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Introduction

Motivation

Fix a field k and let X be an affine k-variety with coordinate ring O[X]. Assume that a finite group Γ
acts on X by biregular maps or, equivalently, acts on O[X] by k-algebra automorphisms. Understanding
the relation between the group action of Γ on X and the geometry of X naturally leads to the study of
the quotient X/Γ. This is an affine k-variety with coordinate ring O[X]Γ, the subalgebra of Γ-invariant
regular functions. However, there is a certain loss of control involved in the construction of this quotient.
For instance, the quotient of a smooth k-variety is not necessarily smooth. Furthermore, in more general
situations, these quotient constructions are not well-behaved.

We generalise our setting as follows. Suppose that A is a commutative k-algebra and that a finite
group Γ acts on A by k-algebra automorphisms. This now corresponds, geometrically, to the case of
a finite group Γ acting on an affine k-scheme X = Spec(A) by k-automorphisms. Instead of studying
the affine k-scheme X/Γ = Spec

(
AΓ) directly, we consider the crossed product algebra A ⋊ Γ. This ring

encodes the algebra of the quotient construction more compactly. However, this will generally be a
noncommutative ring. As such, the ideas and results of algebraic geometry do not apply. They are
instead replaced by formal analogues, capturing the essence of geometric constructions.

For instance, schemes admit a well-defined geometric notion of smoothness, together with a deeply
intertwined theory of tangent and cotangent spaces. Using the algebra-geometry dictionary at the
heart of algebraic geometry, these concepts can be reinterpreted purely algebraically. This leads to
formal notions of smoothness and differential forms, applicable not only to commutative rings but also
to noncommutative rings. This constitutes the formalism of Hochschild homology, and of the derived
theories of cyclic and periodic cyclic homology.

We are interested in crossed product algebras arising from affine k-varieties in positive characteristic.
Specifically, suppose that k is the residue field of a complete discrete valuation ring V with uniformizer
π. This is particularly useful if the field of fractions of V is of characteristic 0. For simplicity, we only
consider finite group actions of commutative V-algebras, which naturally induce to finite group actions
on commutative k-algebras. In the setting of a complete discrete valuation ring, there is a non-trivial
topological component involved. Exploiting this perspective directly in the context of homological
computations is, however, difficult, since topological constructions do not interact well with homological
ones. Instead, we follow the example of [CCMT18] and use the formalism of bornologies. This allows us
to make use of the underlying topological notions, while simultaneously preserving a well-behaved
homological theory.

Overview of the Main Results

More concretely, we start with purely algebro-geometric considerations. Suppose that X is a smooth
k-variety, with k a field of characteristic 0. As a consequence of the Hochschild–Konstant–Rosenberg
theorem, the cyclic homology of O[X] is given in terms of the modules of the algebraic de Rham
cohomology of X. This generalises to the case of a finite group action as follows. If a finite group Γ
acts on X, it can be shown that the cyclic homology of the crossed product algebra O[X]⋊ Γ is given in
terms of the algebraic orbifold cohomology of X/Γ (see [Pon17, Remark 11.7]). An explicit and solely
algebro-geometric approach is given in [BDN17]. They show how to compute the Hochschild, cyclic
and periodic cyclic homology of O[X]⋊ Γ for k = C.

ii



We explicitly work out that the Lefschetz principle (see [Ekl73]) holds for the results of [BDN17]
on Hochschild, cyclic and periodic cyclic homology, which is to say that their arguments apply to any
algebraically closed field of characteristic 0. We then prove that the assumption of algebraic closure is
not necessary. This is done by reducing the general case of characteristic 0 to the algebraically closed
case via base change. In summary, we prove the following.

Theorem (2.3.4). Let A = O[X] be the coordinate ring of a smooth k-variety with k of characteristic 0. Suppose
that a finite group Γ acts on X and let γ1, . . . , γs be a set of representatives for the conjugacy classes of Γ. If
Xi = Xγi , Ai = O[Xi] and Ci = Cγi , then

HHn(A ⋊ Γ) ∼=
s⊕

i=1

Ωn(Xi)
Ci ,

HCn(A ⋊ Γ) ∼=
s⊕

i=1

(
Ωn(Xi)

Ci /dΩn−1(Xi)
Cγi ⊕Hn−2

dR (Ai)
Ci ⊕Hn−4

dR (Ai)
Ci ⊕ · · ·

)
,

and

HPn(A ⋊ Γ) ∼=
s⊕

i=1

( ∞

∏
m=0

H2m+n
dR (Ai)

Ci

)
.

Now suppose that k is of positive characteristic and the residue field of a complete valuation ring
V with field of fractions K of characteristic 0. [CCMT18] show that in the context of bornologies,
the weak completions of Monsky–Washnitzer (see [MW68]) can be described as bornological completions.
Monsky–Washnitzer used these weak completions to define a Weil cohomology theory of smooth affine
varieties in positive characteristic. It is shown in [CCMT18] how this theory may be re-expressed entirely
in terms of bornologies using the aforementioned identification. This required the definition of a suitable
analogue of Hochschild homology for complete bornological V-algebras.

We extend these considerations and define bornological Hochschild homology with coefficients. By
allowing the presence of coefficients in suitable bimodules, we can show that bornological Hochschild
homology admits an axiomatic description.

Theorem (3.3.3, 3.3.4). Let A be a complete bornological V-algebra.

(a) Let f : M → N be a bounded A-bimodule map of complete bornological A-bimodules. Then there is an
induced map f∗ : HHbor

n (A, M) → HHbor
n (A, N). This defines a functor from the category of complete

A-bimodules to the category of V-modules.

(b) Let M be a complete A-bimodule. Then A ⊗V M ⊗V A carries a canonical A-bimodule structure. If
F = A⊗V M⊗V A, then there is a semi-split extension

0 ker(q) F M 0
q

of complete bornological A-bimodules, with HHbor
n (A, F) = 0 for n > 0.

(c) Let
0 M′ M M′′ 0

be a semi-split extension of complete bornological A-bimodules. Then there is a long exact sequence

· · · HHbor
n+1(A, M′′) HHbor

n (A, M′) HHbor
n (A, M) HHbor

n (A, M′′) · · ·

and the connecting morphisms HHbor
n+1(A, M′′)→ HHbor

n (A, M′) are natural for morphism of extensions
of complete bornological A-bimodules.
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This description mirrors the corresponding characterisation of ordinary Hochschild homology as a
derived functor. However, for bornological Hochschild homology, this axiomatic perspective does not
follow immediately from general principles, since the categories in consideration are not abelian.

The computations of [BDN17] for the Hochschild homology of A ⋊ Γ are based on certain decom-
position results. It is established in [Lor92] that these results hold in much greater generality. More
precisely, one can decompose the Hochschild homology of A ⋊ Γ into summands corresponding to
the conjugacy classes of Γ and consider the particular action of representatives on A. This reduces the
computation of the Hochschild homology of A ⋊ Γ to the computation of the Hochschild homology
of A with coefficients encoding the action of Γ on A. This approach exploits the axiomatic point
of view, identifying Hochschild homology with another homology theory constructed from group
hyperhomology of Γ.

This yields an application of our axiomatic description. We consider the weak completion A† of a
commutative V-algebra of finite type A. If a finite group Γ acts on A, then there is an induced action
of Γ on A†. Write γ† : A† → A† for the automorphism induced by γ : A → A. With respect to this
action, we denote by A†

γ† the complete bornological A†-bimodules with a γ†-twisted right A†-module
structure. The bornological Hochschild homology of A† with coefficients in A†

γ† is denoted for brevity

by HHbor
n

(
A†, γ†). We show the following.

Theorem (4.1.2, 4.2.6, 4.2.7). Let A be a V-algebra and let Γ be a finite group acting on A by V-linear automor-
phisms. For each n ≥ 0, there is an isomorphism

HHbor
n

(
A† ⋊ Γ

) ∼= ⊕
[γ]∈[Γ]

HHbor
n

(
A† ⋊ Γ

)
γ

.

Furthermore, for each γ ∈ Γ and n ≥ 0, there are isomorphisms

HHbor
n

(
A† ⋊ Γ

)
γ
∼= Hn

(
Cγ, Cbor

•
(

A†, γ†)) ∼= HHbor
n

(
A†, γ†)

Cγ
.

For a torsion-free commutative V-algebra of finite type A, [CCMT18] prove that the bornological
Hochschild homology of its weak completion A† is given by the base change of the ordinary Hochschild
homology of A along A → A†. Thus, computations involving A† can be reduced to computations
involving only A.

Write Aγ for the A-bimodule, whose right A-module structure is twisted by γ. Denote the Hochschild
homology of A with coefficients in Aγ by HHn

(
A, γ

)
. We prove the following.

Proposition (4.3.3). Let A be a torsion-free commutative V-algebra of finite type. The natural homomorphism

HHn
(

A, γ
)
→ HHbor

n
(

A†, γ†)

induces an isomorphism
A† ⊗A HHn

(
A, γ

) ∼−→ HHbor
n

(
A†, γ†)

for all n ≥ 0.

Recall that K is the field of fractions of V. Denote by A = K⊗V A the base change of a commutative
V-algebra A along V → K. Since this is a flat base change, there is an isomorphism A⊗A HHn

(
A, γ

) ∼=
HHn

(
A, γ

)
for all n ≥ 0. If we now assume that A is smooth, we can apply the earlier theorems in their

full strength.
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Structure of the Thesis

In Section 1, we introduce Hochschild homology, cyclic and periodic cyclic homology for arbitrary k-algebras.
First, we define Hochschild homology abstractly as a derived functor, then relate it to noncommutative
differential forms in Section 1.1. The latter allows, in particular, an efficient definition of both cyclic
and periodic cyclic homology, which we spell out in Section 1.2. In Section 1.3 we formulate the
Hochschild–Kostant–Rosenberg theorem, which identifies the Hochschild homology of a formally smooth
commutative k-algebra with its modules of Kähler differentials, assuming that k is of characteristic 0. As
a consequence, cyclic and periodic cyclic homology of formally smooth k-algebras can then be described
in terms of algebraic de Rham cohomology.

In Section 2, we consider a finite group Γ acting on a smooth affine k-variety X of finite type.
Equivalently, we may assume that Γ acts on its coordinate ring A = O[X] by k-algebra automorphisms.
We then consider the crossed product algebra A ⋊ Γ. We will see in Section 2.1 that computing the
Hochschild homology of A ⋊ Γ can be reduced to considering the twisted Hochschild homology of A. The
twist arises from the group action of Γ. Working in characteristic 0, we obtain a generalisation of the
Hochschild–Kostant–Rosenberg theorem, assuming that Γ is a finite group. For this, we first consider the
case of algebraically closed fields in Section 2.2, from which we deduce the case of non-algebraically
closed fields in Section 2.3 via base change.

In Section 3 we turn towards positive characteristic. More precisely, we consider a discrete valuation
ring V with residue field of positive characteristic. We study V-modules and V-algebras equipped with
the additional structure of a bornology, which we introduce in Section 3.1. Bornological completions
provide a new perspective on weak completions, or dagger completions, which were used by Monsky–
Washnitzer to define a Weil cohomology theory for smooth affine varieties in positive characteristic. For
this, we consider linear growth bornologies in Section 3.2, a notion that applies equally well to noncom-
mutative V-algebras. This section culminates in the definition and characterisation of a bornological
variant of Hochschild homology. This characterisation is proved in Section 3.3.

Section 4 combines the ideas and results presented throughout Sections 1 to 3. The aim is to compute
the bornological Hochschild homology of the dagger completion of a crossed product algebra. The
crossed product of interest arises from a finite group Γ acting on a commutative V-algebra A of finite
type. We make some initial observations about such algebras in Section 4.1. In Section 4.2, we study
the intricate relation between the bornological Hochschild homology of the crossed product algebra
A† ⋊ Γ and the group action of Γ on the bornological Hochschild homology of A†. Using the axiomatic
characterisation of Section 3.3, we relate bornological Hochschild homology to group hyperhomology.
We then observe in Section 4.3 that twisted bornological Hochschild homology can be related to ordinary
twisted Hochschild homology in a straightforward way. In combination, we then argue in Section 4.4
how Sections 4.1 to 4.3 reduce computing the bornological Hochschild homology of A† ⋊ Γ to the
ordinary Hochschild homology of A ⋊ Γ. Assuming that the field of fractions of V is of characteristic 0
provides a natural base change, after which we can then apply the results of Section 2.
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1 Hochschild, Cyclic and Periodic Cyclic Homology

In Section 1.1, we introduce Hochschild homology, starting with the derived functor perspective.
Following mainly [Mey21] we then explain how Hochschild homology can be defined using noncommu-
tative differentials forms (see Definition 1.1.8 and Corollary 1.1.9). This approach highlights the role of
Hochschild homology as a noncommutative analogue for algebraic differential forms of commutative
algebras. We make this analogy precise by considering the Hochschild–Kostant–Rosenberg theorem (see
Theorem 1.3.1), which we discuss in Section 1.3. This is complemented by introducing the closely
related cyclic and periodic cyclic homology theories in Section 1.2, with cyclic homology serving as a
noncommutative analogue of algebraic de Rham cohomology.

Fix a field k. Throughout, all undecorated tensor products are taken over k.

1.1 Hochschild Homology and Noncommutative Differential Forms

We assume familiarity with the formalism of homological algebra, in particular, the notion of derived
functors. For notation and relevant results, we refer to [Wei94].

Let A be a unital k-algebra. We consider the category of (unital) A-bimodules AModA. Following
[Lod98, §1.1.0], we always understand an A-bimodule to be a symmetric k-bimodule endowed with a
left and a right A-module structure such that (am)a′ = a(ma′) for all a, a′ ∈ A and m ∈ M. Furthermore,
we assume that these actions are compatible with the underlying symmetric k-bimodule structure.

Let Aop be the opposite algebra of A. The k-algebra Ae = A ⊗ Aop is the enveloping algebra
of A. Observe that AModA is equivalent to the category ModAe of left Ae-modules. Since (Ae)op ∼= Ae,

AModA is also equivalent to the category AeMod of right Ae-modules. In particular, AModA admits left
(respectively, right) derived functors for any right (respectively, left) exact functor defined on AModA.

Definition 1.1.1. Let M be an A-bimodule. For all n ≥ 0, the group

HHn(A, M) = TorAe

n (M, A)

is called the n-th Hochschild homology of A with coefficients in M . For M = A,

HHn(A) = HHn(A, A)

is the n-th Hochschild homology of A. ⌟

Definition 1.1.2. Let M be an A-bimodule. For all n ≥ 0, the group

HHn(A, M) = Extn
Ae(A, M)

is called the n-th Hochschild cohomology of A with coefficients in M . ⌟

Remark. The n-th Hochschild cohomology of A is HHn(A) = HHn(A, A∨), for A∨ = Homk(A, k) the
k-dual space of A. This is the correct definition for Hochschild cohomology, so that it may be naturally
related to cyclic cohomology, whereas the groups HHn(A, A) are related to the deformation theory of A
(see [Kha10, §3.1]). Neither theory nor cyclic cohomology will make an appearance outside this remark.

We will primarily consider the Hochschild homology of various k-algebras. However, having
Hochschild cohomology defined paints a more complete theoretical picture. To see one such instance,
we introduce so-called Hochschild extensions.

Definition 1.1.3. Let E be a k-algebra and M an A-bimodule. We say that E is a Hochschild extension

1



of A by M if there is a short exact sequence

0 M E A 0

so that M2 = 0 relative to the product structure on E. Two Hochschild extensions E, E′ of A by M are
equivalent if there is an A-bimodule isomorphism φ : E→ E′ making the diagram

0 M E A 0

0 M E′ A 0

φ

commute. ⌟

Proposition 1.1.4. The set of equivalence classes of Hochschild extensions of A by M is in one-to-one correspon-
dence with HH2(A, M).

Proof. This is [Wei94, Theorem 9.3.1]. □

In the remainder of Section 1.1, we explain how we can construct the Hochschild homology of A
using a geometrically flavoured construction, called noncommutative differential forms. To this end, we
follow a combination of [Mey21] and [Muk22].

To define noncommutative differential forms, we first consider (noncommutative) derivations.

Definition 1.1.5. Let M be an A-bimodule. We say that a k-linear map D : A→ M is a k-derivation on
A with values in M , or simply (k-)derivation, if the Leibniz rule

D(ab) = aD(b) + D(a)b

is satisfied for all a, b ∈ A. Denote the k-vector space of k-derivations by Derk(A, M). ⌟

Remark. Let m ∈ M. Then Dm : A→ M, a 7→ am−ma, is a derivation, called the principal derivation
associated to m. If we let PDerk(A, M) ≤ Derk(A, M) be the submodule of principal derivations, then

HH1(A, M) ∼=
Derk(A, M)

PDerk(A, M)
.

This is [Wei94, Lemma 9.2.1].

Noncommutative differential 1-forms now arise as a universal object classifying derivations on A.

Definition 1.1.6. Let µ : A ⊗ A → A, a ⊗ b 7→ ab. The A-bimodule Ω1
k(A) = ker(µ) is called the

bimodule of noncommutative differential 1-forms on A and the map

d: A→ Ω1
k(A), a 7→ 1⊗ a− a⊗ 1 ,

is the universal derivation on A. ⌟

Using the structure homomorphism k→ A of the k-algebra A, we let A = A/(k · 1) for the remainder
of Section 1.

Theorem 1.1.7. The universal derivation d: A→ Ω1
k(A) defines a representation of the functor

Derk(A,−) : AModA → Vectk .

2



The elements da = d(a), a ∈ A, generate Ω1
k(A) as a left A-module. Moreover, there is an isomorphism

Ω1
k(A)

∼−→ A⊗ A, adb 7→ a⊗ b ,

of left A-modules.

Proof. See [Mey21, Proposition 15.2] and the preceding discussion. □

Definition 1.1.8. For n ≥ 1, the n-fold tensor product

Ωn
k (A) = Ω1

k(A)⊗A · · · ⊗A Ω1
k(A)

is called the bimodule of noncommutative differential n-forms. For n = 0, we let Ω0
k(A) = A. ⌟

To ease notation, we will write a0da1 . . . dan for a0(da1 ⊗ · · · ⊗ dan). By A-bilinearity and Theo-
rem 1.1.7, the latter is one of the elementary tensors spanning Ωn

k (A).

Corollary 1.1.9. There is an isomorphism

Ωn
k (A)

∼−→ A⊗ A⊗n, a0da1 . . . dan 7→ a0 ⊗ a1 ⊗ · · · ⊗ an ,

of left A-modules. The right A-module structure on A⊗ A⊗n is then explicitly given by

(a0 ⊗ a1 ⊗ · · · ⊗ an−1 ⊗ an) · b = a0 ⊗ a1 ⊗ · · · ⊗ an−1 ⊗ (anb)− a0 ⊗ a1 ⊗ · · · ⊗ (an−1an)⊗ b + · · ·

+ (−1)n(a0a1)⊗ a2 ⊗ · · · ⊗ an ⊗ b .

Proof. This is [Mey21, Lemma 22.2]. □

To obtain homological insight from noncommutative differential forms, we are in need of appropriate
boundary operators to define either a chain or cochain complex. Drawing from the commutative case,
the canonical map

d: Ωn
k (A)→ Ωn+1

k (A), a0da1 . . . dan 7→ da0da1 . . . dan ,

is a natural candidate. However, in the noncommutative case, this yields an uninteresting cochain
complex (d satisfies d2 = 0 since it is a derivation, hence d(1) = 0).

