel SU(n). This produces a loop in U(1) even if we start in the case n ≥ 2. The
homotopy group computations above show that applying the determinant does not forget
any information for loops. Now we identify T1 and U(1) with the unit circle in C. The
canonical bijection between [T1,U(1)] and Z maps a loop in U(1) to its winding number.
This counts with appropriate signs how often a loop in U(1) ⊆ C \ {0} winds around the
origin. For the Su–Schrieffer–Heeger model, the loop in question is the spectral flattening
of the loop

[0, 1]→ C \ {0}, k 7→ exp(2πik) + im;

here we have taken the appropriate entry of the matrix H(k) in (3.6). We only get a
loop in C \ {0}, not in U(1) because we have not yet spectrally flattened the Hamiltonian.
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Spectral flattening amounts to the radial projecting C \ {0} → U(1), which does not
change the winding number. So the relevant loop is a circle around the point im of
radius 1, and we run through the circle with constant speed in the positive (anti-clockwise)
direction. This loop has winding number +1 around all points in the interior of the circle,
and winding number 0 around points outside the circle. The point 0 lies in the circle
if m ∈ (−1, 1), and outside the circle otherwise. So our bijection [T1,U(1)]

∼=→ Z maps
the Su–Schrieffer–Heeger Hamiltonian Hm to +1 if m ∈ (−, 1, 1), and to 0 if m < −1
or m > 1. In particular, the Hamiltonians for m < −1 and m > 1 are homotopic. One
homotopy between Hm and M−m for m > 1 would be to take

Lt(k) :=
(

0 St(k)∗
St(k) 0

)
, St(k) = exp(2πik) + im · exp(πit)

for t ∈ [0, 1]. The function St(k) describes a circle around im · exp(πit) of radius 1, and
all these circles avoid the point 0.

5.2 Non-Unitary symmetries and equivariant homotopies
Now assume that our symmetry group G also contains some non-unitary symmetries.
This case is qualitatively different. Let H ∈ C(Td,B(K)). We write the function H as a
Fourier series H(z) =

∑
x∈Zd zxHx with zx =

∏d
j=1 z

xj

j and Hx ∈ B(K) for x ∈ Zd, z ∈ Td.
The corresponding operator on `2(Zd)⊗K is

∑
x∈Zd Sx⊗Hx with (Sxf)(y) := f(y−x) for

x, y ∈ Zd, f ∈ `2Zd). Let g ∈ G be an anti-unitary symmetry acting on K; so the action
on `2(Zd,K) is by pointwise application of G. So g commutes with the translations Sx
for all x ∈ Zd. We write the commutation relation Hg = c(g) · gH as H = c(g) · gHg−1

and compute
c(g)gHg−1 =

∑
x∈Zd

Sx ⊗ c(g)gHxg
−1.

So the function on T d corresponding to c(g)gHg−1 has the Fourier coefficients c(g)gHxg
−1.

Its value at z ∈ Td is therefore∑
x∈Zd

zx · c(g)gHxg
−1 = c(g) · g

(∑
x∈Zd

zxHx

)
g−1 = c(g)g ·H(z) · g−1.

We replace z by z because g is conjugate-linear, so that g · (i · T ) = −i · g · T . Hence the
assumption that the operator H on `2(Zd,K) satisfies H = c(g)gHg−1 corresponds to the
condition H(z) = c(g)gH(z)g−1 for the function H : Td → B(K). When we describe Td
as Rd/Zd, then the complex conjugation above becomes the map k 7→ −k or, equivalently,
k 7→ 1− k.
Hence the space of Hamiltonians is the space of continuous maps

f : Td → {a ∈ B(K) : a = a∗, a2 = 1} (5.1)

that satisfies f(z) = c(g)gf(z)g−1 if g ∈ G is unitary and f(z) = c(g)gf(z)g−1 if g ∈ G
is anti-unitary. This is a G-equivariant map when we let G act on Td by g · z := z if g is
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unitary and g · z := z if g is anti-unitary and on B(K) by T 7→ c(g)gTg−1. We may first
treat the unitary symmetries by shrinking the target space in (5.1) to

X := {a ∈ B(K) : a = a∗, a2 = 1, and c(g)gag−1 = a for all unitary g ∈ G}. (5.2)

The subgroup of unitary symmetries in G has index 2 when we assume that there is at
least one non-unitary symmetry. Let g0 ∈ G be a chosen anti-unitary symmetry. Then g2

0
is a unitary symmetry in G, which acts trivially on X. Hence Td and X carry actions
of the group Z/2 generated by complex conjugation and the map T 7→ c(g0)g0Tg

