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The G2 moduli space

Let M be a smooth closed 7-manifold admitting metrics with holonomy G2.
The moduli space

M := {Holonomy G2 metrics on M}/Diff(M)

is an orbifold, locally homeomorphic to finite quotients of H3
dR
(M).

So far little is known about the global properties of M.

Main results:
Exhibit examples of closed G2-manifolds with M disconnected, both
! by studying homotopies of G2-structures, and
! where the G2-structures are indistinguishable using homotopy theory
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1. Background and examples
The group G2

G2 := Aut O, O = octonions, normed division algebra of real dimension 8.

G2 acts on ImO ∼= R7, preserving metric, orientation, cross product

a× b := Im(ab), and

ϕ0(a, b, c) := ⟨a× b, c⟩.

In terms of basis e1, . . . , e7 ∈ (R7)∗

ϕ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356 ∈ Λ3(R7)∗.

Peculiar algebra facts:

! G2 is not just contained in stabiliser of ϕ0 in GL(7,R), but equality holds.

! The GL(7,R)-orbit of ϕ0 is open in Λ3(R7)∗.



G2-structures and holonomy

G2 is an exceptional case in Berger’s list of Riemannian holonomy groups.

A metric with holonomy G2 is always Ricci-flat.

Parallel tensor fields on Riemannian manifold M ↔ invariants of Hol(M).

A 3-form ϕ ∈ Ω3(M7) such that (TxM,ϕ) ∼= (R7,ϕ0) for all x ∈ M defines
a G2-structure. (This is an open condition on ϕ)

Because G2 ⊂ SO(7), this induces a metric and orientation.

Hol(M) ⊆ G2 ⇔ metric induced by some G2-structure ϕ such that ∇ϕ = 0.
Then call ϕ torsion-free. This is equivalent to the first-order non-linear PDE

dϕ = d∗ϕ = 0.

Bryant (1985): Local examples

Bryant-Salamon (1987): Complete examples

Joyce (1994): Examples on closed manifolds



Two perspectives on G2-structures

Spin(7)

G2 SO(7)

The spin representation ∆ of Spin(7) is real of rank 8.

Spin(7) acts transitively on S7 ⊂ ∆ with stabiliser G2.

G2 =
stabiliser in GL(7,R)
of ϕ0 ∈ Λ3(R7)∗

=
stabiliser in Spin(7)
of a unit spinor s0

G2-structure on M7 ↔ positive ϕ ∈ Ω3(M) ↔
metric g

+ spin structure
+ unit spinor field s

Holonomy ⊆ G2 ⇔ dϕ = d∗ϕ = 0 ⇔ ∇s = 0

Useful for differential geometry homotopy theory



Homotopies of G2-structures

Let M be a closed 7-dimensional spin manifold.

Given a metric g , the spinor bundle SM is a real vector bundle of rank 8.
Two G2-structures inducing the same metric and spin structure are
homotopic if the corresponding unit spinors can be connected by a path of
non-vanishing spinors.

All metrics on M are homotopic, so if we fix the spin structure

{
Homotopy classes of
G2-structures on M

}
↔

{
Homotopy classes of non-
vanishing sections of SM

}
↔ Z

by counting (with signs) the zeros of an interpolating section of a rank 8
bundle on M × [0, 1].

Diff(M) can act by non-trivial translations.

Each component of the G2 moduli space M maps to a fixed class of
G2-structures modulo homotopies and diffeomorphisms.



Classification of 2-connected manifolds

Let M be a closed smooth 7-manifold with π1(M) = π2(M) = 0 and H4(M)
torsion-free. Remaining algebraic topology captured by b3(M).

Let d(M) := greatest integer dividing 1
2p1(M) ∈ H4(M)

(d(M) := 0 if p1(M) = 0).

Theorem (Wilkens, 1972)

Such M are classified up to homeomorphism by (b3(M), d(M)) ∈ N× 2N.
The number of inequivalent smooth structures on the topological manifold
underlying M is

GCD
(
28, Numerator

(
d(M)
4

))
.

Theorem (C-N)

The number of G2-structures up to homotopy+diffeomorphism on such M is

24Numerator
(

d(M)
112

)
.



A 2-connected example

Example (C-G-N)

Let M be the unique smooth closed 2-connected 7-manifold with
H4(M) = Z97 and d = 2.
There are G2 metrics g1, g2, g3 on M such that

A the G2-structures ϕ1, ϕ2 associated to g1 and g2 are not equivalent under
homotopies and diffeomorphisms; thus g1 and g2 are in different
components of the G2 moduli space M

B the G2-structures ϕ1 and ϕ3 are homotopic, but nevertheless g1 and g3
lie in different components of M.

So for this manifold, the moduli space M has at least 3 connected
components.



Ingredients

Invariants

A The G2-structures are distinguished by a homotopy and diffeomorphism
invariant ν(ϕ) ∈ Z/48Z.

B An analytic refinement ν̂(ϕ) ∈ Z of ν(ϕ) is invariant under
diffeomorphisms and under deformations through torsion-free
G2-structures (but not under arbitrary homotopies), and can distinguish
components of M even when the G2-structures are homotopic.

Construction

The “twisted connected sum construction” of Kovalev and Corti-Haskins-
N-Pacini produces large numbers of 2-connected G2-manifolds for which the
invariants can be evaluated.