Proposition 1.1.10. The cohomology of the cochain complex
(
Ω•k (A), d

)
vanishes in all non-zero degrees and is

isomorphic to k in degree 0.

Proof. The noncommutative Poincaré Lemma [Tsy20, Lemma 2.1] proves that
(
Ω•k (k), d

) ∼= (
Ω•k (A), d

)
as differential graded algebras. By construction Ω•k (k)

∼= Ω0
k(k) = k and the assertion follows. □

Although the natural cochain complex structure on the noncommutative differential forms is not
particularly insightful, there is a way for obtaining an interesting chain complex. For this, we define the
Hochschild boundary

b : Ωn+1
k (A)→ Ωn

k (A), a0da1 . . . dandan+1 7→ (−1)n[a0da1 . . . dan, an+1] .

Here [·,·] denotes the commutator. For the convenience of the reader, we include the straightforward
computation from [Mey21, §22.1], which shows that b2 = 0.

Proposition 1.1.11. The pair
(
Ω•k (A), b

)
is a chain complex.

Proof. We have to check that b2 = 0. Note that the only essential alterations in the formula defining
the Hochschild boundary are concerned with the last occurring differential. Hence, we may abbreviate

3



a0da1 . . . dandan+1 as ωdandan+1 for our purpose. Now we compute

b(ωdandan+1) = (−1)n[ωdan, an+1]

= (−1)n(ωdan · an+1 − an+1ωdan)

= (−1)n(ωd(anan+1)− (ω · an)dan+1 − an+1ωdan)

and then observe that

b2(ωdandan+1) = (−1)n−1(−1)n([ω, anan+1]− [ω · an, an+1]− [an+1ω, an])

= − (ω · (anan+1)− (anan+1)ω) + ((ω · an) · an+1)− an+1(ω · an))

+ ((an+1ω) · an − an(an+1ω))

= 0

by bilinearity. □

We have now introduced the necessary terminology involving noncommutative differential forms to
relate this construction to Hochschild homology.

Recall that by the general theory of derived functors, any resolution of A by projective Ae-modules
may be used to compute HHn(A) = TorAe

n (A, A). Hence, to see that HHn(A) may be computed using
the complex

(
Ω•k (A), b

)
, it suffices to find such a resolution which upon tensoring by A over Ae, results

in a chain complex that is quasi-isomorphic to
(
Ω•k (A), b

)
. In fact, we can even find a chain complex

arising in this way which is isomorphic to
(
Ω•k (A), b

)
.

The resolution in question is the normalised bar resolution.

Definition 1.1.12. For n ≥ 0, let Bn(A) = A⊗ A⊗n ⊗ A and

b′ : Bn(A)→ Bn−1(A),

a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1 7→
n

∑
j=0

(−1)ja0 ⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an ⊗ an+1 .

The complex
(
B•(A), b′

)
is the normalised bar resolution. ⌟

Lemma 1.1.13. The bar resolution is a well-defined projective resolution of A as an Ae-module.

Proof. This is established during the proof of [Mey21, Theorem 17.4]. □

Instead of considering the normalised bar resolution
(
B•(A), b′

)
, one could also work with the

unnormalised bar resolution
(

B•(A), b′
)

instead. The n-th chain group of the unnormalised bar
resolution is simply Bn(A) = A⊗ A⊗n ⊗ A. Homologically speaking, this does not make a difference,
since the normalised and unnormalised bar resolutions are quasi-isomorphic (see [Lod98, Proposition
1.1.15]). However, the normalised variant is more easily related to noncommutative differential forms.

Theorem 1.1.14. For all n ≥ 0, the n-th homology of
(
Ω•k (A), b

)
is isomorphic to HHn(A).

Proof. We claim that the chain complex obtained by tensoring
(
B•(A), b′

)
with A as Ae-modules is

isomorphic to
(
Ω•k (A), b

)
. By our earlier remarks on derived functors, this implies the statement of the

theorem.

We first observe that A⊗Ae M is isomorphic to the commutator quotient M/[A, M] of M. An explicit
pair of isomorphisms is given by

A⊗Ae M→ M/[A, M], a⊗m 7→ [am] ,
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and
M/[A, M]→ A⊗Ae M, [m] 7→ 1⊗m .

Using this identification, we can compute A⊗Ae Bn(A). We claim that

A⊗Ae Bn(A) ∼= Bn(A)/[A, Bn(A)] ∼= A⊗ A⊗n

along

Bn(A)/[A, Bn(A)]→ A⊗ A⊗n,

[a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1] 7→ (an+1a0)⊗ a1 ⊗ · · · ⊗ an .

To see this, consider

A⊗ A⊗n → Bn(A)/[A, Bn(A)],

a0 ⊗ a1 ⊗ · · · ⊗ an 7→ [a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ 1] .

The above maps are mutually inverse, since

[(an+1a0)⊗ a1 ⊗ · · · ⊗ an ⊗ 1] = [a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1]

by the construction of the commutator quotient.

It remains to check that these isomorphisms are compatible with the given boundary maps. Hence,
we have to show that the diagram

A⊗ A⊗n A⊗ A⊗(n−1)

A⊗Ae Bn(A) A⊗Ae Bn−1(A)

∼=

b

∼=

1A⊗b′

commutes. For this, we first unpack the Hochschild boundary, using the explicit right action we
established in Corollary 1.1.9. Thus, we find that

b(a0 ⊗ a1 ⊗ · · · ⊗ an) = (−1)n(ana0)⊗ a1 ⊗ · · · ⊗ an−1 +
n−1

∑
j=0

(−1)ja0 ⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an .

Along the isomorphism to the commutator quotient complex, this expression is identified with

(−1)n[(ana0)⊗ a1 ⊗ · · · ⊗ an−1 ⊗ 1] +
n−1

∑
j=0

(−1)j[a0 ⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an ⊗ 1] .

On the other hand, tracing the isomorphism A⊗Ae Bn(A) ∼= Bn(C)/[A, Bn(A)], we see that the explicit
boundary operator in the commutator quotient complex is simply the original formula applied to
equivalence classes. Therefore, we find that

b′([a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ 1]) =
n

∑
j=0

(−1)j[a0 ⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an ⊗ 1] .
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The summands agree verbatim in the range 0 ≤ j ≤ n− 1, and for j = n the commutator relation yields

[(ana0)⊗ a1 ⊗ · · · ⊗ an−1 ⊗ 1] = [a0 ⊗ a1 ⊗ · · · ⊗ an−1 ⊗ an]

as needed. □

Remark. In fact, given any projective resolution P• → A of A as an Ae-module, the proof of Theo-
rem 1.1.14 shows that we may compute HHn(A) as the homology of the chain complex P•/[A, P•] of
commutator quotients.

In light of Theorem 1.1.14, we let (C•(A), b) =
(
Ω•k (A), b

)
be the Hochschild complex of A. More

generally, given an A-bimodule M, the Hochschild complex of A with coefficients in M is the complex
obtained by tensoring the unnormalised bar resolution with M, considered as a right Ae-module.
We denote this complex by (C•(A, M), b). In analogy to Theorem 1.1.14, this complex computes the
Hochschild homology of A with coefficients in M (cf. [Lod98, Proposition 1.1.13] and [Wei94, Corollary
9.1.5]).

1.2 The Cyclic Double Complex

In Section 1.1 we observed the existence of two separate boundary operators for noncommutative
differential forms: On the one hand, the canonically defined d: Ωn

k (A)→ Ωn+1
k (A) and, on the other

hand, the Hochschild boundary b : Ωn
k (A)→ Ωn−1

k (A). We also observed that the associated cochain
complex

(
Ω•k (A), d

)
provides no homological insight, whereas the associated chain complex

(
Ω•k (A), b

)
computes the Hochschild homology of A.

Nonetheless, we can exploit the presence of two opposing boundary operators by studying their
potential for the construction of a double complex. Define the Karoubi operator as

κ = 1− [d, b] = 1− (db + bd) ,

which measures the anticommutativity of b and d. More explicitly, the Karoubi operator acts on a
noncommutative differential form ωdan ∈ Ωn

k (A) as

κ(ωdan) = ωdan − (d((−1)n−1[ω, an]) + b(dωdan))

= ωdan − (−1)n−1d([ω, an])− (−1)n[dω, an]

= ωdan − (−1)n([dω, an]− d([ω, an]))

= ωdan − (−1)n[dan, ω]

= (−1)n−1dan ·ω ,

where all occurring commutators are graded commutators. Note that this does not interfere with our
earlier usage of a commutator when defining the Hochschild boundary, since elements of A have degree
0 by definition. In particular, we conclude that

κ(da0 . . . dan−1dan) = (−1)n−1danda0 . . . dan−1 .

If we now let the Connes operator be

B =
n

∑
j=0

κ jd ,
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we observe that

B(a0da1 . . . dan) =
n

∑
j=0

(−1)jndaj . . . danda0 . . . daj−1 .

Among others, the following elementary identities are established in [Mey21, §23.1]. We repeat the ones
crucial for us.

Lemma 1.2.1. The Connes operator satisfies

B2 = 0 and [B, b] = 0 .

Proof. We start by showing that the Karoubi operator κ commutes with both d and b. Indeed, we find
that

κd = (1− (db + bd))d = d− dbd− bd2 = d− d2b− dbd = d(1− (db− bd)) = dκ ,

since d2 = 0. The same holds true for b, since b2 = 0 as well.

Hence, we deduce that

B2 =
n

∑
j=0

B(κ jd) =
n

∑
j=0

n

∑
j′=0

κ j′dκ jd =
n

∑
j=0

n

∑
j′=0

κ j′+jd2 = 0 .

Moreover, note that, on the one hand,

bB =
n

∑
j=0

bκ jd =
n

∑
j=0

κ j(bd) ,

while, on the other hand,

Bb =
n

∑
j=0

κ j(db) =
n

∑
j=0

κ j(1− κ − dd) =
n

∑
j=0

(κ j − κ j+1)− bB = (1− κn+1)− bB = −bB

as κn+1 = 1. Thus, [B, b] = Bb + bB = 0. □

Lemma 1.2.1 implies that

...
...

...
...

Ω3
k(A) Ω2

k(A) Ω1
k(A) A

Ω2
k(A) Ω1

k(A) A

Ω1
k(A) A

A

b b b b

b

B

b

B

b

B

b

B

b

B

b

B

is a double complex
(
Ω•k (A), b, B

)
. Such double complexes are also called mixed complexes. This

naturally leads to cyclic homology.

Definition 1.2.2. The double complex
(
Ω•k (A), b, B

)
is called the cyclic bicomplex. Its total complex is

the cyclic complex of A, denoted by (CC•(A), b + B), with its n-th homology defining the n-th cyclic
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homology of A, denoted by HCn(A). ⌟

Explicitly, the n-th chain group CCn(A) of the cyclic complex is

Ωn
k (A)⊕Ωn−2

k (A)⊕ · · · ⊕Ωn mod 2
k (A) .

Its n-th differential is componentwise the sum of the maps b and B except in the first component, where
it is b, and for even n in the last component, where it is B.

Embed the Hochschild complex as the first column of the cyclic complex. This gives a morphism
of chain complexes I : C•(A)→ CC•(A) from the Hochschild complex of A into the cyclic complex of
A. Shifting the cyclic bicomplex to the right induces a shift operator S : CC•(A)→ CC•(A)[−2] on the
cyclic complex of A. The maps I and S give rise to Connes’ SBI sequence, relating Hochschild and
cyclic homology.

Proposition 1.2.3. There is a long exact sequence in homology

· · · HCn(A) HCn−2(A) HHn−1(A) HCn−1(A) · · ·S B I

with B induced by the Connes operator.

Proof. The maps I : C•(A)→ CC•(A) and S : CC•(A)→ CC•(A)[−2] evidently define a short exact
sequence

0 C•(A) CC•(A) CC•(A)[−2] 0I S

of chain complexes. Thus, there is an induced long exact sequence in homology

· · · HCn(A) HCn(A)[−2] HHn−1(A) HCn−1(A) · · ·S δ I ,

where HCn(A)[−2] = HCn−2(A) by definition and δ is defined via a standard diagram chase. In more
detail, consider the partial diagram of complexes

0 Cn(A) CCn(A) CCn(A)[−2] 0

0 Cn−1(A) CCn−1(A) CCn−1(A)[−2] 0

b

I S

I S

and let x = (xn−2, xn−4, . . . ) ∈ CCn−2(A) = CCn(A)[−2], with xn−i ∈ Ωn−i
k (A), be an n-cocycle of

the shifted complex. The connecting morphism is constructed by first choosing any preimage along
S : CCn(A)→ CCn(A)[−2], considering its image along the boundary map CCn(A)→ CCn−1(A) and
then checking that the latter lies in the image of I : Cn−1(A) → CCn−1(A). This will then define an
(n− 1)-cocycle.

Along the shift map S, we choose a preimage of the element (0, xn−2, xn−4, . . . ). The boundary
operator of the cyclic complex maps this element to (B(xn−2), b(xn−2) + B(xn−4), . . . ). Since I embeds
the Hochschild complex in the first coordinate, we see that the connecting morphism associates B(xn−2)

to x. □

The subtleties in the definition of the boundary for the cyclic complex disappear if we instead
consider periodic cyclic homology. For this, let

CP0(A) =
∞

∏
m=0

Ω2m
k (A) and CP1(A) =

∞

∏
m=0

Ω2m+1
k (A) .
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Then b + B can be considered as both a map CP0(A) → CP1(A) and as a map CP1(A) → CP0(A).
Moreover, (b + B)2 = 0 by Lemma 1.2.1. Thus, (CP•(A), b + B) is a 2-periodic chain complex.

Definition 1.2.4. The complex (CP•(A), b + B) is the periodic cyclic complex of A. Its n-th homology
is the n-th periodic cyclic homology of A, denoted by HPn(A). ⌟

Remark. An analogue of cyclic and periodic cyclic homology can be defined for any mixed complex.

1.3 Computations for Smooth Commutative Algebras

We close this section by briefly discussing computations of Hochschild, cyclic and periodic cyclic
homology for A = O[X] the coordinate ring of a smooth k-variety. For this, we assume k to be of
characteristic 0.

This can be deduced from the more general case of smooth k-algebras. Following [Lod98, Proposition
3.2.4], a k-algebra A is smooth if, for every commutative A-algebra C and ideals I ≤ C with I2 = 0, the
induced map Homk(A, C) → Homk(A, C/I) of sets of k-algebra homomorphisms is surjective. This
agrees with A being formally smooth as a k-algebra in the sense of [Sta23, Tag 00TI]. Furthermore, if
A = O[X], then [Sta23, Tag 00TN] shows that this notion agrees with the geometric notion of smoothness
for k-varieties X.

Denote by Ω1
A/k = Ω1

k(A)/Ω1
k(A)2 the module of Kähler differentials of A, or algebraic differential

1-forms of A, and by Ωn
A/k its n-th exterior power. Let d : Ωn

A/k → Ωn+1
A/k be the exterior differential.

The n-th cohomology of the cochain complex
(
Ω•A/k, d

)
is the n-th algebraic de Rham cohomology of

A, denoted by Hn
dR(A).

Theorem 1.3.1 (Hochschild–Kostant–Rosenberg). Let A be a smooth commutative k-algebra. The projection
maps

πn : Ωn
k (A)→ Ωn

A/k, a0da1 . . . dan 7→
1
n!

a0da1 ∧ · · · ∧ dan ,

assemble into a morphism of mixed complexes

π• :
(
Ω•k (A), b, B

)
→

(
Ω•A/k, 0, d

)
,

which induces an isomorphism of cochain complexes

π• : (HH•(A), B) ∼−→
(
Ω•A/k, d

)
.

Proof. The first assertion is [Lod98, Proposition 2.3.4] and does not require smoothness. The second
assertion is part of [Lod98, Theorem 3.4.4], which also provides an explicit inverse. □

Corollary 1.3.2. Let A be a smooth commutative k-algebra. Then

HCn(A) ∼= Ωn
A/k/dΩn−1

A/k ⊕Hn−2
dR (A)⊕Hn−4

dR (A)⊕ · · ·

and

HPn(A) ∼=
∞

∏
m=0

H2m+n
dR (A) .

Proof. By Theorem 1.3.1, the mixed complex
(
Ω•k (A), b, B

)
defining cyclic and periodic cyclic homology

9
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is quasi-isomorphic to the mixed complex

...
...

...
...

Ω3
A/k Ω2

A/k Ω1
A/k A

Ω2
A/k Ω1

A/k A

Ω1
A/k A

A

0 0 0 0

0

d

0

d

0

d

0

d

0

d

0

d

made from the Kähler differentials of A. By our earlier observations following Definition 1.2.2, the cyclic
homology of the above mixed complex is computed by the cyclic complex with chain groups

Ωn
A/k ⊕Ωn−2

A/k ⊕ · · · ⊕Ωn mod 2
A/k

and differentials defined componentwise, with the zero map in the first component and the exterior
differential in all the other components. Thus, the first component yields the summand Ωn

A/k/dΩn−1
A/k.

The remaining summands compute the appropriately indexed algebraic de Rham cohomologies
Hn−2

dR (A), Hn−4
dR (A), . . ., which completes the proof of the statement about cyclic homology.

The result for periodic cyclic homology is almost immediate. The periodic cyclic complex of the
mixed complex of Kähler differentials has as boundary operators

∞

∏
m=0

Ω2m
A/k →

∞

∏
m=0

Ω2m+1
A/k , (x0, x2, x4, . . . ) 7→ (dx0, dx2, dx4, . . . ) ,

and
∞

∏
m=0

Ω2m+1
A/k →

∞

∏
m=0

Ω2m
A/k, (x1, x3, x5, . . . ) 7→ (0, dx1, dx3, . . . ) .

As we are considering homogeneous maps, kernels and cokernels are computed coordinate-wise.
Moreover, the associated quotients are componentwise, hence the periodic cyclic homology is of the
form claimed. □
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2 Hochschild Homology of Crossed Product Algebras

Let A be a ring and Γ a group acting on A by automorphisms. The associated crossed product algebra
A ⋊ Γ is additively generated by elements of the form aγ, a ∈ A and γ ∈ Γ, with the convolution
product

aγ · bδ = aγ(b)γδ .

Suppose that A is a C-algebra and Γ acts on A by C-algebra endomorphism. For A = O[X] the
coordinate ring of a complex smooth affine variety and Γ a finite group acting on X by biregular
morphisms, [BDN17] describe the Hochschild homology, cyclic homology, and periodic cyclic homology
of the crossed product algebra A ⋊ Γ. We extend their results to not necessarily algebraically closed
fields of characteristic 0.

In Section 2.1 we start by reducing the computations to g-twisted Hochschild homology of A (see
Definition 2.1.1 and equation (1)). In Section 2.2 we treat the general case of algebraically closed fields of
characteristic 0, showing that the arguments of [BDN17] can be adapted to this case. This is an instance
of the Lefschetz principle (see [Ekl73]), which we spell out in detail. In Section 2.3 we then explain how
to extend their main results to non-algebraically closed fields of characteristic 0 via base change.

As we are working over different base fields throughout Section 2, tensor products will be, in
contrast to Section 1, appropriately decorated. In Section 2.3 we will also repurpose the notation A from
Section 1.

