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History of the subject

Ricci-flat manifolds and parallel spinors have a rich history, e.g.
I the work by Lichnerowicz, Koiso and the Besse group

Details

I Bochner, Calabi and Yau Calabi-Yau manifolds
I stability results by McK Wang extended by X. Dai, X. Wang

and G. Wei
I recent progress by D. Joyce, M. Haskins, R. Goto,

J. Nordström, D. Crowley, S. Goette, K. Kröncke
and many many others
(sorry for not mentioning them!)



My own relation to the subject
I 2009-2012: H. Weiß and F. Witt.

Studied a geometric weakly parabolic flow on
7-dimensional manifolds
Fixed points = G2 metrics

I 2012-2014: B. Ammann, H. Weiß and F. Witt.
Generalisation to arbitrary dimensions: “spinor flow”
Fixed points = metrics with parallel spinors

I 2015-2017: Further work on the spinor flow by J. Wittmann
(Regensburg) and L. Schiemanowski (Kiel)

I 2015: B. Ammann, K. Kröncke, H. Weiß and F. Witt
Moduli space of Ricci-flat metrics with parallel spinors

I 2016: D. Wraith. Space of metrics with scal � 0
I June 2017: B. Ammann, K. Kröncke, Th. Leistner, A.

Lischewski, O. Müller
Application to a constraint equation in Lorentzian manifolds

I (in progress): B. Ammann, K. Kröncke, H. Weiß:
the structure bundle



Introduction

Goal:
Study the space of all Ricci-flat metrics on a given compact
manifold M.

Notation:
M(M) := {Riemannian metrics g on M with volume 1}
M0(M) := {g 2M(M) | Ricg = 0}
Diff(M) := {Diffeomorphisms M ! M}
DiffId(M) is the identity component of Diff(M).
Diff(M) acts on M(M) and on M0(M) via pullback

Main interest:
Moduli space M0(M)/Diff(M),
Premoduli space M0(M)/DiffId(M)



Example 1: Bieberbach manifolds
Flat manifolds M = R

n/�.
� ⇢ R

n
o O(n), discrete, cocompact, acts without fixed points.

Every Ricci-flat metric on M is flat.
The connected components of M0(M)/DiffId(M) are smooth
manifolds of dimension � 1.

Example 2: Calabi-Yau manifolds
Calabi-Yau manifolds = Ricci-flat Kähler manifolds.
Their moduli spaces were studied by Tian and Todorov.
E.g. “the” compact 4-manifold K3:

K3 := {X 4 + Y 4 + Z 4 + W 4 = 0} ⇢ CP3.

carries a CY metric.



Main subject of the talk
We will distinuguish two classes of metrics with Ric = 0.

Definition
A metric g on a compact manifold M is called structured if
I the universal covering eM is spin and
I if eM carries a non-zero parallel spinor.

Mk(M) := {g 2M(M) | g structured} ⇢M0(M)

Mk(M) is open and closed in M0(M).

Open Problem
Is every Ricci-flat metric structured?
Mk(M) ( M0(M)?



Theorem A (A.-Kröncke-Weiß-Witt)
Let M be a closed manifold whose universal covering is spin.
(1) The premoduli space is Mk(M)/DiffId(M) is a

finite-dimensional smooth manifold.
(2) On Mk(M), the map g 7! Hol(M, g) is locally constant up to

conjugation.
(3) On Mk(M), the map g 7! dim �k(⌃gM) is locally constant.

If M is simply connected and if g0 is a metric of irreducible
holonomy, then the theorem was already known for metrics
close to g0.

Sketch of proof: After passing to a finite covering bM ! M, we
can decompose

bM = M1 ⇥ · · ·⇥Mr ⇥ T k

into irreducible factors and a torus. Show that deformations
“preserve” this structure. Use the known results for the
irreducible factors.



Cheeger-Gromoll splitting theorem

The Cheeger-Gromoll splitting theorem implies:

Theorem
If (M, g) is a compact Riemannian manifold with RicM � 0.
Then the universal covering eM is isometric to

N ⇥ R

k

where N is a simply-connected compact manifold with
RicN � 0.
Note that k is a topological invariant, namely the growth rate
of ⇡1(M).