−1
0 ,

respectively. The map in (5.1) is G-equivariant if and only if it is a Z/2-equivariant
map Td → X. The space of homotopy classes of Z/2-equivariant maps Y → X with
Z/2-equivariant homotopies is denoted by [Y,X]Z/2. So our problem is to describe the
set [Td, X]Z/2, where the space X and the action of Z/2 on it depend on the dimension
of K and the symmetry group G. This problem is handled by equivariant homotopy
theory, which is more complicated than ordinary homotopy because we also have to take
into account the group actions.
We briefly consider a simple case. Assume that G = {1,Θ} has only time-reversal

symmetry, with Θ2 = ±1. In this case, all symmetries commute with H. Hence we may
do spectral flattening as in the previous section, replacing involutions by projections. To
make our problem more concrete, we have to represent Θ by an anti-unitary operator
on K. If Θ2 = 1, then complex conjugation will do, and any other anti-unitary operator
on Cn with Θ2 = 1 is unitarily equivalent to complex conjugation. If Θ2 = −1, then
multiplication with i and Θ generate an action of the quaternion algebra on K, making K
a vector space over the quaternions H. So the dimension of K is even, and we may choose
an isomorphism K ∼= Rk ⊗R C2 such that Θ acts by 1⊗Θ0 with Θ0 as in Example 2.13.
Now assume also that d = 1. What is a Z/2-equivariant map f : T → B(K)? The

map z 7→ z on the unit circle in C has the two fixed points ±1, and it maps the upper
semicircle bijectively onto the lower semicircle. Hence f(±1) must commute with Θ,
and the restriction of f to the upper semicircle is a homotopy between f(1) and f(−1),
and the restriction of f to the lower semicircle is determined by this and the constraint
f(z) = Θf(z)Θ−1.
In the case Θ2 = 1, an operator commutes with the complex conjugation Θ if and

only if its matrix has real entries. So f(±1) are projections in Mn(R), which describe
points in the real Grassmanian GrR(r, n), where r is the rank of the projection. In the
case Θ2 = −1, an operator commutes with the complex conjugation Θ if and only if
is linear over the quaternions. An H-linear orthogonal projection is again equivalent
to an H-linear subspace, so that f(±1) are points in the quaternionic Grassmanian
GrH(r/2, n/2); here r/2 is the rank of the projection over H, which is half the rank as a
complex matrix. As in the complex case, the real and quaternionic Grassmann manifolds
are connected, that is, any two projections in them are homotopic. The map f on the
upper semicircle also provides a homotopy between these two points in the complex
Grassmannian, which is GrH(r, n) in both cases. Such a homotopy exists if and only if
the projections at ±1 have the same rank. And then it is unique because GrH(r, n) is
simply connected. So all Hamiltonians with time-reversal symmetry in dimension 1 are
in the same topological phase.
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As it turns out, the set of homotopy classes of Hamiltonians with time-reversal
symmetry Θ with Θ2 = −1 in dimension 2 is in bijection with Z/2, that is, there are
exactly two homotopy classes of Hamiltonians with this symmetry (see [2]).
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6 The bulk–edge correspondence
The homotopy classification of Hamiltonians studied above is interesting because an
non-trivial homotopy class may make an insulator into a conductor when a boundary
or edge is produced. In general, a precise version of this phenomenon is called the bulk–
edge or bulk–boundary correspondence. It relates the physical properties of the bulk
(interior) and the boundary of a material. Consider a d-dimensional material, described
in a tight-binding model by a Hamiltonian H on the Hilbert space `2(Zd,Cn) for some
n ∈ N. Let G be some group of internal symmetries that is acting on Cn by unitary or
anti-unitary operators that commute or anti-commute with the Hamiltonian H.
In reality, our chunks of materials are finite, so that we should replace the lattice Zd

by a finite subset of it. Then our Hamiltonian becomes a finite matrix, and we lose
all structure. It is crucial to work on the infinite set Zd to talk about periodicity and
describe Hamiltonian through matrix-valued functions on Td. To describe a material
with a boundary, we replace Zd by N× Zd−1. The approximation is that we study the
behaviour of the system near one of the boundaries, pretending that all other boundary
faces are infinitely far away.
We start with the Hamiltonian on `2(Zd,Cn) that describes the periodic material

without boundary. This is described by a continuous function H : Td → Mn(C) with
H(z) = H(z)∗ for all z ∈ Td. Let H(z) =