2.1 Decompositions and Twisted Hochschild Homology

As in Section 1, let k be a field, A a unital k-algebra and Ae its enveloping algebra. The explicit left
Ae-module structure on A is given by (a1 ⊗ a2) · a = a1aa2. Given a k-linear endomorphism g : A→ A
of A, we consider A as a twisted right Ae-module Ag by defining a · (a1 ⊗ a2) = a2ag(a1).

For a0 ⊗ a1 ⊗ · · · ⊗ an ∈ A⊗k(n+1), let

bg(a0 ⊗ a1 ⊗ · · · ⊗ an) = a0g(a1)⊗ a2 ⊗ · · · ⊗ an +
n−1

∑
i=1

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nana0 ⊗ a1 ⊗ · · · ⊗ an−1 .

This is well-defined, since g is k-linear. For n ≥ 0, let Cn
(

A, g
)
= A⊗k (A/k · 1)⊗kn. Then bg descends

to define a differential bg : Cn+1
(

A, g
)
→ Cn

(
A, g

)
, as g is a k-linear endomorphism of A.

Definition 2.1.1. [BDN17, Definition 1.1] The complex
(

C•
(

A, g
)
, bg

)
is the g-twisted Hochschild

complex of A. Its n-th homology is the n-th g-twisted Hochschild homology of A, denoted by
HHn

(
A, g

)
. ⌟

If g is the identity on A, HHn
(

A, g
)
= HHn(A) is the ordinary Hochschild homology of A, computed

from the standard complex
(

C•
(

A, g
)
, bg

)
= (C•(A), b). For general g, we find that

HHn
(

A, g
)
= HHn

(
A, Ag

) ∼= TorAe

n
(

Ag, A
)

for all n ≥ 0. That is, the g-twisted Hochschild homology of A can be identified with the Hochschild
homology of A with coefficients in Ag and consequently with certain Tor groups (cf. Section 1.1 and
[Lod98, Chapter 1] or [Wei94, Chapter 9]). The latter relies on A being a k-algebra for a field k.

Suppose that A is a commutative k-algebra of finite type. Then, by acting on the first factor in the
complex

(
C•

(
A, g

)
, bg

)
, each HHn

(
A, g

)
inherits the structure of an A-module. Moreover, we can
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define an Ae = A⊗k A-module structure on both A and Ag by setting

(a1 ⊗ a2) · a = g(a1)a2a

for a1, a2 ∈ A and a ∈ A or a ∈ Ag. This gives each TorAe

n
(

Ag, A
)

the structure of an A⊗k A-module,
hence also each HHn

(
A, g

)
.

Consider now the case of a crossed product algebra A ⋊ Γ, arising from a finite group Γ acting on
the commutative k-algebra A by k-algebra automorphisms.

Now we define, for each conjugacy class of Γ, a subcomplex of the bar complex (C•(A ⋊ Γ), b). For
this, fix γ ∈ Γ and consider the linear span of the tensors a0γ0 ⊗ · · · ⊗ anγn ∈ Cn(A ⋊ Γ) such that
γ0 · · · γn ∈ [γ], with [γ] the conjugacy class of γ. Denote this subgroup by Cn(A ⋊ Γ)γ. The boundary
map b : Cn(A ⋊ Γ)→ Cn−1(A ⋊ Γ) restricts to b : Cn(A ⋊ Γ)γ → Cn−1(A ⋊ Γ)γ, hence

(
C•(A ⋊ Γ)γ, b

)
is a subcomplex. We write HHn(A ⋊ Γ)γ for its n-th homology. This gives a decomposition

HHn(A ⋊ Γ) ∼=
⊕

[γ]∈[Γ]
HHn(A ⋊ Γ)γ

∼=
⊕

[γ]∈[Γ]
HHn

(
A, γ

)Cγ (1)

for each n ≥ 0 (cf. [BDN17, Proposition 1.7], with its preceding discussion, and [Lor92], which also
covers the infinite case). Here [Γ] is the set of conjugacy classes of Γ and Cγ is the centraliser of
γ ∈ Γ. The above reduces the computation of the Hochschild homology of A ⋊ Γ to understanding the
γ-twisted Hochschild homology of A, viewing γ ∈ Γ as a k-linear endomorphism γ : A→ A.

2.2 The Case of Algebraically Closed Fields

Throughout Section 2.2 assume k to be algebraically closed of characteristic 0.

Let g : O[X]→ O[X] be a k-algebra endomorphism. The g-twisted Connes–Hochschild–Kostant–
Rosenberg map is

χg : HHn
(
O[X], g

)
→ Ωn(Xg)

induced by

χg : O[X]⊗k(n+1) → Ωn(Xg), a0 ⊗ · · · ⊗ an 7→
1
n!

a0da1 . . . dan|Xg .

By abuse of notation, we write g : X → X for the regular morphism of varieties corresponding
to g : O[X] → O[X]. For X and the fixed point subvariety Xg, we denote by Ωn(X) = ΩO[X]/k

and Ωn(Xg) = Ωn
O[Xg ]/k the respective modules of algebraic n-forms. Moreover, a0da1 . . . dan|Xg is

the restriction of the algebraic n-form a0da1 . . . dan ∈ Ωn(X) to Ωn(Xg), induced by the k-algebra
homomorphism O[X]→ O

[
Xg] corresponding to the inclusion morphism Xg → X. This is to say that

a0da1 . . . dan|Xg is the pullback of a0da1 . . . dan along the inclusion Xg → X.

For ease of notation, we will now assume that A is a commutative k-algebra of finite type, equipped
with a k-algebra endomorphism g : A → A. This suffices as we are only interested in the case that
A = O[X], for X a smooth affine variety over k, and g : O[X]→ O[X] an endomorphism as above.

A Vanishing Condition

Let Specmax(A) be the maximal spectrum of A. We first deduce a vanishing condition for HHn
(

A, g
)
, the

n-th g-twisted Hochschild homology A of Definition 2.1.1, localised at a maximal ideal m ∈ Specmax(A).

Lemma 2.2.1. If m ∈ Specmax(A) is such that g−1(m) ̸= m, then HHn
(

A, g
)
m
= 0 for all n ≥ 0.

Remark. For k = C, this is [BDN17, Corollary 1.6].
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In order to adapt Lemma 2.2.1 to the general case of algebraically closed fields, we first identify the
scheme-theoretic product Specmax

(
A⊗k A

)
with the set-theoretic product Specmax(A)× Specmax(A).

This identification notably fails for non-algebraically closed fields.

Let m1,m2 ∈ Specmax(A) be two maximal ideals. Denote by χm1 : A → Km1 and χm2 : A → Km2

the canonical homomorphisms onto finite field extensions Km1 and Km2 of k with kernels m1 and
m2, respectively. Since k is algebraically closed, these induce isomorphisms χm1 : A/m1 → k and
χm1 : A/m2 → k. Thus, we may associate to any (m1,m2) ∈ Specmax(A)× Specmax(A) the homomor-
phism χm1 ⊗ χm2 : A⊗k A→ k, which corresponds to a point of Specmax

(
A⊗k A

)
.

Conversely, consider a point of Specmax
(

A⊗k A
)
, i.e. a surjection χ : A⊗k A→ k with kernel M, a

maximal ideal of A⊗k A. Write ι1 : A→ A⊗k A and ι2 : A→ A⊗k A for the two canonical inclusions.
Since A⊗k A is the coproduct of k-algebras, we find χ1, χ2 : A → k such that χ = χ1 ⊗ χ2. Moreover,
χι1 = χ1 and χι2 = χ2. Since A is a finite type k-algebra, so is A⊗k A, hence [Kem11, Proposition 1.2]
shows that both m1 = ι−1

1 (M) and m2 = ι−1
2 (M) are maximal. Observe that

mi = ι−1
i (M) = ι−1

i
(

ker(χ)
)
= ker(χ1)

for i = 1, 2. Then m1 ⊗ A + A⊗m2 ≤M by construction. Since the residue field of m1 ⊗ A + A⊗m2 is
k⊗k k ∼= k, we conclude that m1 ⊗ A + A⊗m2 = M.

The proof of [BDN17, Corollary 1.6] now goes through verbatim.

Completions and Local Hochschild Homology

We will now consider completions of A-modules with respect to certain filtrations. A filtration of an
A-module M is a decreasing chain of submodules

M = F0M ⊃ F1M ⊃ F2M ⊃ · · · ⊃ Fn M ⊃ · · · .

To each filtration there is an associated completion, which is defined by

M̂ = lim←−M/Fn M .

We say that M is complete if the natural map M→ M̂ is an isomorphism.

We specialise to considering I-adic completions of A and A-modules. Recall that given an ideal
I ≤ A and an A-module M, its I-adic completion is

M̂I = lim←−M/In M .

Furthermore, for two A-modules M and N, their completed tensor product is

M ⊗̂A N = lim←−M/In M⊗A N/InN .

Suppose now that g : A→ A preserves the chosen I ≤ A in the sense that g−1(I) ⊆ I. Then g induces
a well-defined endomorphism ĝI : ÂI → ÂI . Completion of the complex

(
C•

(
A, g

)
, bg

)
produces a

complex
(
Ĉ•

(
ÂI , ĝI

)
, bĝI

)
with Ĉn

(
ÂI , ĝI

)
= ÂI ⊗̂k

(
ÂI/k · 1

)⊗̂kn, n ≥ 0, and an induced differential
bĝI : Ĉn

(
ÂI , ĝI

)
→ Ĉn−1

(
ÂI , ĝI

)
.

Definition 2.2.2. The complex
(
Ĉ•

(
ÂI , ĝI

)
, bĝI

)
is the local g-twisted Hochschild complex of A. Its

n-th homology is the n-th local g-twisted homology of A, denoted by HHloc
n

(
ÂI , ĝI

)
. ⌟

We introduce this variant of the Hochschild homology for the localised study of the g-twisted
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homology. For its application, we have to restrict the algebras A in consideration.

Suppose that A is an R-algebra for R some commutative k-algebra. We say that A is a finite type
R-algebra if R is of finite type and A is finitely generated as an R-module. Assuming that A is a finite
type R-algebra guarantees a well-behaved completion functor (see [AM69, §10]). These assumptions are
satisfied, in particular, if R = A is already a commutative k-algebra of finite type.

We obtain the following.

Lemma 2.2.3. For all n ≥ 0, HHn
(

A, g
)

is finitely generated as an A-module. The natural map

HHn
(

A, g
)
→ HHloc

n

(
ÂI , ĝI

)
induces an isomorphism

ÂI ⊗A HHn
(

A, g
) ∼−→ HHloc

n

(
ÂI , ĝI

)
of A-modules for all n ≥ 0.

Remark. For k = C, this is [BDN17, Theorem 1.10].

The proof requires establishing the existence of an admissible resolution of ÂI , that is, a resolution
admitting bounded k-linear contractions. Here, bounded is a purely algebraic notion. More precisely,
a map ϕ : V → W of filtered complexes V and W is bounded if there exists an integer k such that
ϕ(FnV) ⊆ Fn−kW for all n. Such contractions are constructed in [KNS98, Lemma 3] and their existence
does not depend on the chosen base field.

The proof of [BDN17, Theorem 1.10] can now be repeated for general algebraically closed fields.

Computations with Koszul Complexes

As a final computational ingredient, we consider Koszul complexes.

Definition 2.2.4. Let R be a commutative k-algebra, M an R-module, E a finite-dimensional k-vector
space, and f : E→ R a k-linear map. The associated Koszul complex (K•, ∂) =

(
K•

(
M, E, f

)
, ∂
)

has as
n-th chain group

Kn = Kn
(

M, E, f
)
= M⊗k

∧n
E

and as differential

∂(m⊗ (vi1 ∧ · · · ∧ vin)) =
n

∑
j=1

(−1)j−1 f (vij)m⊗ (vi1 ∧ · · · ∧ v̂ij ∧ · · · ∧ vin) ,

where m ∈ M and e1, . . . , er are a basis of V. ⌟

We are especially interested in the case where M = O[E] is the ring of regular functions on E. Here
E will geometrically correspond to the (Zariski) tangent space of X at some point. We view E as an
affine space over k, hence O[E] is a ring of polynomials over k in dim E variables. This uses that k is
algebraically closed. Denote by i : E∨ → O[E] the canonical embedding of the dual space E∨ into O[E],
considering a linear functional on E as a regular function on E.

If g : E→ E is a linear endomorphism of E we let f = i ◦ (g∨ − 1) : E∨ → O[E]. Denote by g also the
endomorphism of O[E] induced by g. This gives rise to a Koszul complex

(
K•

(
O[E], E∨, f

)
, ∂
)
. These

complexes compute the g-twisted Hochschild homology of O[E].

Lemma 2.2.5. Fix a basis e1, . . . , er of E. The map κV :
(
K•

(
O[E], E∨, f

)
, ∂
)
→

(
C•

(
O[E], g

)
, bg

)
defined by

κV(a⊗ (ei1 ∧ · · · ∧ ein)) = ∑
σ∈Sn

sign(σ)a⊗ i(eiσ(1))⊗ · · · ⊗ i(eiσ(n))

14



is a quasi-isomorphism.

Remark. For k = C, this is [BDN17, Corollary 2.11].

To prove Lemma 2.2.5 one shows that the above Koszul complex may be obtained from tensoring
a projective resolution of O[E] as left O[E]e-module. This projective resolution is built by reducing to
the case of O[E] = k[x]. Here a direct computation can be carried out completing the argument. No
particular properties of C are used besides being algebraically closed to identify maximal ideals of O[E]
with points of E.

Finally, replacing the unhandy bar complexes by concrete Koszul complexes allows us to compute
the g-twisted Hochschild homology of E in terms of the Kähler differentials of the subspace Eg of
g-fixed points.

Lemma 2.2.6. Let g : E → E be linear and assume that g− 1 : E/ ker(g− 1) → E/ ker(g− 1) is injective.
Then for Eg = ker(g− 1), the restriction O[E]→ O

[
Eg] defines isomorphisms

resHH : HHn
(
O[E], g

) ∼−→ HHn
(
O
[
Eg])

and hence the g-twisted Connes–Hochschild–Kostant–Rosenberg map χg defines isomorphisms

χg : HHn
(
O[E], g

) ∼−→ Ωn(Eg)
for all n ≥ 0.

Remark. For k = C, this is [BDN17, Lemma 2.12].

Using Lemma 2.2.5 reduces the question to the computation of homologies arising from certain
Koszul complexes. Studying these complexes is a question of linear algebra and re-using earlier results
about Koszul complexes of polynomial rings. The technical assumption about g is necessary to unravel
how g interacts with the inclusion E∨ → O[E]. In particular, the proofs remain unchanged in the case
of a general algebraically closed base field.

One now combines the results obtained using Koszul complexes with the local g-twisted Hochschild
homology. The following is then immediate.

Lemma 2.2.7. Let g : E → E be linear and assume that g− 1 : E/ ker(g− 1) → E/ ker(g− 1) is injective.
Let Eg = ker(g− 1) and m ≤ O[E] the maximal ideal corresponding to functions vanishing at 0. Then the
restriction Ô[E]m → Ô

[
Eg]

m
defines an isomorphism

r̂esHH : HHloc
n

(
Ô[E]m, ĝm

) ∼−→ HHloc
n

(
Ô
[
Eg]

m

)
and χ̂g = 1⊗ χg gives an isomorphism

χ̂g : Ô[E]m ⊗O[E] HHn
(
O[E], g

) ∼−→ Ô[E]m ⊗O[E] Ωn(Eg)
for all n ≥ 0.

Remark. For k = C, this is [BDN17, Corollary 2.15].

Deducing the Hochschild Homology

After due preparation, we return to the case of a smooth affine k-variety X, and g : O[X] → O[X] a
k-algebra endomorphism of its coordinate ring.

Suppose that g is induced by a finite group acting on X. In particular, g has finite order. Then by
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[Edi92, Proposition 3.4], its fixed point subvariety Xg ⊆ X is again smooth, since we assume that k
is of characteristic 0. Furthermore, [Edi92, Proposition 3.2] computes the tangent space of x ∈ Xg as
TxXg =

(
TxX

)Tx(g)
= ker(Tx(g)− 1) where Tx(g) denotes the induced tangent map of g : X → X.

Finally, observe that no non-zero element of TxX can at the same time be fixed by Tx(g) and lie in
the image of Tx(g)− 1. Indeed, if Tx(g)(v) = v and v =

(
Tx(g)− 1

)
(w), then considering its algebraic

norm, we see that

nv =
n−1

∑
i=0

Tx(g)i(v) =
n−1

∑
i=0

(
Tx(g)i+1 − Tx(g)i)(w) = 0

for n = |g| the order of g. Thus, Tx(g) induces an injective endomorphism of TxX/TxXg.

The above shows that the technical assumptions made in the following proposition are negligible
in our case of interest, hence may be safely ignored in the sequel. These assumptions are, however,
necessary in order to apply Lemma 2.2.7 for E the tangent space at a fixed point of g.

We give the full proof of [BDN17, Proposition 2.16], while expanding on some details and simplifying
the final step.

Proposition 2.2.8. Let X be a smooth affine k-variety and g a k-algebra endomorphism of O[X].

Suppose that Xg is again a smooth affine variety and, for every fixed point x ∈ Xg, its tangent space TxXg is
the kernel of Tx(g)− 1 and Tx(g)− 1 induces an injective endomorphism of TxX/TxXg.

Then the g-twisted Connes–Hochschild–Kostant–Rosenberg map χg induces isomorphisms

χg : HHn
(
O[X], g

) ∼−→ Ωn(Xg)
for all n ≥ 0.

Remark. For k = C, this is [BDN17, Proposition 2.16].

Proof. For clarity, we write χX
g for the Connes–Hochschild–Kostant–Rosenberg map within the proof.

We will prove that χX
g is an isomorphism by showing that for every maximal m ≤ O[X], its completion(̂

χX
g
)
m

is an isomorphism. Since the completion factors as O[X] → O[X]m → Ô[X]m and the map
O[X]m → Ô[X]m is faithfully flat by [Sta23, Tag 00MC], this reduces the assertion to a well-known
criterion: An R-module homomorphism φ : M → N is an isomorphism if and only if its localisation
φm : Mm → Nm at each maximal ideal m ≤ R is an isomorphism.

Let us denote A = O[X] and fix a maximal ideal m ≤ A. We consider

Âm ⊗A HHn
(

A, g
) ∼= ĤHn

(
A, g

)
m

(̂
χX

g

)
m−−−−→ Ω̂n(Xg)

m
∼= Âm ⊗A Ωn(Xg)

in two cases, distinguished by whether the geometric morphism g : X → X fixes the point corresponding
to m or not. Since the points of X are identified with the maximal ideals of A, this leaves us to consider
if g−1(m) = m or g−1(m) ̸= m.