Killing vector fields
Isometries create singularities in the moduli space.
But luckily we have few isometries:

Lemma
Let K be a Killing vector field on a Riemannian manifold, then

r⇤rK = Ric(K )
Proof

Corollary
If (M, g) is a compact Riemannian manifold with Ric  0, then
every Killing vector field is parallel.

Proof.
Z

M
krKk2 =

Z

M
hRic(K ),K i  0.



Corollary
If (M, g) is a compact Riemannian manifold with Ric = 0.
Then eM is isometric to

N ⇥ R

k

where N is a simply-connected compact manifold RicN = 0,
and Isom(N) is finite.



Consequences
I It will imply that the singularities of the moduli space

M0(M)/Diff(M) are not worse than orbifold singularities.
The orbifold singularity at (M, g0) is modeled by R

n/�
where � := Isom(M, g0)/ IsomId(M, g0) is finite.

I To get rid of orbifold singularities, we pass to the premoduli
space M0(M)/DiffId(M). This will turn out to be a smooth
manifold.

I Every (closed) structured Ricci-flat manifold is finitely
covered by a manifold with a parallel spinor.



Holonomy
Definition
The holonomy group
Hol(M, g) := {P� | � path from p to p in M} ⇢ GL(TpM).

The restricted holonomy group
Hol0(M, g) := {P� | � contract. path from p to p} = Hol( eM, g).
(M, g) is irreducible if Hol0(M, g)! GL(TpM) is an irred. repr.

Theorem (de Rham splitting theorem)
Let ( eM, g̃) be a complete simply-connected Riemannian
manifold. Then as a Riemannian product

eM = M1 ⇥ · · ·⇥Mr ⇥ R

k

where each Mi is a complete non-flat irreducible Riemannian
manifold.
For Ric � 0 on a univ. covering eM of a closed M this refines the
Cheeger-Gromoll splitting.



Berger’s holonomy list

Theorem
If (M, g) is an irreducible Riemannian manifold, n = dim M, then
(M, g) is locally symmetric or Hol0(M, g) is one of the following:

(1) Hol0(M, g) = SO(n) (generic)
(2) Hol0(M, g) = U(n/2) (Kähler)
(3) Hol0(M, g) = SU(n/2) (Ricci-flat Kähler)
(4) Hol0(M, g) = Sp(n/4) (hyper-Kähler)
(5) Hol0(M, g) = Sp(n/4) · Sp(1) (quaternionic-Kähler)
(6) Hol0(M, g) = G2 and n = 7
(7) Hol0(M, g) = Spin(7) and n = 8

There are compact examples in each case.
In cases (3), (4), (6) and (7) we have Ric = 0.
If M is compact with Ric = 0, then we are in case (1), (3), (4),
(6) or (7).



Parallel spinors and holonomy

I If (M, g) carries a parallel spinor, then ( eM, g̃) carries a
parallel spinor (pullback).

I If ( eM, g̃) carries a parallel spinor, then g is a
infinitesimally stable Ricci-flat metric.

I ( eM, g̃) carries a parallel spinor if and only if Hol0(M, g) is a
product of
(1) {1} = SO(1)
(3) SU(k) (Ricci-flat Kähler)
(4) Sp(k) (hyper-Kähler)
(6) G2
(7) Spin(7)



Deformations of Ricci-flat metrics
Let (M, g) be a compact Ricci-flat Riemannian manifold.

Tg(M(M)) = {symmetric (0, 2)-tensors,
Z

trgh = 0}

Einstein-Hilbert functional E(g) =
R

M scal g dvg .

Hessg E : Tg(M(M))⇥ Tg(M(M))! R

The formal tangent space of M0(M) is

T form
g (M0(M)) := ker(Hessg E).

Corollary (. . . /AKWW 2015)
If g is a structured Ricci-flat metric, then M0(M) is a manifold in
a neighborhood of g and

T form
g (M0(M)) = Tg(M0(M)).