∑
x∈Zd Hxz

x be its Fourier series. Then
the corresponding operator on `2(Zd,Cn) is H =

∑
x∈Zd Sx ⊗Hx with the translation

operators Sx for x ∈ Zd. We also describe this operator as matrix–vector multiplication
with the block matrix (Hx,y)x,y∈Zd , where Hx,y = Hx−y for all x, y ∈ Zd. Now let Ĥ be
the operator on `2(N× Zd−1,Cn) that has the same block matrix components, now only
for x, y ∈ N× Zd−1.
Let I : `2(N× Zd−1)→ `2(Zd) be the canonical isometry and let In := I ⊗ 1: `2(N×

Zd−1,Cn)→ `2(Zd,Cn). Then

Ĥ = I∗nHIn =
∑
x∈Zd

I∗SxI ⊗Hx

Let x = (x1, . . . , xd) ∈ Zd and let S1, . . . , Sd be the shift operators on `2(Zd) in the
coordinate directions. So Sx = Sx1

1 · · ·S
xd
d . Then I∗SxI =

∏d
j=1(I∗Sxj

j I) because
I∗I = 1. Let Ŝj = I∗SjI. This operator is the unilateral shift – an isometry – for j = 1
and unitary for j = 2, . . . , d. We interpret Sx1 := Sx1 for x ≥ 0 and Sx1 := (S∗1)−x for x < 0.
Then

Ĥ =
∑
x∈Zd

Ŝx1
1 Ŝx2

2 · · · Ŝ
xd
d ⊗Hx.

The self-adjointness of H(z) for z ∈ Td is equivalent to H∗x = H−x for x ∈ Zd and to
H∗x,y = Hy,x for all x, y ∈ Zd. This is equivalent to Ĥ being self-adjoint.

While the operator Ĥ above is the most obvious operator on `2(N× Zd−1) associated
to H, it need not be the physically correct one. The Hamiltonian in a tight binding model
is an effective one, taking into accout the interaction between the many electrons and
nuclei. Near the boundary, the physics of the material is different. The distances between

61



the nuclei may be different, and there are no electrons on one side. So one should expect
that the true Hamilton operator of the system with boundary differs is Ĥ +K with an
error term K. The matrix coefficients Kx,y of K for x, y ∈ N × Zd−1 should decay for
x1 → ∞ or y1 → ∞ and should be invariant under translations in {0} × Zd−1. If we
assume that Hx = 0 for ‖x‖ > R, then it is reasonable to also assume that Kx,y = 0 for
x1 > R or y1 > R. Another reason to expect this structure is that the operators Ĥ above
do not form a ∗-algebra. While Ŝ∗1 Ŝ1 = 1, the other composition Ŝ1Ŝ

∗
1 is the projection

onto the image of Ŝ1, which is the linear span of δx with x1 ≥ 1. Let Â be the space of
all operators on `2(N× Zd−1,Cn) of the form Ĥ +K, such there is R > 0 with Hx = 0
for x ∈ Zd with ‖x‖ > R and Kx,y = 0 for x, y ∈ N× Zd−1 with ‖x− y‖ > R or x1 > R
or y1 > R. This is a ∗-algebra. Let C∗(Â) be its norm closure.

The map sending Ĥ+K to H extends to a surjective ∗-homomorphism from C∗(Â) onto
C(Td,Mn(C)) and that its kernel is isomorphic to K(`2N)⊗C(Td−1,Mn(C)), where K(`2N)
denotes the C∗-algebra of compact operators on the Hilbert space `2N. The construction
above lifts a self-adjoint element H of C(Td,Mn(C)) to a self-adjoint element Ĥ of C∗(Â).
This lifting is not unique: two liftings differ by a self-adjoint element of K(`2N) ⊗
C(Td−1,Mn(C)).
Recall that H describes an insulator if and only if H is invertible. Similarly, Ĥ

describes an insulator if and only if Ĥ is invertible. If H is invertible, but not Ĥ, then
ker Ĥ consists of functions that are supported near the boundary {0} × Zd−1. These
are conducting states of the half-space material that are localised near the boundary.
Now the kernel of Ĥ depends on the choice of the lifting. We may certainly change the
kernel of Ĥ by adding terms in K(`2N)⊗ C(Td−1,Mn(C)). The interesting phenomenon
is that sometimes an invertible H does not have any invertible lifting Ĥ for topological
reasons. In general, it may be shown that the existence of an invertible lifting of H
is a homotopy invariant property. That is, if H is homotopic to H ′ and if H has an
invertible lifting, then so does H ′. To make things clearer, we now restrict attention to
the one-dimensional case.
So let d = 1. Then C∗(Â) is simply the algebra of n × n-matrices over the Toeplitz

C∗-algebra T , which is the C∗-subalgebra of B(`2N) generated by the unilateral shift,
which we denote by Ŝ. The extension above specialises to the well known C∗-algebra
extension

K(`2N)� T � C(T).