First, assume that g−1(m) ̸= m. By Lemma 2.2.1, we then conclude that HHn
(

A, g
)
m

= 0, hence
ĤHn

(
A, g

)
m

= 0, since the localisation is dense in the completion. Additionally, we claim that
Ωn(Xg)

m
= 0, which implies that Ω̂n(Xg)

m
= 0 as before. For the first claim, note that Xg ⊆ X is a

closed immersion by [Edi92, Proposition 3.1], hence O[X] → O
[
Xg] is a quotient map by [Sta23, Tag

01QN]. If we let I ≤ O[X] be the ideal defining O
[
Xg], the conormal sequence reads

I/I2 Ω1(X)⊗A O
[
Xg] Ω1(Xg) 0
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with Ω1(X) = Ω1
A/k = Ω1

O[X]/k and Ω1(Xg) = ΩO[Xg ]/k. If g−1(m) ̸= m, then m does not correspond
to a closed point of Xg, hence the induced ideal in O

[
Xg] has to be the zero ideal. Thus, localising the

conormal sequence at such m implies that Ω1(Xg)
m

= 0 by exactness, since O
[
Xg]

m
= 0. Thus, for

g−1(m) ̸= m we observe that
(̂
χX

g
)
m

is an isomorphism, as both sides vanish.

Now, assume that g−1(m) = m. Write m = mx with x ∈ Xg. Denote by E = TxX =
(
mx/m2

x
)∨ the

tangent space of X at x. Since we assume X to be smooth, there are natural isomorphisms

tan : Ô[X]mx
∼−→ Ô[E]m0

and
tan : Ω̂n(Xg)

mx

∼−→ Ω̂n
(

ETx(g)
)
m0

,

which are discussed in [Liu06, §4, §6]. On the right, m0 corresponds to the origin of E as a k-vector
space. We consider the induced tangent map Tx(g) : E→ E, which is well-defined, as g is assumed to
fix mx. The second identification uses our assumption TxXg = ker

(
Tx(g)− 1

)
= ETx(g).

The canonical isomorphism from Lemma 2.2.3 now gives rise to a commuting diagram

Âm ⊗A HHn
(

A, g
)

Âm ⊗A Ωn(Xg)

HHloc
n

(
Âm, ĝm

)
Ω̂n(Xg)

m

HHloc
n

(
Ô[E]m, T̂x(g)m

)
Ω̂n

(
ETx(g)

)
m

∼=

1⊗χX
g

∼=

tan

(̂
χX

g

)
m

tan
̂(
χE

Tx(g)

)
m

where all vertical arrows are isomorphisms. Thus, it suffices to check that the completion of χE
Tx(g) at

the bottom is an isomorphism to complete the proof. Since Tx(g) : E→ E is a k-linear endomorphism
so that Tx(g) : E/ETx(g) → E/ETx(g) is injective, Lemma 2.2.7 applies. This shows that the completion of
χE

Tx(g) is an isomorphism, which concludes the proof. □

Combining Proposition 2.2.8 with the decomposition from equation (1), we complete our computation
of the Hochschild homology of A ⋊ Γ for a finite group Γ.

Theorem 2.2.9. Let A = O[X] be the coordinate ring of a smooth k-variety. Assume that k is of characteristic 0
and algebraically closed. Suppose that a finite group Γ acts on X and let γ1, . . . , γs be a set of representatives for
the conjugacy classes of Γ. If Xi = Xγi and Ci = Cγi , then

HHn(A ⋊ Γ) ∼=
s⊕

i=1

Ωn(Xi)
Ci .

Since Γ is finite, both the cyclic and the periodic cyclic homology of A ⋊ Γ admit analogous
decompositions (see [BDN17, Proposition 1.7] and the preceding discussion). The cyclic and periodic
cyclic theories can now be deduced from Theorem 2.2.9 as in Corollary 1.3.2.

Corollary 2.2.10. Let A = O[X] be the coordinate ring of a smooth k-variety. Assume that k is of characteristic
0 and algebraically closed. Suppose that a finite group Γ acts on X and let γ1, . . . , γs be a set of representatives for
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the conjugacy classes of Γ. If Xi = Xγi , Ai = O[Xi] and Ci = Cγi , then

HCn(A ⋊ Γ) ∼=
s⊕

i=1

(
Ωn(Xi)

Ci /dΩn−1(Xi)
Cγi ⊕Hn−2

dR (Ai)
Ci ⊕Hn−4

dR (Ai)
Ci ⊕ · · ·

)

and

HPn(A ⋊ Γ) ∼=
s⊕

i=1

( ∞

∏
m=0

H2m+n
dR (Ai)

Ci

)
.

Remark. For k = C, Theorem 2.2.9 and Corollary 2.2.10 are [BDN17, Proposition 2.18].

2.3 Extension to Non-Algebraically Closed Fields

Now assume k not to be algebraically closed, but still of characteristic 0. Fix an algebraic closure k.

Assume that B is a unital k-algebra equipped with a k-linear endomorphism h : B→ B. Denote its
base change by B = k⊗k B. Then there is an induced k-linear endomorphism 1k ⊗ h : k⊗k B→ k⊗k B,
which we write as h : B→ B.

Let X be a smooth affine variety over k and denote by X its base change along Spec
(

k
)
→ Spec(k).

As X is affine, X = Spec(O[X]), hence X = Spec
(

k⊗k O[X]
)
= Spec

(
O[X]

)
. Moreover, X is smooth

by definition (see [Liu06, §4, §6]). If O[X] is in addition endowed with a k-linear endomorphism g of
finite order, then O[X] admits a corresponding k-linear endomorphism g of finite order.

Thus, Proposition 2.2.8 identifies the g-twisted homology of O[X] = O
[

X
]

with the Kähler differen-
tials of its fixed point subvariety Xg. More precisely, the twisted Connes–Hochschild–Kostant–Rosenberg
map χg induces isomorphisms

χg : HHn

(
O[X], g

) ∼−→ Ωn
(

Xg
)

for all n ≥ 0.

We first show that χg being an isomorphism implies that 1k ⊗ χg is an isomorphism as well, by
appropriately identifying their domains and codomains. Let us start with these identifications.

Lemma 2.3.1. Let A = O[X] and g : A→ A as above. Then

A⊗A

(
A⊗k (A/k · 1)⊗kn

)
→ A⊗k

(
A/k · 1

)⊗kn
,

(λ⊗ a)⊗ (a0 ⊗ a1 ⊗ · · · ⊗ an) 7→ (λ⊗ (aa0))⊗ ((1⊗ a1)⊗ · · · ⊗ (1⊗ an)) ,

induces an isomorphism
A⊗A HHn

(
A, g

) ∼−→ HHn
(

A, g
)

.

Proof. Since k→ k is a field extension, hence faithfully flat, the base change A→ A is faithfully flat as
well by [Sta23, Tag 00HI]. Hence, tensoring with A over A commutes with taking homology. Thus, it
suffices to prove that the given map extends to an isomorphism of chain complexes. This is immediate,
as the canonical identifications

A⊗A

(
A⊗k (A/k · 1)⊗kn

)
∼= A⊗k

(
A⊗k (A/k · 1)

)⊗kn ∼= A⊗k

(
A/k · 1

)⊗kn

together define the given map. Since g is k-linear and g = 1k ⊗ g acts identically on the k-factor, the
above isomorphism commutes with both bg and bg. □
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Lemma 2.3.2. Let A = O[X] and g : A→ A as above. Then

A⊗A Ωn(Xg)→ Ωn
(

Xg
)

,

(λ⊗ a)⊗ (a0da1 . . . dan) 7→ (λ⊗ (aa0))d(1⊗ a1) . . . d(1⊗ an) ,

is an isomorphism. Furthermore, there is an isomorphism Xg ∼−→ Xg such that the diagram

Xg Xg

X

∼

commutes.

Proof. For n = 1, [Sta23, Tag 00RV] shows that

A⊗A Ω1
O[Xg ]/k

∼= k⊗k Ω1
O[Xg ]/k

∼= Ω1
O[Xg ]/k ,

since k⊗k O
[
Xg] = O[ Xg

]
. This isomorphism is explicitly defined by the formula corresponding to

the case n = 1 as given. The general case then follows by construction of Ωn(Xg) and Ωn
(

Xg
)

as

exterior powers of Ω1(Xg) and Ω1
(

Xg
)

, respectively.

We first show that O
[

Xg
] ∼= O[Xg

]
or, equivalently, that Xg ∼= Xg. For the last assertion, we

observe that Xg ⊆ X as well as Xg ⊆ X can be described as fibre products

Xg X

X X× X

1×g

∆X

and
Xg X

X X× X

1×g

∆X

,

respectively (see [Edi92, Proposition 3.1]). As fibre products are preserved by base change and g = 1k⊗ g
algebraically, we conclude that Xg ∼= Xg. In particular, the naturally induced morphism Xg → Xg is an
isomorphism so that the diagram

Xg Xg

X

commutes. This concludes the proof. □

Lemma 2.3.3. Let A = O[X] and g : A→ A as above. Then

1k ⊗ χg : A⊗A HHn
(

A, g
)
→ A⊗A Ωn(Xg)

is an isomorphism.

Proof. At the level of chain complexes, the g-twisted Connes–Hochschild–Kostant–Rosenberg map χg

is the composition of

A⊗k (A/k · 1)⊗kn → Ωn(X), a0da1 . . . dan 7→
1
n!

a0da1 . . . dan ,
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with the restriction
Ωn(X)→ Ωn(Xg), a0da1 . . . dan 7→ a0da1 . . . dan|Xg .

The latter is induced by the k-algebra homomorphisms O[X]→ O
[
Xg] corresponding to the inclusion

Xg ↪→ X. Analogously, we may describe χg.

Consider now the diagram

A⊗A

(
A⊗k (A/k · 1)⊗kn

)
A⊗A Ωn(X) A⊗A Ωn(Xg)

A⊗k

(
A/k · 1

)⊗kn
Ωn( X

)
Ωn

(
Xg

)

A⊗k
(

A/k · 1
)⊗kn Ωn( X

)
Ωn

(
Xg

)
obtained from these factorisations and using the second part of Lemma 2.3.2. The top row defines
1k ⊗ χg, whereas the bottom row defines χg. Finally, we know all vertical maps to be isomorphisms by
Lemma 2.3.1 and Lemma 2.3.2. Thus, if we show that the diagram commutes, the result follows, as we
know that χg is an isomorphism by Proposition 2.2.8.

The lower part of the diagram commutes by the second part of Lemma 2.3.2. The top-left square
commutes, since

(λ⊗ aa0)⊗
(

1
n!

d(1⊗ a1) . . . d(1⊗ an)

)
= (λ⊗ a)

(
1
n!
(1⊗ a0)

)
d(1⊗ a1) . . . d(1⊗ an)

by bilinearity and the induced algebra structure on A = k⊗k A. The top-right square commutes as

π(λ⊗ (aa0))d(π(1⊗ a1)) . . . d(π(1⊗ an)) = (λ⊗ aπ(a0))d(1⊗ π(a1)) . . . d(1⊗ π(an)) ,

where π : O[X]→ O[Xg] corresponds to Xg → X and π = 1⊗ π. Here, π(λ⊗ (aa0)) = λ⊗ π(aa0) can
be identified with λ⊗ aπ(a0), since the quotient map π is A-linear. □

As mentioned in the proof of Lemma 2.3.1 the base change A → A is faithfully flat. In particular,
tensoring with A over A reflects isomorphisms: If φ : M → N is a map of A-modules M, N so that
1⊗ φ : A⊗A M→ A⊗A N is an isomorphism, then φ is an isomorphism.

As Lemma 2.3.3 shows that 1k ⊗ χg is an isomorphism, we conclude that χg was an isomorphism to
begin with. Thus,

χg : HHn
(

A, g
) ∼−→ Ω

(
Xg)

for non-algebraically closed fields as well, generalising Proposition 2.2.8. The analogues of Theorem 2.2.9
and Corollary 2.2.10 follow immediately as well.
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Theorem 2.3.4. Let A = O[X] be the coordinate ring of a smooth k-variety. Assume that k is of characteristic 0.
Suppose that a finite group Γ acts on X and let γ1, . . . , γs be a set of representatives for the conjugacy classes of Γ.
If Xi = Xγi , Ai = O[Xi] and Ci = Cγi , then

HHn(A ⋊ Γ) ∼=
s⊕

i=1

Ωn(Xi)
Ci ,

HCn(A ⋊ Γ) ∼=
s⊕

i=1

(
Ωn(Xi)

Ci /dΩn−1(Xi)
Cγi ⊕Hn−2

dR (Ai)
Ci ⊕Hn−4

dR (Ai)
Ci ⊕ · · ·

)
,

and

HPn(A ⋊ Γ) ∼=
s⊕

i=1

( ∞

∏
m=0

H2m+n
dR (Ai)

Ci

)
.
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3 Bornologies and Dagger Algebras

We fix a complete discrete valuation ring V with uniformizer π, residue field k = V/πV and field of
fractions K = V[π−1]. This is the notation of [CCMT18].

For a V-algebra A, its weak completion à la Monsky–Washnitzer [MW68] is a carefully chosen
subalgebra of the π-adic completion of A. In algebraic geometry, they allow the definition of a Weil
cohomology theory for smooth affine varieties in positive characteristic. Following [CCMT18], we
reinterpret weak completions as bornological completions (see Definition 3.1.5).

To this end, we start by introducing the notion of bornological modules (see Definition 3.1.1) in
Section 3.1. We then explain in Section 3.2 how these completions can be realised as certain bornological
completions (see Theorem 3.2.9). This allows the usage of bornological tools to study weak completions.
Additionally, we cover the basic constructions needed to develop an analogue of Hochschild homology,
bornological Hochschild homology (see Definition 3.3.1), which we define in Section 3.3. We close this section
by discussing an axiomatic characterisation of bornological Hochschild homology (see Theorem 3.3.3).

3.1 Background on Bornological Modules

We introduce the language of bornological modules as presented in [CCMT18, §2]. To keep the exposi-
tion brief, we focus on those constructions and results needed for doing homological algebra in the
bornological setting.

Definition 3.1.1. Let M be a V-module. A bornology on M is a collection of subsets B of M, called
bounded subsets, satisfying the following properties:

• If m ∈ M, then {m} ∈ B;

• If B ∈ B and B′ ⊆ B, then B′ ∈ B;

• If B1, B2 ∈ B, then B1 ∪ B2 ∈ B.

A convex bornology on M additionally satisfies the following:

• If B ∈ B, then ⟨B⟩ ∈ B, for ⟨B⟩ the V-submodule generated by B.

A V-module together with a chosen convex bornology is a bornological V -module. If M and N are
two bornological V-modules, we say that a V-module homomorphism f : M → N is bounded, if for
every bounded subset B ⊆ M, f (B) ⊆ N is a bounded subset. ⌟

From here on, a bornology on a V-module M will always refer to a convex bornology on M. The
distinction in Definition 3.1.1 was made to highlight the additional role the V-module structure plays in
the present setting: Convexity implies that the V-module operations are automatically bounded.

Let M be a V-module. Then we can always equip M with the fine bornology, having as bounded
sets all subsets of finitely generated V-submodules.

Lemma 3.1.2. Let M, N be V-modules. The fine bornology defines a bornology on M and N such that any
V-module map f : M→ N is bounded.

If M is a finitely generated V-module, the fine bornology is the unique bornology on M.

Proof. Let B be defined as the set

B = {B ⊆ M | there exists a finitely generated V-submodule M′ such that B ⊆ M′} .

For every m ∈ M, the V-submodule ⟨m⟩ is finitely generated and contains m. If B′ ⊆ B and B ⊆ M′

with M′ a finitely generated V-submodule, then B′ ⊆ M′. Hence, B′ is bounded as well. For B1 ⊆ M′1,
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B2 ⊆ M′2 with finitely generated V-submodules M′1, M′2, we have B1 ∪ B2 ⊆ M′1 ∪M′2 ⊆ M1 + M2. Since
M1 + M2 is finitely generated as a sum of finitely generated submodules, B1 ∪ B2 ∈ B. Finally, if B ⊆ M′

for a finitely generated submodule M′, then ⟨B⟩ ⊆ M′, since ⟨B⟩ is the submodule generated by B. In
particular, ⟨B⟩ ∈ B. This shows that the fine bornology is a bornology on M. If B ⊆ M is bounded in
the fine bornology on M, there is a finitely generated V-submodule M′ ≤ M such that B ⊆ M′. As f is
a V-module map, f (M′) ≤ N is a finitely generated V-submodule. Since B ⊆ M′, f (B) ⊆ f (M′). This
shows that f (B) ⊆ N is bounded in the fine bornology on N. Thus, f is bounded.

Now assume M to be finitely generated and denote the fine bornology on M by B f . Suppose that
B is any bornology on M. If m1, . . . , mn ∈ M, then {m1, . . . , mn} ∈ B and hence the finitely generated
submodule ⟨m1, . . . , mn⟩ is also B-bounded. Since any subset of ⟨m1, . . . , mn⟩ is B-bounded as well,
B f ⊆ B. Conversely, let B ∈ B. Then B ⊆ ⟨B⟩ ≤ M. As V is a discrete valuation ring, hence Noetherian,
⟨B⟩ is finitely generated as submodule of the finitely generated V-module M. Thus, B is contained in a
finitely generated submodule and therefore B ∈ B f . Thus, B f = B as claimed. □

We now move towards bornological completions. Cauchy sequences and convergent sequences of
bornological V-modules are defined relative to the π-adic topology of V.

Definition 3.1.3. Let M be a bornological V-module and (xn)n a sequence in M.

Fix a bounded subset B ⊆ M. We say that (xn)n is B-Cauchy if there is a sequence (δn)n in V such
that (δn)n is a π-adic nullsequence and xm − xn ∈ δℓ · B for all n, m ≥ ℓ. We say that (xn)n B-converges
to x ∈ M if there is a sequence (δn)n in V such that (δn)n is a π-adic nullsequence and xn − x ∈ δn · B
for all n ≥ 0.

We say that (xn)n is Cauchy if (xn)n is B-Cauchy for some bounded subset B. Similarly, (xn)n

converges to x ∈ M if (xn)n B-converges to x for some bounded subset B. ⌟

Definition 3.1.4. Let M be a bornological V-module. We say that M is separated if each convergent
sequence in M has a unique limit. If M is separated, we say that M is complete if, for every bounded
subset B ⊆ M, there is a bounded subset B′ ⊆ M such that B-Cauchy sequences are B′-convergent. ⌟

The completion of a bornological V-module is now naturally characterised by a universal property.

Definition 3.1.5. Let M be bornological V-module. The completion of M is a complete bornological
V-module M equipped with a bounded map b : M→ M such that, for every bounded map f : M→ N,
with N a complete bornological V-module, there is a unique bounded map f : M → N so that the
diagram

M N

M

f

b f

commutes. ⌟

Upon identifying the category of bornological V-modules with the category of inductive systems of
V-module with injective transition maps as in [CCMT18, Proposition 2.5], one sees that bornological
completions always exist and are explicitly described by [CCMT18, Proposition 2.14]. The construction
uses that the category of complete bornological V-modules is equivalent to the category of inductive
systems of π-adically complete V-modules and injective transition maps given by [CCMT18, Proposition
2.10].

We close this section by introducing bornological constructions which we ultimately need to obtain
a suitable homology theory for bornological V-algebras (see Definition 3.2.1). As this theory will be a
variation of Hochschild homology, we consider bornological tensor products.
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For notational simplicity, undecorated tensor products of any kind will always refer to tensor
products taken over V.