Tangent space of the premoduli space

h 2 Tg(M(M)) = {symmetric (0, 2)-tensors,
Z

trgh = 0}

h is orthogonal to the conformal class [g], trgh = 0
h is orthogonal to the Diff(M)-orbit of g , divgh = 0

TT := {h is a symm. (0, 2)-tensor with trgh = 0 and divgh = 0}.

The formal tangent space of the premoduli space is

T form
g (M0(M)/DiffId(M)) := ker(Hessg E) \ TT.

Corollary (. . . /AKWW 2015)
If g is a structured Ricci-flat metric, then M0(M)/DiffId(M) is a
manifold in a neighborhood of g DiffId(M) and

T form
g (M0(M)/DiffId(M)) = Tg(M0(M)/DiffId(M)).



Infinitesimal stability of Ricci-flat metrics

TT := {h is a symm. (0, 2)-tensor with trgh = 0 and divgh = 0}.

For h, k 2 TT we have

(Hessg E)(h, k) = �
1
2

Z

M
hh,�Eki dvolg

where �E = r⇤r� 2R̊ is the Einstein operator.
A Ricci-flat metric g is called infinitesimally stable

:, (Hessg E)|TT⇥TT  0
, �E is positive semi-definite



Theorem (McKenzie Wang, Ind. Univ. Math. J. 1991)
Structured Ricci-flat metrics are infinitesimally stable.
More precisely: McK Wang assumes a parallel spinor on M.
Using what we explained before, the theorem then directly
follows as claimed.

Theorem (X. Dai, X. Wang, G. Wei, Inv. Math. 2005)
Structured Ricci-flat metrics g0 with irreducible holonomy on a
simply connected closed manifold are locally stable, i.e. there is
no metric of positive scalar curvature in a neighborhood of g0.

Historical details



Kröncke’s product formula

Theorem (Kröncke)
If (Mm, g) and (Nn, h) are two infinitesimally stable Ricci-flat
manifolds, then (M ⇥ N, g + h) is also infinitesimally stable.
Furthermore, on TT we have

ker(�M⇥N
E ) =R(n · g �m · h)�

�
�k(TM)� �k(TN)

�

� ker(�M
E )� ker(�N

E ).

Corollary (Kröncke/AKWW)
The Cheeger-Gromoll/de Rham splitting is preserved under
deformations.



Other Ingredient: The Montgomery-Zippin theorem allows to
pass from simply-connected manifolds to arbitrary manifolds.

Corollary (Kröncke/AKWW)
Local stability is true for arbitrary closed manifolds.

Corollary
M is a closed manifold such that Mk(M) has at least k
connected components, then Mk(M ⇥M) has at least k2

connected components.



Application: Metrics of non-negative scalar curvature

Let M be a closed spin manifold.
Scal>0(M) := {g 2M(M) | scal g > 0}
Scal�0(M) := {g 2M(M) | scal g � 0}

Theorem (D. Wraith, July 2016 (arxiv))
If gt is a path in Scal�0(M) with g0 2 Scal>0(M), then
ker DV

g(t) = 0 for all t and all Dirac operators twisted with flat
bundles V .

Proof: Assume ker DV
g1
3 ' 6= 0. Then rg1' = 0 and

scal g1 = 0. Apply Ricci flow to the path gt . Let ⌧ 2 [0, 1] be
minimal such that scal gt = 0 for t 2 [⌧, 1]. Then Ricgt = 0 for
t 2 [⌧, 1] and scal g⌧�✏ > 0. Thus g⌧ has a parallel spinor. Thus
cannot be deformed to scal > 0.  



Consequences
I Scal�0(M) = Scal>0(M) tMk(M) t {Unstruct. Ricci flat}
I On Scal>0(M) ⇢ Scal�0(M) the kernel of the Dirac operator

vanishes.

“Corollary”
Every known non-trivial element in ⇡k (Scal>0(M)) is also
non-trivial in ⇡k (Scal�0(M)).

“Proof”
All known proofs showing that elements in ⇡k (Scal>0(M)) are
non-trivial use index theory. As ker D vanishes not only on
Scal>0(M) but on Scal>0(M) the non-triviality extends to
Scal>0(M).