To see interesting topological phases in dimension 1, we consider systems with chiral
symmetries. In the simplest case, we have n = 2 and Ξ is the diagonal matrix with
entries +1,−1. So the possible Hamiltonians are off-diagonal matrices

H =
(

0 U∗

U 0

)
.

And this is invertible if and only if U is invertible. Spectral flattening reduces further to
the case where U is unitary. An example of this type is the Su–Schrieffer–Heeger model
in Section 3.3.5.
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Example 6.1. Consider the case where U = Sk is translation by k ∈ N. Then

Ĥ =
(

0 (Ŝ∗)k
Ŝk 0

)
.

The operator Ŝk is an isometry, hence injective, and the kernel of (Ŝ∗)k is the orthogonal
complement of the image of Ŝk, which is spanned by the first basis vectors δ0, . . . , δk−1.
So the kernel of Ĥ has dimension k. We may easily enlarge this dimension as much as
we like by adding a finite-rank operator to Ĥ. For instance,

Ĥ +K =
(

0 Ŝm(Ŝ∗)k+m

Ŝk+m(Ŝ∗)m 0

)

is another lifting of H, which differs from Ĥ by a finite-rank operator. Now Ŝm(Ŝ∗)k+m

and Ŝk+m(Ŝ∗)m are partial isometries, and their kernels have dimension k +m and m,
respectively. But, as it turns out, any lifting of H with chiral symmetry has a kernel
whose dimension is at least k. To explain this, we recall some fundamental results about
the index of Fredholm operators.

Definition 6.2. An operator T on a Hilbert space V is called Fredholm if kerT and
cokerT := V/ imT are finite-dimensional. Then the index of T is

indT := dim kerT − dim cokerT.

Theorem 6.3. An operator T on a Hilbert space V is Fredholm if and only if there is an
operator S, called parametrix for T , such that S · T − idV and T · S − idV are compact.

Theorem 6.3 implies that an element Ĥ of Mn ⊗T is Fredholm if and only if its image
in the quotient C∗-algebra Mn ⊗ T

/
Mn ⊗ K(`2N) ∼= C(T,Mn) is invertible. In other

words, Ĥ is Fredholm if and only if H is invertible. So the index of Ĥ is well defined for
all of them. Actually, the index of all self-adjoint operators vanishes. The interesting
index is the index of the off-diagonal entry Û in Ĥ above.

Theorem 6.4. Let T be a Fredholm operator. If K is compact, then T +K is Fredholm
and ind(T +K) = indT . There is ε > 0 such that any operator S with ‖T − S‖ < ε is
Fredholm and satisfies indT = indS. If two Fredholm operators are homotopic in the
space of Fredholm operators, then they have the same index.

The second statement says that the map taking a Fredholm operator to its index
is locally constant. Hence it is constant on the connected components of the space of
Fredholm operators. This is the reason why homotopic Fredholm operators have the
same index.

Corollary 6.5. Let U ∈ C(T,Mn) be invertible. Then any lifting Û ∈Mn ⊗ T of U is
Fredholm. The index ind Û depends only on the class of U up to homotopy. It is equal to
minus the winding number invariant of U .
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Proof. The first statement in Theorem 6.4 says that all liftings Û of U have the same
index. A norm-continuous homotopy of invertible elements in C(T,Mn) lifts to a norm-
continuous homotopy of Fredholm operators in Mn ⊗ T . So the third statement in
Theorem 6.4 implies that liftings of homotopic invertible elements in C(T,Mn) have the
same index. We have seen that any element of C(T,Mn) is homotopic to a function of
the form

υm : T→Mn, z 7→ diag(zm, 1, . . . , 1)

for m ∈ Z. This is lifted to Sm if m ≥ 0, and to (S∗)−m if m < 0. Direct computation
shows that the index of Sm is −m and the index of (S∗)−m is m. Hence the lifting of U
has index −m if U is homotopic to the function υm above. The number m here is the
winding number of the function T→ C \ {0}, z 7→ detU(z).

Corollary 6.5 explains why all liftings of the operator H in Example 6.1 have index k.
If k 6= 0, this implies that the operator cannot be invertible. In fact, an operator T has
the property that T +K is invertible for some compact operator K if and only if T is
Fredholm with index 0. One implication follows from the theorems above: the index of
an invertible operator is clearly 0, and T and T +K have the same index. Conversely,
if T has index 0, then one may choose a finite rank-operator K that vanishes on the
orthogonal complement of kerT so that T + K is invertible. Thus the index of U is
exactly the obstruction to finding a lifting Û that is invertible.
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