Definition 3.1.6. Let M, N be V-modules. Their bornological tensor product is a bornological V-
module M ⊗ N together with a bounded V-bilinear map ⊗ : M × N → M ⊗ N such that, for every
bounded V-bilinear map f : M× N → L into a bornological V-module L, there is a unique bounded
V-linear map f : M⊗ N → L such that the diagram

M× N M⊗ N

L
f

⊗

f

commutes. ⌟

Bornological tensor products exist by [CCMT18, Lemma 2.17] and are given by the algebraic tensor
product endowed with the tensor product bornology, which is generated by the images of A⊗ B for
A ≤ M and B ≤ N bounded V-submodules.

However, if we consider two complete V-modules M and N, their bornological tensor product is not
necessarily complete. This is a common phenomenon and the reason for our definition of completed
tensor products in Section 2.2. An account of the type of problems arising from taking naive tensor
products of complete structures is given in [Mey08, Section 3]. Instead, we introduce the complete
bornological tensor product.

Definition 3.1.7. Let M, N be complete V-modules. Their complete bornological tensor product is a
complete bornological V-module M⊗N together with a bounded V-bilinear map ⊗ : M× N → M⊗N
such that for every bounded V-bilinear map f : M× N → L into a complete bornological V-module L,
there is a unique bounded V-linear map f : M⊗N → L such that the diagram

M× N M⊗N

L
f

⊗

f

commutes. ⌟

Complete bornological tensor products always exist and are given by the bornological completion of
the bornological tensor product. This is [CCMT18, Lemma 2.17].

There is a bornological variant of adjoint associativity for the bornological tensor product. For
this, let M, N be bornological V-modules and equip the V-module Hom(M, N) with the equibounded
bornology, where S ⊆ Hom(M, N) is bounded if, for every bounded B ⊆ M, the set f (b), f ∈ S, b ∈ B,
is bounded. If N is a complete bornological module, so is Hom(M, N) in the equibounded bornology.
See [Mey04, §2.1] or the discussion preceding [CCMT18, Proposition 2.19].

Lemma 3.1.8. If M and N are bornological V-modules, then there is an isomorphism

M⊗ N ∼= M⊗N .

Moreover, if M1, M2, M3 are bornological V-modules, there is a natural isomorphism

M1⊗
(

M2⊗M3

)
∼=

(
M1⊗M2

)
⊗M3 .

Proof. Fix a complete bornological V-module L. By definition, Hom
(

M⊗ N, L
)

classifies bounded

24



V-linear maps M⊗ N → L, whereas Hom
(

M⊗N, L
)

classifies bounded V-linear maps M⊗N → L.
By adjoint associativity,

Hom(M⊗ N, L) ∼= Hom(M, Hom(N, L)) ∼= Hom
(

M, Hom(N, L)
)

,

since Hom(N, L) is complete in the equibounded bornology, and furthermore,

Hom
(

M, Hom(N, L)
)
∼= Hom

(
N, Hom

(
M, L

))
∼= Hom

(
N, Hom

(
M, L

))
,

since Hom
(

M, L
)

is complete as well. Thus,

Hom(M⊗ N, L) ∼= Hom
(

M⊗N, L
)

,

from which the first assertion follows.

For the second assertion, consider bornological V-modules M1, M2, M3. Since the canonical isomor-
phism

M1 ⊗ (M2 ⊗M3) ∼= (M1 ⊗M2)⊗M3

is bounded, there is an induced isomorphism of completions

M1 ⊗ (M2 ⊗M3) ∼= (M1 ⊗M2)⊗M3 .

Using the first part of the lemma, we conclude that

M1⊗ (M2 ⊗M3) ∼= M1 ⊗ (M2 ⊗M3) ∼= (M1 ⊗M2)⊗M3 ∼= M1 ⊗M2⊗M3 .

Since M1 ⊗M2 ∼= M1⊗M2 and M2 ⊗M3 ∼= M2⊗M3, the result follows. □

By Lemma 3.1.8, any choice for representing an iterated complete bornological tensor product is
equivalent. Hence, we will suppress this distinction in our notation.

A foundational notion of homological algebra is that of a short exact sequence or extension. To
properly define this notion as a bornological one, we require compatibility of the algebraic constructions
with the bornological ones.

Definition 3.1.9. Let q : M→ N be a bounded map of bornological V-modules. Then q is a bornological
quotient map if every bounded subset of N is of the form q(B) for a bounded subset B ⊆ M. ⌟

Definition 3.1.10. We say that

0 M′ M M′′ 0
f g

is an extension of bornological V-modules if it is a short exact sequence of V-modules such that M′ ≤ M
carries the subspace bornology and g is a bornological quotient map. It is a split extension if g admits a
bounded V-linear section. ⌟

Lemma 3.1.11. Let N be a complete bornological V-module and

0 M′ M M′′ 0
f g

an extension of complete bornological V-modules.

Then g⊗ 1N is a bornological quotient map such that g⊗ 1N = coker
(

f ⊗ 1N
)
. Moreover, ker

(
g⊗ 1N

)
is
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the bornological closure of im
(

f ⊗ 1N
)
. If g admits a bounded V-linear section, then so does g⊗ 1N .

Proof. This is [CCMT18, Lemma 2.21]. □

Lemma 3.1.12. If q : M → N is a bornological quotient map of bornological modules, then q : M → N is a
bornological quotient map of complete bornological modules.

Proof. This is [CCMT18, Lemma 2.22]. □

3.2 Weak Completions as Bornological Completions

As for the case of algebraic Hochschild homology, we are not interested in merely bornological V-
modules, but rather bornological V-algebras, as covered in [CCMT18, §3].

Definition 3.2.1. Let A be a unital associative V-algebra. Then A is a bornological V -algebra if A is a
bornological V-module and, whenever B1, B2 ⊆ A are bounded, so is B1 · B2 ⊆ A. ⌟

The notion of bornological V-algebras allows an elegant redefinition of weak completions in the sense
of Monsky–Washnitzer [MW68]. To see this, we first recall the original definition of Monsky–Washnitzer.
Their weak completions are defined only for commutative V-algebras A of finite type. More precisely,
the weak completion A†, or dagger completion, of A is the subset of its π-adic completion

Â = lim←− A/πn A

consisting of formal power series in π of the form

b =
∞

∑
n=0

bnπn

with bn ∈ Mκn , where M is a finitely generated V-submodule of A containing 1 and such that
κn ≤ c(n + 1) for a constant c > 0 depending on b.

This growth restriction gives rise to a canonical bornology on A†.

Lemma 3.2.2. Let A† be the weak completion of a commutative V-algebra of finite type. Define a bornology on
A† with bounded subsets those B ⊆ A†, for which there are a finitely generated V-submodule M ≤ A† containing
1 and a positive constant c > 0 such that, for a ∈ B of the form

a =
∞

∑
n=0

anπn ,

we have that an ∈ Mκn with κn ≤ c(n + 1), define a bornology on A†.

Proof. Let a ∈ A†. Then, by definition, there is a finitely generated V-submodule M and a fixed
positive constant c > 0 such that an ∈ Mκn for κn ≤ c(n + 1). Thus, {a} is bounded. If B ⊆ A† is
bounded, then so is any subset B′ ⊆ B, since the condition for boundedness is still satisfied elementwise
for each subcollection of elements of B.

Now, let B1, B2 ⊆ A† be bounded. By definition, there are finitely generated V-submodules
M1, M2 and fixed positive constants c1, c2 > 0 realising growth restrictions for elements of M1 and M2,
respectively. Let M = ⟨M1, M2⟩ and c = max{c1, c2}. Since M1, M2 ≤ M with M finitely generated and
c1, c2 ≤ c, B1 ∪ B2 is bounded.

Finally, let B ⊆ A† be bounded with the boundedness given by a finitely generated V-submodule M
and a positive constant c > 0. We show that for b1, b2, b ∈ B and λ ∈ V, both b1 + b2 and λb satisfy the
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same growth restriction. First, note that

b1 + b2 =
∞

∑
n=0

b1,nπn +
∞

∑
n=0

b2,nπn =
∞

∑
n=0

(b1 + b2)nπn ,

where (b1 + b2)n and b1,n + b2,n differ at most by a multiple of π. Since 1 ∈ M and b1,n, b2,n ∈ Mκn ,
(b1 + b2)n ∈ Mκn for κn ≤ c(n + 1). Second, write λ = uπm with m ≥ 0 and u a unit of V. Then

λb = (uπm)
∞

∑
n=0

bnπn =
∞

∑
n=m

(ubn−m)π
n .

Then ubn−m ∈ Mκn−m with κn−m ≤ c(n−m + 1), since M is a V-submodule of A†. As m ≥ 0, we also
have that c(n−m + 1) ≤ c(n + 1). Thus, λb satisfies the appropriate growth restriction. □

Let A be a commutative V-algebra of finite type. We define a bornology on A such that its
corresponding bornological completion (in the sense of Definition 3.1.5) is isomorphic to the dagger
completion A† of A. For this, we define a spectral radius for bornological V-algebras. Since we only
consider bornological V-algebras, we use the modifications for the definitions and results of [CCMT18]
as explicitly considered in [MM19].

Definition 3.2.3. [MM19, Definition 3.1] Let A be a bornological V-algebra and let M ⊆ A be a bounded
V-submodule. For r ≥ 1 and ϵ = |π|, set

r ⋆ M = r⌈logϵ(r)⌉M .

The (truncated) spectral radius ρ(M) is the infimum of all r ≥ 1 such that ∑n≥1 r−n ⋆ M is bounded. If
there is no such r, then ρ(M) = ∞. ⌟

Remark. As mentioned above, we exclude 0 < r < 1 from our definition. In these cases, the ⋆-operation is
only well-defined for bornological V-algebras, with K the field of fractions of V, for which multiplication
by π admits a bounded inverse. As we do not need this case for our present purposes, we exclude it
altogether.

Proposition 3.2.4. Let A be a bornological V-algebra. The following are equivalent:

(a) ρ(M) = 1 for all bounded V-submodules M;

(b) ∑∞
n=0 πn Mcn+d is bounded for all bounded V-submodules M and c, d ∈N;

(c) ∑∞
n=0 πn Mn+1 is bounded for all bounded V-submodules M;

(d) any bounded subset of A is contained in a bounded V-submodule M with πM2 ⊆ M.

Proof. Compare [CCMT18, Proposition 3.1.3] and [MM19, Proposition 3.4]. □

As made evident by Proposition 3.2.4(b), the spectral radius estimate given corresponds to a linear
growth condition. Moreover, Proposition 3.2.4(c) is reminiscent of the growth condition used to define
the canonical bornology on A†. This motivates the definition of the linear growth bornology.

Definition 3.2.5. [CCMT18, Definition 3.1.6] Let A be a bornological V-algebra with bornology B. The
linear growth bornology Blg on A is the smallest bornology containing B such that ρ(M) = 1 for all
V-submodules M. A subset of A has linear growth with respect to B if it is contained in Blg. The
bornological V-algebra A equipped with Blg is denoted by Alg and its completion by Alg. ⌟

Corollary 3.2.6. The fine bornology on V is the linear growth bornology. In particular, Vlg = V.

Proof. By Lemma 3.1.2, the fine bornology is the unique bornology on V. It also makes V into a
bornological V-algebra. By Proposition 3.2.4(d), it now suffices to show that for every V-submodule M,
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πM2 ⊆ M. As the V-submodules of V are precisely the ideals of V, M2 ⊆ VM ⊆ M and πM ⊆ M are
immediate. Thus, the fine bornology on V is the linear growth bornology as claimed.

The second assertion holds in general for bornological completions of V-modules equipped with the
fine bornology. □

Proposition 3.2.4 yields a characterisation of subsets of linear growth.

Lemma 3.2.7. Let A be a bornological V-algebra and B ⊆ A. The following are equivalent:

(a) B has linear growth;

(b) B is contained in ∑∞
n=0 πnSn+1 for some bounded subset S ⊆ A;

(c) B is contained in ∑∞
n=0 πnScn+d for some bounded subset S ⊆ A and c, d ∈N.

Proof. Compare [CCMT18, Lemma 3.1.10] and [MM19, Lemma 3.6]. □

Since the linear growth bornology is constructed as the smallest bornology subject to a spectral
radius constraint, the corresponding completion satisfies an appropriate universal property.

Proposition 3.2.8. Let A and B be bornological V-algebras. Assume that B is complete and that ρ(M) = 1 for
all bounded V-submodules M ≤ B. For every bounded map φ : A→ B, there is a unique bounded homomorphism
φ : Alg → B such that the diagram

Alg B

A

φ

φ

commutes. If ρ(M) = 1 for all bounded V-submodules A, then A = Alg.

Proof. This is [CCMT18, Proposition 3.1.15]. □

We can now reinterpret weak completions as bornological completions, using the linear growth
bornology associated to the fine bornology.

Theorem 3.2.9. Let A be a commutative V-algebra of finite type, equipped with the fine bornology. The canonical
map A→ A† extends uniquely to an isomorphism of bornological algebras Alg

∼−→ A†.

Proof. This is [CCMT18, Theorem 3.2.1]. □

With Theorem 3.2.9 in mind, we can apply results about linear growth completions to dagger
completions and vice versa. We collect the most important instances of this in the following two
lemmata.

Lemma 3.2.10. Let A be a commutative V-algebra of finite type and let J ≤ A be an ideal. Denote by JA† ≤ A†

the ideal J generates in A†. The natural map A†/JA† → (A/J)† is an isomorphism.

Proof. This is [CCMT18, Lemma 3.2.4]. □

Lemma 3.2.11. Let A and B be bornological V-algebras.

(a) The multiplication on A is bounded in the linear growth bornology and extends to a bornological V-algebra
structure on Alg.

(b) If φ : A → B is a bounded unital algebra homomorphism, then there is an induced bounded unital
homomorphism φlg : Alg → Blg. If φ is a bornological quotient map, so is φlg.

(c) (A⊗ B)lg = Alg ⊗ Blg and therefore (A⊗ B)lg
∼= Alg⊗ Blg.

Proof. Part (a) is [CCMT18, Lemma 3.1.12], part (b) is [CCMT18, Proposition 3.1.17] and part (c) is
[CCMT18, Proposition 3.1.25]. □
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For a general V-algebra A carrying the fine bornology, we will always denote the completion Alg by
A†. This includes cases for which the conclusion of Theorem 3.2.9 does not hold, but will simplify our
notation considerably.

3.3 Axiomatic Characterisation of Hochschild Homology of Bornological Algebras

Let us now consider a homology theory for bornological algebras. In order to take full advantage of
the bornological structure, we define bornological Hochschild homology. Let A be a complete bornolog-
ical V-algebra and M a complete bornological A-bimodule. Define Cbor

n (A, M) = M⊗ A⊗ n and let
b : Cbor

n (A, M)→ Cbor
n−1(A, M) be the completion of the bounded V-linear map

b(m⊗ a1 ⊗ · · · ⊗ an) = (ma1)⊗ a2 ⊗ · · · ⊗ an +
n−1

∑
i=1

m⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)n(anm)⊗ a1 ⊗ · · · ⊗ an−1 .

Definition 3.3.1. The complex
(

Cbor
• (A, M), b

)
is the bornological Hochschild complex of A with

coefficients in M . Its n-th homology is the n-th bornological Hochschild homology of A with
coefficients in M , denoted by HHbor

n (A, M). ⌟

If A = M, we denote by HHbor
n (A) the homology groups HHbor

n (A, A). This notion coincides with
the Hochschild homology for complete bornological V-algebras defined in [CCMT18, Definition 4.1.1].
As noted there, the bornological Hochschild complex for a V-algebra carrying the fine bornology agrees
with the ordinary Hochschild complex, since any bornological module is complete in the fine bornology.
We write C•(A, M) and HHn(A, M) in this case, following our notation from Section 1.

Section 1.1 shows that over a field, algebraic Hochschild homology may be defined as a derived
functor. This implies, in particular, that Hochschild homology can be characterised axiomatically, since
derived functors are universal δ-functors (in the sense of [Wei94, Definition 2.1.4]; see [Wei94, Theorem
2.4.7] for a proof of this assertion). For Hochschild homology, a more explicit formulation of such a
characterisation is given by [Mac75, Theorem X.4.1].

Choosing the appropriate notion of short exact sequences yields a generalisation to bornological
Hochschild homology. For this we consider a variation of the split extensions introduced in Defini-
tion 3.1.10, called semi-split extensions.

Definition 3.3.2. Let

0 M′ M M′′ 0
f g

be an extension of bornological A-bimodules. We say that this extension is semi-split if g admits a
bounded V-linear section. ⌟

Theorem 3.3.3. Let A be a complete bornological V-algebra.

(a) Let f : M → N be a bounded A-bimodule map of complete bornological A-bimodules. Then there is a
bounded chain map f ⊗ 1 : C•(A, M)→ C•(A, N), a chain map f ⊗ 1 : Cbor

• (A, M)→ Cbor
• (A, N) and

an induced map f∗ : HHbor
n (A, M) → HHbor

n (A, N) for each n ≥ 0. This defines a functor from the
category of complete A-bimodules to the category of V-modules.

(b) Let X be a V-module. Then A⊗ X⊗ A carries a canonical A-bimodule structure such that

HHbor
n

(
A, A⊗ X⊗ A

)
= 0

for n > 0.
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(c) Let
0 M′ M M′′ 0

be a semi-split extension of complete bornological A-bimodules. Then there is a long exact sequence

· · · HHbor
n+1

(
A, M′′

)
HHbor

n
(

A, M′
)

HHbor
n (A, M) HHbor

n
(

A, M′′
)

· · ·

and the connecting morphisms HHbor
n+1

(
A, M′′

)
→ HHbor

n
(

A, M′
)

are natural for morphism of extensions
of complete bornological A-bimodules.

Proof. For (a), observe that f ⊗ 1 : C•(A, M)→ C•(A, N) defines a chain map. As f is bounded, so is
f ⊗ 1. Thus, its completion f ⊗ 1 : Cbor

• (A, M) → Cbor
• (A, N) defines a chain map of the bornological

Hochschild complexes. This gives an induced map of Hochschild homology groups. Functoriality
follows from functoriality of completions for bounded maps.

Given a V-module X, as in (b), define an A-bimodule structure on A⊗ X⊗ A by

(a1 ⊗ a2) · (a⊗ x⊗ a′) = (a1a)⊗ x⊗ (a′a2) .

Its bornological completion A⊗ X⊗ A is then a complete bornological A-bimodule. To see that
HHbor

n
(

A, A⊗ X⊗ A
)
= 0 for n > 0, we show that Cbor

•
(

A, A⊗ X⊗ A
)

admits a bounded chain
contraction.

First, observe that the bounded homorphism

(A⊗ X⊗ A)⊗ A⊗n → X⊗
(

A⊗ A⊗n ⊗ A
)

,

(a⊗ x⊗ a′)⊗ (a1 ⊗ · · · ⊗ an) 7→ x⊗ (a′ ⊗ a1 ⊗ · · · ⊗ an ⊗ a)

admits a bounded inverse

X⊗
(

A⊗ A⊗n ⊗ A
)
→ (A⊗ X⊗ A)⊗ A⊗n ,

x⊗ (a′ ⊗ a1 ⊗ · · · ⊗ an ⊗ a) 7→ (a⊗ x⊗ a′)⊗ (a1 ⊗ · · · ⊗ an) .