Remark
I I did not claim that ⇡k (◆) : ⇡k (Scal>0(M))! ⇡k (Scal�0(M)) is

injective. The kernel of ⇡k (◆) might be large, but I do not know
methods to detect non-trivial elements in ker⇡k (◆).



Application: Lorentzian manifolds with parallel spinors

BBGM parallel transport for spinors
BBGM = Bär-Bourguignon-Gauduchon-Moroianu
Let gt , t 2 [0,T ] be a path of Riemannian metrics on M.
Get metric G := gt + dt2 on M ⇥ [0,T ]

Definition
For any ' 2 �(⌃g0M) we define the BBGM parallel transport
P0,T (') as follows:

⌃g0M ,! ⌃G(M ⇥ [0,T ])|M⇥{0}

Extend ' to � 2 �(⌃G(M ⇥ [0,T ]) with r
dt� = 0.

P0,T (') := �M⇥{T} 2 �(⌃gT M).



Theorem B (A., Kröncke, Müller 2017)
Assume gt is a family of Ricci-flat metrics on a closed manifold
M, and divgt d

dt gt = 0. Let ' 2 �(⌃g0M) be parallel. Then
P0,t(') 2 �(⌃gt M) is parallel for all t .
Using “good” identifications � 2 �(⌃N), N := M ⇥ [0,T ].

@

@t
· � = i�

rN
(@/@s)� = 0

rN
X� =

1
2

W (X ) · @

@s
· � =

i
2

W (X ) · �

These are solutions for the constraint equations for Lorentzian
manifolds with a parallel spinor.



Consequence (& Lischewski und Leistner):
There is a time- and space-oriented Lorentzian manifold Q of
dimension dim M + 2 with
I (N, gt + dt2) is a Cauchy hypersurface for Q,
I Q carries a parallel spinor whose associated vector field is

lightlike (and parallel).
Expected picture:
8
<

:

Curves in
Mk(M)/DiffId(M)
+ scaling functions

9
=

;
1-to-1 !

8
<

:

Cauchy data for
Lorentzian manifolds with
a lightlike parallel spinor

9
=

;

1-to-1 !

8
<

:

Lorentzian manifolds with
a lightlike parallel spinor
+ choice of a Cauchy surface

9
=

;
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Besse group

The authors of the book “Einstein manifolds” by “Arthur Besse”
are:
Averous, Bérard-Bergery, Berger, Bourguignon, Derdzinski,
DeTurck, Gauduchon, Hitchin, Houillot, Karcher, Kazdan, Koiso,
Lafontaine, Pansu, Polombo, Thorpe, Valère
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Proof of the Lemma for Killing fields
Let K be a Killing field on a Riemannian manifold. Then
Y 7! rY K is skew-symmetric, and thus Y 7! r2

X ,Y K is also
skew-symmetric for fixed X .

0 = g(R(X ,Y )K ,W ) + g(R(Y ,W )K ,X ) + g(R(W ,X )K ,Y )

= g(r2
X ,Y K ,W )� g(r2

Y ,X K ,W ) + g(R(Y ,W )K ,X )

+ g(r2
W ,X K ,Y )� g(r2

X ,W K ,Y )

= 2g(r2
X ,Y K ,W ) + 2g(R(Y ,W )K ,X )

Thus
r2

X ,Y K + R(K ,X )Y = 0.

Taking the trace we get

r⇤rK = Ric(K ).

Back



Historical comments concern stability

I Infinitesimal stability: This was proven by McK Wang for
manifolds with parallel spinors. The general case of
structured Ricci-flat manifolds then follows using the fact
that any closed structured Ricci-flat manifold is finitely
covered by one with parallel spinor. Dai-Wang-Wei reprove
this. Their argument for infinite fundamanetal group can be
simplified using our arguments.

I For local stability Dai-Wang-Wei require
simple-connectedness (an assumption which is not hard to
remove). Their proof however also uses irreducibility
without stating it. The irreducibility is used at the step to
argue that every formal deformation integrates to a
deformation. In reducibe metrics Dai-Wang-Wei’s
arguments only yield proofs for formal deformations of
product type.

Back


