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Hsiang—Pati problem

Given a complex variety Xy ¢ Zy (Z smooth, e.g., PN(C)),
can we find a resolution of singularities

o: X — Xo — Zo
such that the pull-back cotangent sheaf is locally generated by

d(u®), i=1,...,s, dWiv), j=1,...,n—s

where
n = dim Xy
(u,v) = (uy,...,Us, V1,...,Vn_s)) local coordinates on X,

E = (uy---us = 0) exceptional divisor
«; linearly independent over Q

{aj, B;} totally ordered ?

Consequence

Pull-back to X of induced Fubini-Study metric on Xp\Sing Xg
locally quasi-isometric to

n—s

f: d(u™) @ d(u) + ) d(u’v;) @ d(uv))
i=1 Jj=1

Proved in case Xp surface with isolated singularities by

Wu-Chung Hsiang, Vishwambkar Pati (1985)
William Pardon, Mark Stern (2001)

Formulation of HP problem due to Boris Youssin (1998)

(u, v) called Hsiang-Pati coordinates



Interest ?

Applications to L>-cohomology (following Cheeger)

Hsiang-Pati: Intersection cohomology (with middle perversity)
of a surface Xy = Lp-cohomology of Xp\Sing Xy

(cf. Cheeger-Goresky-Macpherson conjecture)

Melrose: Extension of b-calculus to singular varieties

Local HP problem. Is there a semiproper locally finite covering
{Uj : )(j — Xo}

of Xo such that each o; is a finite composite of local
blowings-up satisfying HP ?

Theorem
HP holds for Xy of dimension < 3 (at least locally)

Exercises

(1) yi =Xy Xy 01

(6%
Yo = X3 - XG5

(6; units). We can absorb units, i.e., y; = X%
after coordinate change x; = 0x;, where ¢; € Q”,
provided that {«;} linearly independent

(2) HP coordinates induce HP coordinates at nearby points

Problem. Does HP =- toroidalization (monomialization)
of morphisms? (cf. Cutkosky)



Regularization of the Gauss mapping

We can reduce HP problem to the case that a*(Q}V,O) is locally
free of rank n (i.e., defines a vector bundle)

by regularization of the Gauss mapping

Gx, : Xo\Sing Xo — Grass(n, TMy)

A Gauss-regular resolution of singularities of Xy can be
obtained by taking the Nash blow-up of X, followed by
resolution of singularities.

The Nash blow-up is the closure in Xy x Grass(n, TMyp) of the
graph of Gy, .

Log Fitting ideals

Given (X, E), where X smooth, E exceptional divisor
Q1 (log E) denotes sheaf of log 1-forms on X

l.e., in local coordinates (u,v) = (Uy,...,Us, V1, ..., Vh_g)
such that E = (uy - - - us = 0), generated by

ay;

adv;
Uj ’ /

Given resolution o : (X, E) — (Mp, Xo, Sing Xy), consider

o*(Qy,) — Q2k(log E) — Coker £ — 0



If o Gauss-regular, then ¥ has a presentation given by

AU *Ous  Ov OVp_s
logJaco = : . : : . :
u (‘90,, u 80’,7 % 80n
"ou; *Ous OV OVp_s
Fitting ideal

Fn—k = Fn_k(a) C OX

generated by k x k minors of logJaco
(independent of presentation of %)

Log rank

logrkyo :=rks logJaco

=rkao|gq), Where E(a) = stratumof a in E

Let p:=maxlogrko (at points of E)
= dim Sing X

Yy:={ac E:logrkago < p—k}
Y := (T(Zk) (SO Yo = Slng Xo)

Clearly YpCX¥p 1 C---CXp



Theorem
HP is equivalent to the following conditions:

(1) o*ZLy, principal (generated by monomialin E), j=0,...,p
(2) fitting ideal F,_x(o) principal, k =1,....n

Neither condition behaves well with respect to blowing up:

(1) is not stable after an admissible blowing up 3 but,
given o, we can principalize the o*Zy. by further blowings up

(2) Frk(oopB) C B*Fn k(o)
though Fy(o o B) = exct *Fy(o)

If logrkao =r and o*Zy,_, is principle, then we can assume
o1 =V, ..., or=V, and o, 1 = U™

Corollary. HP in two-dimensional case

Proof of (local) HP in three dimensions
In general (dimension n), we can begin with
o1 = Uy (e.g., at a point of log rank 0) and write
oj = gj(u) + U’ Tj(u,v), j=>2

where uf divides o, and g;(u) comprises all monomials
u” of o;, with v linearly dependent on a4 over Q

Say Ti=> . .nns Ce(U) Ve
Let d denote smallest ¢ such that ¢ is a unit, for some j
(maybe d = )

Then d is a local invariant of the Fitting ideal F,_»



We can reduce to the case d finite, by resolution of
singularities of the ideal generated by the coefficients c;.

At an n-point (i.e., u= (uy,...,Upn)) this means we get
U’ Ty(u) = u™2 - unit, for some j, say j =2,
and can absorb the unit to put o5 in HP form

In three dimensions (n = 3): we have

3-points: coordinates (uy, Us, U3)
2-points: (uq, Uo, W)
1-points: (u,v,w)

|. We reduce to the following normal forms:

at a 3-point: uWT, =u"2, ap independent of oy (HP)
at a 2-point: I = ay wd + 2?;01 aj; Ui w'

at a 1-point: T = agw? + > aji u% vSi w'

where

ajd unit and 8g-1=0 (j =2 or 3),
a; unitor 0, /i <d-1,
there is a term of order <1 in (v, w),

we can assume aosp = 1, and Syg = 1 (1-point case)
by HP in dimension 2,

all Sji = Oor1



Il. We principalize the ideal generated by

d

wa, uiw' (or u% w')

to achieve order reduction over every point ]

Example

U2

w (w4 (V2 + ux®)w + u?y)
ud w
ub v

ub x

Thank you for your attention!