The induced boundary map on the right is

(1⊗ b′)(x⊗ a0 ⊗ · · · ⊗ an+1) =
n

∑
i=0

(−1)ix⊗ a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

for b′ the boundary map of the (unnormalised) bar resolution, whose n-th chain group is Bn(A) =

A⊗ A⊗n ⊗ A. The latter admits a well-known contraction

s′ : A⊗ A⊗n ⊗ A→ A⊗ A⊗n+1 ⊗ A, a0 ⊗ · · · ⊗ an+1 7→ 1⊗ a0 ⊗ · · · ⊗ an+1 ,

which is bounded. This yields a bounded contraction for the chain complex X⊗ B•(A). By Lemma 3.1.8,
we conclude that

X⊗ Bn(A) ∼= (A⊗ X⊗ A)⊗ A⊗n ∼= A⊗ X⊗ A⊗ A⊗ n = Cbor
n

(
A, A⊗ X⊗ A

)
.

Completing 1⊗ s′ then shows that X⊗ B•(A), and consequently Cbor
•

(
A, A⊗ X⊗ A

)
, admit a bounded

contraction as well.
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For (c), let
0 M′ M M′′ 0

be a semi-split extension of complete bornological A-bimodules. From an application of Lemma 3.1.11
in combination with Lemma 3.1.8, we deduce that

0 M′⊗ A⊗ n M⊗ A⊗ n M′′⊗ A⊗ n 0

remains a semi-split extension. By (a), we know that any bounded A-bimodule map gives rise to a chain
map of the bornological Hochschild complexes. Hence, the above yields a short exact sequence

0 Cbor
•

(
A, M′

)
Cbor
• (A, M) Cbor

•
(

A, M′′
)

0

of bornological Hochschild complexes. This then gives the desired long exact sequence. Moreover, a
morphism of extensions defines a morphism of the associated short exact sequences of bornological
Hochschild complexes, which proves naturality of the long exact sequence. □

Theorem 3.3.3 is supplemented by the following.

Lemma 3.3.4. Let M be a complete bornological A-bimodule. Then there is a semi-split extension

0 N F M 0

of complete bornological A-bimodules, such that HHbor
n (A, F) = 0 for n > 0.

Proof. Let F = A⊗M⊗ A, viewing the A-bimodule F as a V-module. By part (b) of Theorem 3.3.3,
we then have HHbor

n (A, F) = 0 for n > 0.

We now show that the canonical bounded surjection

q : A⊗M⊗ A→ M, a⊗m⊗ a′ 7→ ama′ ,

gives rise to an extension of the desired form.

First, note that q is a bornological quotient map. Ultimately, this will also be a consequence of the
associated extension being semi-split, but we find it instructive to prove this independently.

Let B ⊆ M be bounded. By convexity, we may assume without loss of generality that B is a bounded
V-submodule. Then A⊗ B⊗ A ⊆ A⊗M⊗ A is bounded in the tensor product bornology. Furthermore,
q(A⊗ B⊗ A) = B, which proves that q is a bornological quotient map. Thus, by Lemma 3.1.12, its
completion q, which is a bounded map from F to M = M, is a bornological quotient map as well.

Equipping the kernel N = ker
(

q
)
≤ F with the subspace bornology yields an extension

0 N F M 0
q

of complete bornological modules. Note that

s : M→ A⊗M⊗ A, m 7→ 1⊗m⊗ 1

is a bounded V-linear section of q, hence its completion s is a bounded V-linear section of q. Thus, the
extension is semi-split. □

In tandem with Lemma 3.3.4, Theorem 3.3.3 characterises bornological Hochschild homology
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axiomatically in the following sense. First, part (a) and (c) of Theorem 3.3.3 show that together, the
HHbor

n (A,−) behave like a δ-functor (in the sense of [Wei94, Definition 2.1.1]). Second, Lemma 3.3.4
shows, essentially, that HHbor

n (A,−) is coeffacable (in the sense of [Gro57, §2.2]) for n > 1. The sought-
after conclusion, that coeffacable δ-functors are universal (in the sense of [Wei94, Definition 2.1.4]), does
not apply verbatim, since the categories we are considering are, in general, not abelian. However, the
given characterisation suffices for our purposes.

More precisely, suppose we are given any family of functors Hn(−) from the category of complete
bornological A-bimodules to the category of V-modules, satisfying the conclusions of Theorem 3.3.3.
Furthermore, assume that, for any complete A-bimodule M, there is a natural isomorphism H0(M)

∼−→
Hbor

0 (A, M). We can then use dimension shifting to prove that Hn(M)
∼−→ Hbor

n (A, M) for all n ≥ 1 as
well.

First, choose a semi-split extension

0 K F M 0

as constructed in Lemma 3.3.4. Observe that we may choose F = A⊗M⊗ A, hence HHbor
n (A, F) = 0

and Hn(F) = 0 for n > 0. Now the long exact sequences associated to the above semi-split extension
provide a commuting diagram

0 HHbor
1 (A, M) HHbor

0 (A, K) HHbor
0 (A, F) HHbor

0 (A, M) 0

0 H1(M) H0(K) H1(F) H0(M) 0

∼= ∼= ∼=

with exact rows. Here we use that the isomorphism H0(M)
∼−→ Hbor

0 (A, M) is assumed to be natural.
From this, we define the map HHbor

1 (A, M)→ H1(M), which is an isomorphism by the Five Lemma. In
higher degrees, the long exact sequences above also yield isomorphisms HHbor

n+1(A, M) ∼= HHbor
n (A, K)

and Hn+1(K) ∼= Hn(M) for n > 1. We then conclude by induction that HHbor
n (A, M) ∼= Hn(M) for all

complete bornological A-bimodules M.
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4 The Case of Crossed Product Dagger Algebras

Assume that a finite group Γ acts on a V-algebra A by V-linear automorphisms.

In Section 4.1 we consider A ⋊ Γ bornologically and record elementary observations on its dagger
completion and the corresponding bornological Hochschild homology. In particular, (A ⋊ Γ)† ∼= A† ⋊ Γ
(see Lemma 4.1.1). Using the additional structure provided by the group action, we relate the bornologi-
cal Hochschild homology of A† ⋊ Γ to certain hyperhomology groups in Section 4.2. This is done by
employing the machinery of group hyperhomology coupled with the axiomatic characterisation proved
in Section 3.3. In particular, using the full strength of the Γ-grading on A† ⋊ Γ, we reduce to twisted
bornological Hochschild homology (see Definition 4.3.1). The latter is defined in Section 4.3 and can be
expressed in terms of the twisted Hochschild homology of A (see Proposition 4.3.3).

Finally, in Section 4.4 we spell out in detail how the results of Sections 4.1 to 4.3 reduce the
computation of the bornological Hochschild homology of A† ⋊ Γ to the ordinary Hochschild homology
of A ⋊ Γ.

4.1 Dagger Completions of Crossed Product Algebras

Consider the algebraic crossed product A ⋊ Γ. As a V-module, A ⋊ Γ =
⊕

γ∈Γ Aγ. We make A ⋊ Γ
into a bornological V-module by equipping it with the direct sum bornology of the fine bornologies
on each A-summand. This turns A ⋊ Γ into a bornological V-algebra. To see this, first note that a
bounded subset of A ⋊ Γ is of the form ∑γ∈Γ Bγγ, for Bγ ⊆ A bounded. Hence, it suffices to check that
(Bγγ) · (Bδδ) ⊆ A(γδ) is bounded. Observe that

(Bγγ) · (Bδδ) = {(aγ) · (bδ) | a, b ∈ A} = {(aγ(b))(γδ) | a, b ∈ A} = (Bγ · γ(Bδ))(γδ) .

Therefore, (Bγγ) · (Bδδ) is bounded, since A is a bornological V-algebra with respect to the fine
bornology and each γ : A→ A is bounded by Lemma 3.1.2.

Lemma 4.1.1. Let A be a commutative V-algebra of finite type. There is an isomorphism (A ⋊ Γ)† ∼= A† ⋊ Γ

and, for each n ≥ 2, an isomorphism
(

A† ⋊ Γ
)⊗ n ∼=

(
A†)⊗ n ⋊ Γn.

Proof. Let γ ∈ Γ act on A as V-algebra endomorphism γ : A→ A. Then each γ ∈ Γ acts on A† via its
dagger completion γ† : A† → A† by Lemma 3.2.11(b). The crossed product A† ⋊ Γ is now constructed
with respect to this action. To show that (A ⋊ Γ)† and A† ⋊ Γ are isomorphic, we use their respective
universal properties.

The bornology on A† ⋊ Γ is the direct sum bornology of the bornologies on A†. This means that a
bounded subset is of the form ∑γ∈Γ Bγγ with Bγ ⊆ A† bounded. As Γ is finite, any bounded subset is
contained in a bounded V-submodule of the form ∑γ∈Γ Mγ, for M a bounded Γ-invariant V-submodule
M ≤ A†. To see this, take M = ∑γ∈Γ γ†( ∑γ∈Γ⟨Bγ⟩

)
.

We can use this explicit description of the bornology of A† ⋊ Γ to show that each bounded V-
submodule of A† ⋊ Γ has spectral radius 1. First, consider a bounded V-submodule of the form

∑γ∈Γ Mγ, with M ≤ A† bounded and Γ-invariant. Then

(
∑γ∈Γ Mγ

)n+1
⊆∑γ∈Γ Mn+1γ ,

since M is Γ-invariant. This implies that

∑∞
n=0 πn

(
∑γ∈Γ Mγ

)n+1
⊆∑∞

n=0 πn ∑γ∈Γ Mn+1γ = ∑γ∈Γ

(
∑∞

n=0 πn Mn+1
)

γ
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is bounded, since ∑∞
n=0 πn Mn+1 ⊆ A† is bounded by assumption. As any bounded V-submodule of

A† ⋊ Γ is contained in one of the considered form, Proposition 3.2.4(b) applies. This shows that the
natural map A ⋊ Γ→ A† ⋊ Γ extends to a bounded map (A ⋊ Γ)† → A† ⋊ Γ by Proposition 3.2.8.

Conversely, consider the structure maps ιA : A→ A ⋊ Γ and ιΓ : Γ→ (A ⋊ Γ)×. By Proposition 3.2.8,
there is an induced bounded map ι†A : A† → (A ⋊ Γ)†. Additionally, the natural map A ⋊ Γ→ (A ⋊ Γ)†

provides a map ι†Γ : Γ →
(
(A ⋊ Γ)†)×. The crossed product algebra A ⋊ Γ is uniquely determined by

requiring that the diagram

A A ⋊ Γ

A A ⋊ Γ

γ

ιA

ιΓ(γ)(−)ιΓ(γ−1)

ιA

a ιA(a)

γ(a) ιA(γ(a)) = ιΓ(γ)ιA(a)ιΓ(γ−1)

commutes as a diagram of V-algebra homomorphisms. Completing this diagram shows that there is a
map A† ⋊ Γ→ (A ⋊ Γ)†, which is moreover bounded by construction.

The pair of bounded V-linear maps (A⋊ Γ)† → A† ⋊ Γ and A† ⋊ Γ→ (A⋊ Γ)† are mutually inverse,
since their restrictions to A† and Γ agree. This gives the desired isomorphism.

Now, we combine the first assertion with Lemma 3.1.8 and Lemma 3.2.11(c) to conclude that

(A† ⋊ Γ)⊗ n ∼=
(
(A ⋊ Γ)†

)⊗ n ∼=
(
(A ⋊ Γ)⊗n

)† ∼=
(

A⊗n ⋊ Γn
)† ∼=

(
A⊗n)† ⋊ Γn ∼=

(
A†)⊗ n ⋊ Γn . □

By Lemma 4.1.1, the n-th chain group of the bornological Hochschild complex of A† ⋊ Γ is given by

Cbor
n

(
A† ⋊ Γ

)
=

(
A† ⋊ Γ

)⊗(n+1) ∼=
(

A†)⊗(n+1) ⋊ Γn+1 .

In analogy to Section 2.1, we consider for any γ ∈ Γ a subcomplex of
(

C•
(

A† ⋊ Γ
)
, b

)
. For this,

consider the subgroup Cbor
n

(
A† ⋊ Γ

)
γ

indexed by (n + 1)-tuples (γ0, . . . , γn) such that γ0 · · · γn ∈ [γ].

This defines a subcomplex
(

Cbor
•

(
A† ⋊ Γ

)
γ

, b
)

of
(

Cbor
•

(
A† ⋊ Γ

)
, b

)
. Denote its n-homology by

HHbor
n

(
A† ⋊ Γ

)
γ

.

Corollary 4.1.2. There is an isomorphism

HHbor
n

(
A† ⋊ Γ

) ∼= ⊕
[γ]∈[Γ]

HHbor
n

(
A† ⋊ Γ

)
γ

for each n ≥ 0.

Proof. This is immediate from Lemma 4.1.1, since

Cbor
n

(
A† ⋊ Γ

) ∼= (
A†)⊗(n+1) ⋊ Γn+1 =

⊕
(γ0,...,γn)∈Γn+1

(
A†)⊗(n+1)

(γ0, . . . , γn) =
⊕

[γ]∈[Γ]
Cbor

n
(

A† ⋊ Γ
)

γ
.

□

Thus, computing the bornological Hochschild homology of A† ⋊ Γ is reduced to computing the
homology groups HHbor

n
(

A† ⋊ Γ
)

γ
, where γ runs through a set of representatives for the conjugacy

classes of Γ.
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4.2 Bornological Hochschild Homology and Group Hyperhomology

In Section 2.1 we saw that the computation of the algebraic Hochschild homology may be further
reduced to understanding certain invariant subsets of twisted Hochschild homology groups. But
studying invariants is done by studying group cohomology rather than group homology. Since
we are interested in bornological Hochschild homology, this seems to present a slight complication.
This apparent issue, however, is entirely artificial. In characteristic 0, the modules of invariants and
coinvariants are isomorphic via the algebraic norm map (see [Wei94, Proposition 6.1.10]). As we
assumed the case of characteristic 0 throughout Section 2, this was of no concern then.

In order to properly generalise the results of Section 2.1 to bornological Hochschild homology, we
adapt the strategy of [Lor92]. This approach makes use of group hyperhomology, for which we refer to
[Wei94, §5.7 and §6.1] and [Bro82, §VII.5].

Given a finite group Γ and a chain complex of V[Γ]-modules C•, we denote the n-th hyperhomology
group by Hn(Γ, C•). Since Γ is assumed to be finite, the spectral sequence computing Hn(Γ, C•)
collapses to Hn(C•)Γ. Thus, the hyperhomology groups are simply given by the module of coinvariants
of Hn(C•). However, approaching coinvariants through the lens of hyperhomology allows making use
of the axiomatic characterisation of bornological Hochschild homology given by Theorem 3.3.3.

More precisely, we show

HHbor
n

(
A† ⋊ Γ, M

) ∼= Hn
(
Γ, Cbor

•
(

A†, M
))

for all complete bornological A† ⋊ Γ-bimodules M.

Following [Lor92, §2.6], we define a V[Γ]-module structure on the bornological Hochschild complexes(
Cbor
•

(
A†, M

)
, b

)
and

(
Cbor
•

(
A† ⋊ Γ, M

)
, b

)
for M any complete bornological A† ⋊ Γ-module. For the

first complex, this is done by acting on the ordinary Hochschild complex (C•(A, M), b) as

γ(m⊗ a1 ⊗ · · · ⊗ an) = γmγ−1 ⊗ γ(a1)⊗ · · · ⊗ γ(an)

and then taking the completion of this action, equipping V[Γ] with the fine bornology. The case
of

(
Cbor
•

(
A† ⋊ Γ, M

)
, b

)
is entirely analogous. These actions are compatible with the bornological

Hochschild boundaries, hence descend to a V[Γ]-module structure on the bornological Hochschild
homology groups.

First, we compute HHbor
0

(
A† ⋊ Γ, M

)
in terms of HHbor

0
(

A†, M
)

and the group action on the
bornological Hochschild homology. For this, we adapt the proof of [Lor92, Lemma 2.4(a)] to our setting.

Lemma 4.2.1. Let M be a complete bornological A† ⋊ Γ-bimodule. There is a natural isomorphism

HHbor
0

(
A† ⋊ Γ, M

) ∼= HHbor
0

(
A†, M

)
Γ .

Proof. The inclusion A† → A† ⋊ Γ gives rise to a commuting diagram

M⊗ A† M HHbor
0

(
A†, M

)
0

M⊗
(

A† ⋊ Γ
)

M HHbor
0

(
A† ⋊ Γ, M

)
0

b

b

showing that HHbor
0

(
A†, M

)
surjects onto HHbor

0
(

A† ⋊ Γ, M
)
. This surjection factors through the

associated coinvariants as φ : HHbor
0

(
A†, M

)
Γ → HHbor

0
(

A† ⋊ Γ, M
)
.
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To see this, recall that the coinvariants are obtained by dividing out the V[Γ]-submodule generated
by elements of the form γ · m− m = γmγ−1 − m for γ ∈ Γ and m ∈ M. As γ is invertible in V[Γ],
we may equivalently consider the submodule generated by elements of the form γm−mγ for γ ∈ Γ
and m ∈ M. These are, by definition, contained in the image of b : M⊗

(
A† ⋊ Γ

)
→ M, providing the

claimed factorisation.

In order to construct an inverse, consider the canonical surjection

ψ : M→ HHbor
n

(
A†, M

)
→ HHbor

n
(

A†, M
)

Γ .

We claim that ψ factors through HHbor
n

(
A† ⋊ Γ, M

)
. So let aγ ∈ A† ⋊ Γ, a ∈ A† and γ ∈ Γ. We have to

show that ψ((aγ)m) = ψ(m(aγ)) for all m ∈ M. This holds, as

ψ(m(aγ)) = ψ(m(γγ−1)(aγ)) = ψ(γ−1(aγ)mγ) = ψ((aγ)m) .

Here, we first use γ−1(aγ) ∈ A† and that the equality holds there, since we factor through HHbor
n

(
A†, M

)
.

Surjecting onto the coinvariants then yields the last equality, as we act on M by conjugation.

Since φ is induced by the identity and ψ is induced by the canonical quotient projections, they define
a pair of mutually inverse homomorphisms.

For naturality, we first recall that any bounded A-bimodule map f : M → N induces a morphism
of the bornological Hochschild complexes. This morphism of complexes is compatible with the one
induced by A† → A† ⋊ Γ. Thus, we obtain a commuting diagram

M⊗ A† M HHbor
0

(
A†, M

)
0

N⊗ A† N HHbor
0

(
A†, N

)
0

M⊗
(

A† ⋊ Γ
)

M HHbor
0

(
A† ⋊ Γ, M

)
0

N⊗
(

A† ⋊ Γ
)

N HHbor
0

(
A† ⋊ Γ, N

)
0

f ⊗ 1

b

f f∗

b

f ⊗ 1

b

f f∗

b

defining the bornological Hochschild homology groups of interest. The rightmost face then gives rise to
another diagram

HHbor
0

(
A†, M

)
HHbor

0
(

A†, N
)

HHbor
0

(
A†, M

)
Γ HHbor

0
(

A†, N
)

Γ

HHbor
0

(
A† ⋊ Γ, M

)
HHbor

0
(

A† ⋊ Γ, N
)

f∗

φM φN
f∗

with φM : HHbor
0

(
A†, M

)
Γ → HHbor

0
(

A† ⋊ Γ, M
)

and φN : HHbor
0

(
A†, N

)
Γ → HHbor

0
(

A† ⋊ Γ, N
)

the
isomorphisms from above. The back commutes by the above, whereas the left, right and upper faces
commute by construction of the coinvariants as quotients. Since HHbor

0
(

A†, M
)
→ HHbor

0
(

A†, M
)

Γ is
surjective, we conclude that the lower face commutes as well. This proves naturality. □
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Next, we establish that certain hyperhomology groups with coefficients in bornological Hochschild
complexes vanish. We reconstruct the explicit chain map used in the proof of [Lor92, Proposition 2.6(a)]
in Appendix A and then check that it continues to work when considered bornologically.

Lemma 4.2.2. Let X be a V-module. Then

Hn

(
Γ, Cbor

•

(
A†, (A† ⋊ Γ)⊗ X⊗ (A† ⋊ Γ)

))
= 0

for n > 0.

Proof. By Lemma A.1, the maps

φn : ((A ⋊ Γ)⊗ X⊗ (A ⋊ Γ))⊗ A⊗n →
(
(A ⋊ Γ)⊗ X⊗ A)⊗ A⊗n)⊗V[Γ] ,

(aγ⊗ x⊗ bδ)⊗ (a1 ⊗ · · · ⊗ an) 7→ (δ(a)δγ⊗ x⊗ b)⊗ (δ(a1)⊗ · · · ⊗ δ(an))⊗ δ−1

assemble into an isomorphism of V[Γ]-complexes

φ• : C•(A, (A ⋊ Γ)⊗ X⊗ (A ⋊ Γ)) ∼−→ C•(A, (A ⋊ Γ)⊗ X⊗ A)⊗V[Γ] .

Here we use the V[Γ]-structure from before for the left hand side, but endow the right with the induced
V[Γ]-structure. The components of the inverse are explicitly given by

ψn :
(
(A ⋊ Γ)⊗ X⊗ A)⊗ A⊗n)⊗V[Γ]→ ((A ⋊ Γ)⊗ X⊗ (A ⋊ Γ))⊗ A⊗n ,

(aγ⊗ x⊗ b)⊗ (a1 ⊗ · · · ⊗ an)⊗ δ 7→ (δ(a)δγ⊗ x⊗ bδ−1)⊗ (δ(a1)⊗ · · · ⊗ δ(an)) .

Observe that the φn and ψn are bounded. This is the case, since we are considering bornological algebras
with a bounded group action by Γ. Thus, taking bornological completions shows that

Cn(A, (A ⋊ Γ)⊗ X⊗ (A ⋊ Γ)) ∼= Cn(A, (A ⋊ Γ)⊗ X⊗ A)⊗V[Γ] ∼= Cn(A, (A ⋊ Γ)⊗ X⊗ A)⊗V[Γ] ,

by Lemma 3.1.8 and using that V[Γ] is complete with respect to the fine bornology. Moreover, it holds
true that

Cn(A, (A ⋊ Γ)⊗ X⊗ A)⊗V[Γ] = Cn(A, (A ⋊ Γ)⊗ X⊗ A)⊗V[Γ]

since Γ is finite. This follows more generally for any complete bornological V-module. Indeed, since
M⊗V[Γ] ∼=

⊕
γ∈Γ M as bornological V-modules and the direct sum of complete bornological modules

is complete, M⊗V[Γ] = M⊗V[Γ]. Now observe that

Cn(A, (A ⋊ Γ)⊗ X⊗ (A ⋊ Γ)) ∼= Cbor
n

(
A†, (A† ⋊ Γ)⊗ X⊗ (A† ⋊ Γ)

)
as well as

Cn(A, (A ⋊ Γ)⊗ X⊗ A) ∼= Cbor
n

(
A†, (A† ⋊ Γ)⊗ X⊗ A†

)
,

by combining Lemma 4.1.1 with Lemma 3.1.8. Thus, we just showed that

Cbor
•

(
A†, (A† ⋊ Γ)⊗ X⊗ (A† ⋊ Γ)

)
∼= Cbor

•

(
A†, (A† ⋊ Γ)⊗ X⊗ A†

)
⊗V[Γ]

as V[Γ]-complexes, which gives an isomorphism

Hn

(
Γ, Cbor

•

(
A†, (A† ⋊ Γ)⊗ X⊗ (A† ⋊ Γ)

))
∼= Hn

(
Γ, Cbor

•

(
A†, (A† ⋊ Γ)⊗ X⊗ A†

)
⊗V[Γ]

)
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of hyperhomology groups. Since Cbor
•

(
A†, (A† ⋊ Γ)⊗ X⊗ A†

)
carries the trivial V[Γ]-complex struc-

ture, Shapiro’s lemma ([Bro82, Proposition 6.2]) implies that

Hn

(
Γ, Cbor

•

(
A†, (A† ⋊ Γ)⊗ X⊗ A†

)
⊗V[Γ]

)
∼= Hn

(
1, Cbor

•

(
A†, (A† ⋊ Γ)⊗ X⊗ A†

))
with 1 the trivial group. These groups vanish for n > 0, proving the claim. □

Following the strategy of [Lor92, Proposition 2.6], we combine Lemma 4.2.1 and Lemma 4.2.2 to
identify the bornological Hochschild homology of A† ⋊ M with certain hyperhomology groups with
coefficients in bornological Hochschild complexes. In our case, this now makes use of the results of
Section 3.3.

Theorem 4.2.3. Let M be a complete bornological A† ⋊ Γ-bimodule. There is an isomorphism

HHbor
n

(
A† ⋊ Γ, M

) ∼= Hn
(
Γ, Cbor

•
(

A†, M
))

for all n ≥ 0.

Proof. To prove the claimed isomorphism, it suffices to check that there is a natural isomorphism
HHbor

0
(

A† ⋊ Γ, M
) ∼= H0

(
Γ, Cbor

•
(

A†, M
))

and that Hn
(
Γ, Cbor

•
(

A†,−
))

satisfies the conclusions of
Theorem 3.3.3. This was remarked at the end of Section 3.3.

Since H0
(
Γ, Cbor

•
(

A†, M
)) ∼= HHbor

0
(

A†, M
)

Γ, by the spectral sequence computing the left hand side,
Lemma 4.2.1 provides a natural isomorphism HHbor

0
(

A† ⋊ Γ, M
) ∼= H0

(
Γ, Cbor

•
(

A†, M
))

. Lemma 4.2.2
gives the required vanishing. Finally, any semi-split extension

0 M′ M M′′ 0

of complete bornological A† ⋊ Γ-bimodules is also a semi-split extension of complete bornological
A†-bimodules. This gives a short exact sequence of bornological Hochschild complexes

0 Cbor
•

(
A†, M′

)
Cbor
•

(
A†, M

)
Cbor
•

(
A†, M′′

)
0

as established in the proof of Theorem 3.3.3, part (3). Thus, there is a long exact sequence

· · · Hn+1
(
Γ, Cbor

•
(

A†, M′′
))

Hn
(
Γ, Cbor

•
(

A†, M′
))

Hn
(
Γ, Cbor

•
(

A†, M
))

Hn
(
Γ, Cbor

•
(

A†, M′′
))

· · ·

of hyperhomology groups. □

In the end, we want to apply Theorem 4.2.3 in the case of M = A† ⋊ Γ. Note that A† ⋊ Γ carries a
natural Γ-grading, meaning that A† ⋊ Γ decomposes as A† ⋊ Γ =

⊕
γ∈Γ A†γ. More generally, a complete

bornological Γ-graded A† ⋊⋊⋊ Γ-bimodule is a complete bornological A† ⋊ Γ-bimodule M which can be
written as M =

⊕
γ∈Γ Mγ for Mγ complete bornological A† ⋊ Γ-modules such that

(
A†γ

)
Mδ ⊆ Mγδ

and Mγ

(
A†δ

)
⊆ Mγδ for all γ, δ ∈ Γ. Morphisms of complete bornological Γ-graded A† ⋊ Γ are required

to preserve the grading.

Corollary 4.1.2 generalises to the bornological Hochschild homology of A† ⋊ Γ with coefficients in
Γ-graded bimodules. For this, we rewrite the n-th chain group of Cbor

•
(

A† ⋊ Γ, M
)
, with M a complete
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bornological Γ-graded A† ⋊ Γ-bimodule, as

Cbor
n

(
A† ⋊ Γ, M

)
= M⊗

(
A† ⋊ Γ

)⊗ n ∼= M⊗ (A ⋊ Γ)⊗n

using Lemma 4.1.1 and Lemma 3.1.8. For each γ ∈ Γ, we can define a subgroup of M⊗ (A ⋊ Γ)⊗n

spanned by elements of the form mγ0 ⊗ a1γ1 ⊗ · · · ⊗ anγn with γ0 · · · γn ∈ [γ]. Taking completions
defines a subcomplex

(
Cbor
•

(
A† ⋊ Γ, M

)
γ

, b
)

of
(

Cbor
•

(
A† ⋊ Γ, M

)
, b

)
. Denote its n-th homology by

HHbor
n

(
A† ⋊ Γ, M

)
.

Corollary 4.2.4. Let M be a complete bornological Γ-graded A† ⋊ Γ-bimodule. There is an isomorphism

HHbor
n

(
A† ⋊ Γ, M

) ∼= ⊕
[γ]∈[Γ]

HHbor
n

(
A† ⋊ Γ, M

)
γ

for each n ≥ 0.

Proof. Since direct sums commute with completions, the given algebraic decomposition immediately
gives the appropriate decomposition of

(
Cbor
•

(
A† ⋊ Γ, M

)
, b

)
. The claim follows by taking homology.□

With this in mind, both Lemma 4.2.1 and Lemma 4.2.2 generalise well to the graded case.

Lemma 4.2.5. Let M be a complete bornological Γ-graded A† ⋊ Γ-bimodule and let X be a Γ-graded V-module.

(a) There is a natural isomorphism

HHbor
0

(
A† ⋊ Γ, M

)
γ
∼= HHbor

0
(

A†, M[γ]

)
Γ

for every γ ∈ Γ.

(b) There is a Γ-grading on (A† ⋊ Γ)⊗ X⊗ (A† ⋊ Γ) such that

Hn

(
Γ, Cbor

•

(
A†, (A† ⋊ Γ)⊗ X⊗ (A† ⋊ Γ) [γ]

))
= 0

for each γ ∈ Γ and for n > 0.

Proof. For part (a), we recall that Γ acts on the M factor in
(

C•
(

A†, M
)
, b

)
by conjugation. Thus, the

Γ-action stabilizes M[γ]. This shows that
(

C•
(

A†, M[γ]

)
, b

)
is a complex of V[Γ]-modules. Moreover, by

construction, Cbor
0

(
A† ⋊ Γ, M

)
γ
= M[γ]. Together with the way the subcomplex

(
Cbor
•

(
A† ⋊ Γ, M

)
γ

, b
)

is defined, this gives a commuting diagram

M[γ]⊗ A† M[γ] HHbor
0

(
A†, M[γ]

)
0

M⊗
(

A† ⋊ Γ
)

γ
Mγ HHbor

0
(

A† ⋊ Γ, M
)

γ
0

b

b

with exact rows. From here on we can continue as in the proof Lemma 4.2.1.

For part (b), we define a Γ-grading on (A ⋊ Γ)⊗ X⊗ (A ⋊ Γ) by

(
(A ⋊ Γ)⊗ X⊗ (A ⋊ Γ)

)
γ
=

⊕
δ,ϵ,η

δϵη=γ

Aδ⊗Vϵ ⊗ Aη .
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Taking completion of these sums gives a decomposition for (A† ⋊ Γ)⊗ X⊗ (A† ⋊ Γ). Note that

Hn

(
Γ, Cbor

•

(
A†, (A† ⋊ Γ)⊗ X⊗ (A† ⋊ Γ)

))
=

⊕
[γ]∈[Γ]

Hn

(
Γ, Cbor

•

(
A†, (A† ⋊ Γ)⊗ X⊗ (A† ⋊ Γ) [γ]

))
,

since completed tensor products commute with direct sums and hyperhomology is additive. As

Hn

(
Γ, Cbor

•

(
A†, (A† ⋊ Γ)⊗ X⊗ (A† ⋊ Γ)

))
= 0

by Lemma 4.2.2, we conclude that

Hn

(
Γ, Cbor

•

(
A†, (A† ⋊ Γ)⊗ X⊗ (A† ⋊ Γ) [γ]

))
= 0

for all γ ∈ Γ and n > 0. □

Using Lemma 4.2.5, we strengthen Theorem 4.2.3 in case of Γ-graded bimodules.

Theorem 4.2.6. Let M be a complete bornological Γ-graded A† ⋊ Γ-bimodule. There are isomorphisms

HHbor
n

(
A† ⋊ Γ, M

)
γ
∼= Hn

(
Γ, Cbor

•
(

A†, M[γ]

))
for all γ ∈ Γ and n ≥ 0.

Proof. We consider the groups HHbor
n

(
A† ⋊ Γ, M

)
γ

as part of a functor: Associate to a Γ-graded
complete bornological A† ⋊ Γ-bimodule the sum

HHbor
n

(
A† ⋊ Γ, M

) ∼= ⊕
[γ]∈[Γ]

HHbor
n

(
A† ⋊ Γ, M

)
γ

.

If we consider only Γ-graded bimodules, the results of Theorem 3.3.3 continue to hold true. Now
Lemma 4.2.5(a) shows that the isomorphism of Theorem 4.2.3 is compatible with the given decomposi-
tions. Thus, following the proof strategy outlined at the end of Section 3.3, we can inductively show
that the isomorphisms

HHbor
n

(
A† ⋊ Γ, M

) ∼= Hn
(
Γ, Cbor

•
(

A†, M
))

of Theorem 4.2.3 are in fact induced by a family of isomorphisms

HHbor
n

(
A† ⋊ Γ, M

)
γ
∼= Hn

(
Γ, Cbor

•
(

A†, Mγ

))
.

Here, γ runs through a set of representatives of the conjugacy classes of Γ. □

The hyperhomology group in Theorem 4.2.6 can be further simplified. For this, we reconstruct the
explicit chain map used in the proof of [Lor92, Proposition 2.6(b)] in Appendix A and then consider it
in the bornological context.

Proposition 4.2.7. Let M be a complete bornological Γ-graded A† ⋊ Γ-bimodule. There are isomorphisms

Hn

(
Γ, Cbor

•
(

A†, M[γ]

)) ∼= Hn

(
Cγ, Cbor

•
(

A†, Mγ

))
for all γ ∈ Γ and n ≥ 0.

Proof. As in the proof of Lemma 4.2.2, we start with algebraic considerations first. Fix γ ∈ Γ and
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consider the complex
C•

(
A, Mγ

)
⊗V[Cγ ] V[Γ] .

Acting on the right factor turns this into a complex of V[Γ]-modules. By Lemma A.2, the maps

φn :
(

Mγ ⊗ A⊗n)⊗V[Cγ ] V[Γ]→ M[γ] ⊗ A⊗n ,

mγ ⊗ (a1 ⊗ · · · ⊗ an)⊗ δ 7→ (δ−1mγδ)⊗ (δ−1(a1)⊗ · · · ⊗ δ−1(an))

assemble into an isomorphism

φ• : C•
(

A, Mγ

)
⊗V[Cγ ] V[Γ] ∼−→ C•

(
A, M[γ]

)
of V[Γ]-complexes. The inverse ψn of φn is defined as follows. Let [γ] = {γ1, . . . , γc} and for each
γi ∈ [γ], choose a fixed δi ∈ Γ such that δiγδ−1

i = γi. Now let

ψn : M[γ] ⊗ A⊗n →
(

Mγ ⊗ A⊗n)⊗V[Cγ ] V[Γ] ,

mi ⊗ (a1 ⊗ · · · ⊗ an) 7→ (δ−1
i miδi)⊗ (δ−1

i (a1)⊗ · · · ⊗ δ−1
i (an))⊗ δ−1

i .

We view the V[Cγ]-tensor products as quotients of V-tensor products and consider the corresponding
quotient bornology. Note that then both φn and ψn are bounded, since we are given bornological
algebras endowed with bounded group actions. Taking bornological completions now shows that

Cn
(

A, Mγ

)
⊗V[Cγ ] V[Γ] ∼= Cn

(
A, M[γ]

)
.

There is an isomorphism

Cn
(

A, Mγ

)
⊗V[Cγ ] V[Γ] ∼= Cn

(
A, Mγ

)
⊗V[Cγ ]V[Γ] .

Indeed, as V[Cγ]-modules,

Cn
(

A, Mγ

)
⊗V[Cγ ] V[Γ] ∼=

⊕
δ∈Cγ\Γ

Cn
(

A, Mγ

)
and therefore

Cn
(

A, Mγ

)
⊗V[Cγ ] V[Γ] ∼=

⊕
δ∈Cγ\Γ

Cn
(

A, Mγ

) ∼= Cn
(

A, Mγ

)
⊗V[Cγ ]V[Γ] .

Using Lemma 3.2.11(c) and Lemma 3.1.8, we also conclude that

Cn
(

A, Mγ

) ∼= Cbor
n

(
A†, Mγ

)
as well as

Cn
(

A, M[γ]

) ∼= Cbor
n

(
A†, M[γ]

)
.

Thus, there is an isomorphism

Cbor
•

(
A†, Mγ

)
⊗V[Cγ ] V[Γ] ∼= Cbor

•
(

A†, M[γ]

)
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of V[Γ]-complexes. Shapiro’s lemma ([Bro82, Proposition 6.2]) then gives an isomorphism

Hn

(
Cγ, Cbor

•
(

A†, Mγ

)) ∼= Hn

(
Γ, Cbor

n
(

A†, Mγ

)
⊗V[Cγ ] V[Γ]

) ∼= Hn

(
Γ, Cbor

•
(

A†, M[γ]

))
of hyperhomology groups, as claimed. □

4.3 Complements on Twisted Bornological Hochschild Homology

Let g : A→ A be a V-algebra homomorphism. As in Section 2.1 we consider the A-bimodule Ag, with
right Ae-module structure given by a · (a1 ⊗ a2) = a2ag(a1). Since g is bounded in the fine bornology,
we can also endow A† with a twisted A†-bimodule structure. Denote this (Ae)†-module by A†

g† . We

write Cbor
n

(
A†, g†) = Cbor

n
(

A†, A†
g†

)
.

Definition 4.3.1. The complex
(

Cbor
•

(
A†, g†), b g†

)
is the g†-twisted bornological Hochschild complex

of A†. Its n-th homology is the n-th g†-twisted bornological Hochschild homology of A†, denoted by
HHbor

n
(

A†, g†). ⌟

We use the strategy of [CCMT18, Proposition 4.1.7(a)] to prove an analogue of Lemma 2.2.3 for
g†-twisted bornological Hochschild homology. For this, we need a flatness result.

Lemma 4.3.2. Let A be a commutative V-algebra of finite type. The canonical map A→ A† is flat.

Proof. This is [CCMT18, Lemma 4.1.4]. □

Proposition 4.3.3. Let A be a torsion-free commutative V-algebra of finite type. The natural homomorphism

HHn
(

A, g
)
→ HHn

(
A†, g†

)
induces an isomorphism

A† ⊗A HHn
(

A, g
) ∼−→ HHbor

n

(
A†, g†

)
for all n ≥ 0.

Proof. Consider the (unnormalised) bar resolutions
(

B•(A), b′
)

of A and
(

Bbor
•

(
A†), b′

)
of A†, re-

spectively. Let M be an (Ae)†-module. The proof of [CCMT18, Proposition 4.1.7(a)] shows that the
natural chain map

M⊗Ae B•(A)→ M⊗(Ae)† Bbor
•

(
A†)

is a quasi-isomorphism. We claim that for M = A†
g† , the quasi-isomorphism specialises to the asserted

isomorphism.

First, we show that the homology of A†
g† ⊗Ae B•(A) is given by A† ⊗A HHn

(
A, g

)
. For this, we

observe that
A† ⊗A Ag → A†

g† , a⊗ b 7→ ab

is an isomorphism of Ae-modules. This is the case, since the twisted right A†-module structure of A†
g†

is the extension of the twisted right A-module structure of Ag. Thus,

A†
g† ⊗Ae B•(A) ∼= A† ⊗A ⊗Ag ⊗Ae B•(A) ∼= A† ⊗A C•

(
A, g

)
is a chain isomorphism. Since A† is a flat A-module by Lemma 4.3.2, the n-th homology of the last
complex is given by A† ⊗A HHn

(
A, g

)
.

Second, we show that the homology of A†
g† ⊗(Ae)† Bbor

• (A†) is given by HHbor
n

(
A†, g†). For this, we
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first rewrite Ag as a quotient of Ae. Note that the twisted multiplication map

µg : Ae → Ag, a⊗ b 7→ ag(b)

is a surjective Ae-module map. Thus, for J = ker(µg) we obtain an isomorphism Ae/J ∼= Ag of
Ae-modules. We consider the tensor product Ag ⊗Ae (Ae)† as an (Ae)†-module, by acting on the right.
With the aid of Lemma 3.2.10, this yields an isomorphism

Ag ⊗Ae (Ae)† ∼= (Ae/J)⊗Ae (Ae)† ∼= (Ae)†/J(Ae)† ∼= (Ae/J)† ∼= (Ag)
†

of (Ae)†-modules. Note that (Ag)† is by construction the (Ae)†-module, with right structure the
extension of the right structure on Ag. That is, (Ag)† = A†

g† . Thus, as (Ae)†-modules, Ag ⊗Ae (Ae)† ∼=
A†

g† . This now implies that

A†
g† ⊗(Ae)† Bbor

• (A†) ∼= Ag ⊗Ae (Ae)† ⊗(Ae)† Bbor
• (A†) ∼= Ag ⊗Ae Bbor

• (A†)

is a chain isomorphism. The n-th chain group can be rewritten as

Ag ⊗Ae Bbor
n (A†) ∼= (Ae/J)⊗Ae Bbor

n (A†) ∼= Bbor
n (A†)/J Bbor

n (A†) .

We note that J Bbor
n (A†) = (J Bn(A))Bbor

n (A†) and that Bn(A) is a commutative V-algebra of finite type,

since A is. Recall that Bbor
n (A†) =

(
A†)⊗(n+1) by definition and that A† ∼= A lg by Theorem 3.2.9. Thus,

using Lemma 3.2.11(c) we deduce that

Bbor
n (A†) =

(
A†)⊗(n+2) ∼=

(
A lg

)⊗(n+2) ∼=
(

A⊗(n+1))
lg
∼= (Bn(A))† .

Thus, Lemma 3.2.10 applies to produce an isomorphism

Bbor
n (A†)/J Bbor

n (A†) = Bbor
n (A†)/(J Bn(A))Bbor

n (A†) ∼= (Bn(A)/J Bn(A))† .

Algebraically,

Bn(A)/J Bn(A) ∼= (Ae/J)⊗Ae Bn(A) ∼= Ag ⊗Ae Bn(A) ∼= Cn(A, g) .

Taking completions then shows that

A†
g† ⊗(Ae)† Bbor

n (A†) ∼= Cn(A, g)† ∼= Cbor
n

(
A†, g†

)
.

Here, the last isomorphism is the chain of isomorphisms

Cbor
n

(
A†, g†

)
=

(
A†)⊗(n+1) ∼=

(
A lg

)⊗(n+1) ∼=
(

A⊗(n+1))
lg
∼= Cn(A, g)†

provided, again, by Theorem 3.2.9 and Lemma 3.2.11(c).

Now note that the intermediate identifications make only use of natural quotient maps, hence
assemble to define an isomorphism

A†
g† ⊗(Ae)† Bbor

• (A†) ∼= Cbor
•

(
A†, g†

)
of chain complexes. The n-th homology of the last complex is given by HHbor

n
(

A†, g†) as claimed. □
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4.4 Hochschild Homology of Crossed Product Dagger Algebras

We now combine the results of Section 4.2 and Section 4.3. View A† ⋊ Γ as a Γ-graded complete
bornological A† ⋊ Γ-bimodule. In combination, Corollary 4.2.4, Theorem 4.2.6 and Proposition 4.2.7
show that

HHbor
n

(
A† ⋊ Γ

) ∼= ⊕
[γ]∈[Γ]

HHbor
n

(
A† ⋊ Γ

)
γ

∼=
⊕

[γ]∈[Γ]
Hn

(
Γ, Cbor

•
(

A†,
(

A† ⋊ Γ
)
[γ]

))
∼=

⊕
[γ]∈[Γ]

Hn

(
Cγ, Cbor

•
(

A†,
(

A† ⋊ Γ
)

γ

))

Note that
(

A† ⋊ Γ
)

γ
= A†γ. As an A†-bimodule, we have that A†γ ∼= A†

γ† . Since Cγ is finite,

Hn

(
Cγ, Cbor

•
(

A†,
(

A† ⋊ Γ
)

γ

)) ∼= HHbor
n

(
A†,

(
A† ⋊ Γ

)
γ

)
Cγ

∼= HHbor
n

(
A†, γ†

)
Cγ

for each [γ] ∈ [Γ]. Thus,
HHbor

n
(

A† ⋊ Γ
) ∼= ⊕

[γ]∈[Γ]
HHbor

n

(
A†, γ†

)
Cγ

.

By Proposition 4.3.3, this reduces the computation of the bornological Hochschild homology of A† ⋊ Γ
entirely to the computation of the twisted Hochschild homology of A. From Section 2.1 we know this to
be equivalent to computing the Hochschild homology of A ⋊ Γ.

If A is, moreover, torsion-free as a V-algebra, Proposition 4.3.3 shows that

A† ⊗A HHn
(

A, γ
) ∼= HHbor

n

(
A†, γ†

)
.

Assume now that K, the field of fractions of V, is of characteristic 0. Along the base change V → K,
we can then take full advantage of the results established in Section 2. In our setting, this is the most
natural choice of a base change to characteristic 0. Let A = K⊗ A, which is a commutative K-algebra of
finite type and is endowed with a group action by Γ as well. Write γ : A→ A for the endomorphism
induced by γ : A→ A. Since the base change V → K is flat, we can show that

A⊗A HHn
(

A, γ
) ∼= HHn

(
A, γ

)
analogously to Lemma 2.3.1. If we now assume A to be smooth, HHn

(
A, γ

)
is computed in Section 2.3.
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A Two Isomorphisms of Chain Complexes

We work in the setting of Section 4.2. Lemma A.1 and Lemma A.2 reconstruct the explicit isomorphisms
of V[Γ]-complexes used in the proof of [Lor92, Proposition 2.6].

Lemma A.1. Let X be a V-module. There is an isomorphism

C•(A, (A ⋊ Γ)⊗ X⊗ (A ⋊ Γ)) ∼−→ C•(A, (A ⋊ Γ)⊗ X⊗ A)⊗V[Γ]

of V[Γ]-complexes.

Proof. For each n ≥ 0, let

φn : ((A ⋊ Γ)⊗ X⊗ (A ⋊ Γ))⊗ A⊗n →
(
(A ⋊ Γ)⊗ X⊗ A)⊗ A⊗n)⊗V[Γ] ,

(aγ⊗ x⊗ bδ)⊗ (a1 ⊗ · · · ⊗ an) 7→ (δ(a)δγ⊗ x⊗ b)⊗ (δ(a1)⊗ · · · ⊗ δ(an))⊗ δ−1 .

Here we equip the left hand side with the V[Γ]-structure from before, whereas on the right hand side Γ
acts trivially on the first factor. Then

φn
(

g · [(aγ⊗ x⊗ bδ)⊗ (a1 ⊗ · · · ⊗ an)]
)

= φn
(
(g(a)gγ⊗ x⊗ bδg−1)⊗ (g(a1)⊗ · · · ⊗ g(an))

)
= ((δg−1)(g(a))(δg−1)gγ⊗ x⊗ b)⊗ ((δg−1)(g(a1))⊗ · · · ⊗ (δg−1)(g(an)))⊗ (δg−1)−1

= (δ(a)δγ⊗ x⊗ b)⊗ (δ(a1)⊗ · · · ⊗ δ(an))⊗ gδ−1

= g · [(δ(a)δγ⊗ x⊗ b)⊗ (δ(a1)⊗ · · · ⊗ δ(an))⊗ δ−1]

= g · φn
(
(aγ⊗ x⊗ bδ)⊗ (a1 ⊗ · · · ⊗ an)

)
shows that each φn is Γ-equivariant. To check that φ• is a chain map, we compute

(φn−1b)((aγ⊗ x⊗ bδ)⊗ (a1 ⊗ · · · ⊗ an))

= φn−1

(
(aγ⊗ x⊗ bδ(a1)δ)⊗ (a2 ⊗ · · · ⊗ an)

+
n−1

∑
i=1

(aγ⊗ x⊗ bδ)⊗ (· · · ⊗ aiai+1 ⊗ · · · )

+ (−1)n(anaγ⊗ x⊗ bδ)⊗ (a1 ⊗ · · · ⊗ an−1)
)

= (δ(a)δγ⊗ x⊗ bδ(a1))⊗ (δ(a2)⊗ · · · ⊗ δ(an))⊗ δ−1

+
n−1

∑
i=1

(δ(a)δγ⊗ x⊗ b)⊗ (· · · ⊗ δ(aiai+1)⊗ · · · )⊗ δ−1

+ (−1)n(δ(ana)δγ⊗ x⊗ b)⊗ (δ(a1)⊗ · · · ⊗ δ(an−1))⊗ δ−1

and
((b⊗ 1)φn)((aγ⊗ x⊗ bδ)⊗ (a1 ⊗ · · · ⊗ an))

= (b⊗ 1)
(
(δ(a)δγ⊗ x⊗ b)⊗ (δ(a1)⊗ · · · ⊗ δ(an))⊗ δ−1)

= (δ(a)δγ⊗ x⊗ bδ(a1))⊗ (δ(a2)⊗ · · · ⊗ δ(an))⊗ δ−1

+
n−1

∑
i=1

(δ(a)δγ⊗ x⊗ b)⊗ (· · · ⊗ δ(ai)δ(ai+1)⊗ · · · )⊗ δ−1

+ (−1)n(δ(an)δ(a)δγ⊗ x⊗ bδ)⊗ (δ(a1)⊗ · · · ⊗ δ(an−1))⊗ δ−1 .

These two expressions agree, since each γ ∈ Γ defines a V-algebra homomorphism of A by assumption.
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Finally, the maps

ψn :
(
(A ⋊ Γ)⊗ X⊗ A)⊗ A⊗n)⊗V[Γ]→ ((A ⋊ Γ)⊗ X⊗ (A ⋊ Γ))⊗ A⊗n ,

(aγ⊗ x⊗ b)⊗ (a1 ⊗ · · · ⊗ an)⊗ δ 7→ (δ(a)δγ⊗ x⊗ bδ−1)⊗ (δ(a1)⊗ · · · ⊗ δ(an))

define inverses. Indeed, on generators we see that

(ψn φn)((aγ⊗ x⊗ bδ)⊗ (a1 ⊗ · · · ⊗ an))

=ψn((δ(a)δγ⊗ x⊗ b)⊗ (δ(a1)⊗ · · · ⊗ δ(an))⊗ δ−1)

= ((δ−1(δ(a))(δ−1δγ))⊗ x⊗ b(δ−1)−1)⊗ (δ−1(δ(a1))⊗ · · · ⊗ δ−1(δ(an)))

= (aγ⊗ x⊗ bδ)⊗ (a1 ⊗ · · · ⊗ an)

and that

(φnψn)((aγ⊗ x⊗ b)⊗ (a1 ⊗ · · · ⊗ an)⊗ δ)

= φn((δ(a)δγ⊗ x⊗ bδ−1)⊗ (δ(a1)⊗ · · · ⊗ δ(an)))

= ((δ−1(δ(a))(δ−1δγ))⊗ x⊗ b⊗ (δ−1(δ(a1))⊗ · · · ⊗ δ−1(δ(an)))⊗ (δ−1)−1

= (aγ⊗ x⊗ b)⊗ (a1 ⊗ · · · ⊗ an)⊗ δ .

Thus, φ• is an isomorphism of V[Γ]-complexes. □

Lemma A.2. Let M be a Γ-graded A ⋊ Γ-bimodule. For each γ ∈ Γ, there is an isomorphism

C•
(

A, Mγ

)
⊗V[Cγ ] V[Γ] ∼−→ C•

(
A, M[γ]

)
of V[Γ]-complexes.

Proof. Fix γ ∈ Γ. If mγ ∈ Mγ and δ ∈ Γ so that δ−1γδ = γ′, then δ−1mγδ ∈ Mγ′ ≤ M[γ]. Thus, for
each n ≥ 0, let

φn :
(

Mγ ⊗ A⊗n)⊗V[Cγ ] V[Γ]→ M[γ] ⊗ A⊗n ,

mγ ⊗ (a1 ⊗ · · · ⊗ an)⊗ δ 7→ (δ−1mγδ)⊗ (δ−1(a1)⊗ · · · ⊗ δ−1(an))

The right side carries the V[Γ]-structure from before and the left side is equipped with the induced
V[Γ]-structure. Equivariance is immediate from

φn(g · [mγ ⊗ (a1 ⊗ · · · ⊗ an)⊗ δ])

= φn(mγ ⊗ (a1 ⊗ · · · ⊗ an)⊗ (δg−1))

= ((δg−1)−1mγ(δg−1))⊗ ((δg−1)−1(a1)⊗ · · · ⊗ (δg−1)−1(an))

= (g(δ−1mγδ)g−1)⊗ (g(δ−1(a1))⊗ · · · ⊗ g(δ−1(an)))

= g · [(δ−1mγδ)⊗ (δ−1(a1)⊗ · · · ⊗ δ−1(an))]

= g · φn(mγ ⊗ (a1 ⊗ · · · ⊗ an)⊗ δ) .

47



For ϵ ∈ Cγ we also have that

φn(mγ ⊗ (a1 ⊗ · · · ⊗ an)⊗ (ϵδ))

= ((ϵδ)−1mγ(ϵδ))⊗ ((ϵδ)−1(a1)⊗ · · · ⊗ (ϵδ)−1(an))

= (δ−1(ϵ−1mγϵ)δ)⊗ (δ−1(ϵ−1(a1))⊗ · · · ⊗ (δ−1(ϵ−1(a1)))

= φn((ϵ
−1mγϵ)⊗ (ϵ−1(a1)⊗ · · · ⊗ ϵ−1(an)))

which shows that the φn are V[Cγ]-balanced. To see that φ• is a chain map, we note that

(φn−1(b⊗ 1))(mγ ⊗ (a1 ⊗ · · · ⊗ an)⊗ δ)

= φn−1

(
(mγa1)⊗ (a2 ⊗ · · · ⊗ an)⊗ δ

+
n−1

∑
i=1

(−1)imγ ⊗ (· · · ⊗ aiai+1 ⊗ · · · )⊗ δ

+ (−1)n(anmγ)⊗ (a1 ⊗ · · · ⊗ an−1)⊗ δ
)

= (δ−1(mγa1)δ)⊗ (δ−1(a2)⊗ · · · ⊗ δ−1(an))

+
n−1

∑
i=1

(−1)i(δ−1mγδ)⊗ (· · · ⊗ δ−1(aiai+1)⊗ · · · )

+ (−1)n(δ−1(anmγ)δ)⊗ (δ−1(a1)⊗ · · · ⊗ δ−1(an−1))

and
(bφn)(mγ ⊗ (a1 ⊗ · · · ⊗ an)⊗ δ)

= b((δ−1mγδ)⊗ (δ−1(a1)⊗ · · · ⊗ δ−1(an))

= ((δ−1mγδ)δ−1(a1))⊗ (δ−1(a2)⊗ · · · ⊗ δ−1(an))

+
n−1

∑
i=1

(−1)i(δ−1mγδ)⊗ (· · · ⊗ δ−1(ai)δ
−1(ai+1)⊗ · · · )

+ (−1)n(δ−1(an)(δ
−1mγδ))⊗ (δ−1(a1)⊗ · · · ⊗ δ−1(an−1)) .

The final expressions agree, since the δ−1 are V-algebra homomorphisms and the V[Γ]-structure of M[γ]

is defined as the restriction of its A ⋊ Γ-structure.

To obtain an inverse of φ•, we will define an inverse ψn of each φn. Let [γ] = {γ1, . . . , γc} and for
each γi ∈ [γ], choose a fixed δi ∈ Γ such that δiγδ−1

i = γi. We then define

ψn : M[γ] ⊗ A⊗n →
(

Mγ ⊗ A⊗n)⊗V[Cγ ] V[Γ] ,

mi ⊗ (a1 ⊗ · · · ⊗ an) 7→ (δ−1
i miδi)⊗ (δ−1

i (a1)⊗ · · · ⊗ δ−1
i (an))⊗ δ−1

i .

It remains to check that φn and ψn are mutually inverse. We start with

(ψn φn)(mγ ⊗ (a1 ⊗ · · · ⊗ an)⊗ δ) = ψn((δ
−1mγδ)⊗ (δ−1(a1)⊗ · · · ⊗ δ−1(an))) .

Since δ−1γδ ∈ [γ], there is a unique γj ∈ [γ] such that δ−1γδ = γi = δiγδ−1
i . Note that this implies that
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δδi ∈ Cγ. Now δ−1mγδ ∈ Mγi , from which we deduce that

ψn(δ
−1mγδ⊗ (δ−1(a1)⊗ · · · ⊗ δ−1(an)))

= (δ−1
i (δ−1mγδ)δi)⊗ (δ−1

i (δ−1(a1))⊗ · · · ⊗ δ−1
i (δ−1(an)))⊗ δ−1

i

= ((δδi)
−1)mγ(δδi))⊗ ((δδi)

−1(a1)⊗ · · · ⊗ (δδi)
−1(an))⊗ δ−1

i

=mγ ⊗ (a1 ⊗ · · · ⊗ an)⊗ (δδiδ
−1
i )

=mγ ⊗ (a1 ⊗ · · · ⊗ an)⊗ δ ,

since we consider a V[Cγ]-balanced tensor product. Conversely, we find that

(φnψn)(mi ⊗ (a1 ⊗ · · · ⊗ an))

= φn((δ
−1
i miδi)⊗ (δ−1

i (a1)⊗ · · · ⊗ δ−1
i (an))⊗ δ−1

i )

= ((δ−1
i )−1(δ−1

i miδi)δ
−1
i )⊗ (((δ−1

i )−1)(δ−1
i (a1))⊗ · · · ⊗ ((δ−1

i )−1)(δ−1
i (an)))

=mi ⊗ (a1 ⊗ · · · ⊗ an) .

Thus, φ• is an isomorphism of chain complexes. □
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