A more complicated version produces some 2-connected examples where ν̂
takes a range of values.



2. Invariants of G2-structures
The homotopy invariant

Let X closed spin 8-manifold, and n(X ) the signed count of zeros of a
transverse positive spinor field (⇔ Euler class of rank 8 bundle S+X ).
Atiyah-Singer index theorem + Spin(8) characteristic class computation

! −48 indD+
X
= χ(X )− 3σ(X )− 2n(X ). (∗)

Let W be a compact spin 8-manifold with boundary M, s a transverse
positive spinor field on W , and ϕ the G2-structure on M induced by s|M .
Let n(W ,ϕ) be the signed count of zeros of s. (∗) implies that

ν(ϕ) := χ(W )− 3σ(W )− 2n(W ,ϕ) mod 48

is independent of choice of coboundary W .

On a fixed M, ν takes the 24 values allowed by ν(ϕ) =
3∑

i=0

bi (M) mod 2.

If M is 2-connected with H4(M) torsion-free and d a divisor of 112, then ν
distinguishes all classes.



Analytic invariant of G2-structures

Given a metric on a closed spin M7, define

D = Dirac operator
B : Ωev → Ωev = odd signature operator, (−1)k(∗d − d∗) on Ω2k

h(D) = dim ker(D) ∈ Z

η(D) := η(D, 0) ∈ R, defined by analytic continuation from

η(D, s) :=
∑

λ∈SpecD\{0}

(signλ)|λ|−s for Re s ≫ 0.

For a G2-structure ϕ on M, define MQ(ϕ) ∈ R in terms of Mathai-Quillen
current.

Definition

ν̂0(ϕ) := −24η(D) + 3η(B) + 2MQ(ϕ) ∈ R

ν̂(ϕ) := ν̂0(ϕ)− 24h(D) ∈ R



Analytic invariant as refinement

ν̂0(ϕ) := −24η(D) + 3η(B) + 2MQ(ϕ) ∈ R

Reversing orientation changes the sign of ν̂0.

All terms are continuous in ϕ, except that the first jumps by 24 when an
eigenvalue of D changes between zero and non-zero.

ν̂(ϕ) := ν̂0(ϕ)− 24h(D) ∈ R

ν̂ is continuous in ϕ except for jumps by 48.

Theorem (C-G-N)

Let ϕ be G2-structure on a closed M7. Then

ν(ϕ) = ν̂(ϕ) mod 48.

(In particular ν̂, ν̂0 ∈ Z.)



Analytic invariant as refinement

ν̂(ϕ) := −24(η + h)(D) + 3η(B) + 2MQ(ϕ) ∈ R

ν(ϕ) := χ(W )− 3σ(W )− 2n(W ,ϕ) ∈ Z/48Z.

Proof.
For ∂W = M with metric that is product on collar of M

σ(W ) =
∫
W

L(∇) − η(B)

indD+
W

=
∫
W

Â(∇) − 1
2 (η + h)(D)

n(W ,ϕ) =
∫
W

e+(∇) − MQ(ϕ)

Chern-Weil term boundary correction

Linear combination of Chern-Weil terms gives
∫
W

e(∇) = χ(W ) (essentially
by characteristic class formula (∗) used to show that ν is well-defined), so

ν̂(ϕ) = χ(W )− 3σ(W )− 2n(W ,ϕ) + 48 indD+
W

∈ Z .



Analytic invariant of torsion-free G2-structures

ν̂0(ϕ) := −24η(D) + 3η(B) + 2MQ(ϕ) ∈ Z

ν̂(ϕ) := ν̂0(ϕ)− 24h(D) ∈ Z

For torsion-free ϕ
! MQ(ϕ) = 0
! h(D) = 1 + b1(M) (so 1 when Hol = G2)
! η(D) does not jump

Therefore ν̂0 and ν̂ are constant on connected components of M, and can
distinguish components even when the associated G2-structures are
homotopic.

Even if we are only interested in ν, it may be easier to evaluate the intrinsic
formula for ν̂ than to find a spin coboundary to compute ν.

Similarities with e.g. the use of Donnelly’s analytic refinement of the
Eells–Kuiper invariant by Kreck–Stolz and Goette–Kitchloo–Shankar.



3. Constructions
G2 and SU(3)

The action of SU(3) on C3 ∼= R6 preserves

ω0 :=
i

2 (dz
1 ∧ dz̄1 + dz2 ∧ dz̄2 + dz3 ∧ dz̄3) ∈ Λ2(R6)∗

Ω0 := dz1 ∧ dz2 ∧ dz3 ∈ Λ3(R6)∗ ⊗ C

On R7 = R⊕ C3,

e1 ∧ ω0 +ReΩ0
∼= e1 ∧ (e23 + e45 + e67) + e246 − e257 − e347 − e356 = ϕ0,

the 3-form preserved by G2.
The stabiliser in G2 of a non-zero vector is SU(3).

If X is a Calabi-Yau 3-fold (6-manifold with Hol(X ) = SU(3)) then
Hol(S1 × X ) = SU(3) ⊂ G2, so S1 × X has a torsion-free G2-structure.

But we are more interested in manifolds with full holonomy G2.

Proposition (Joyce)

If M7 is closed and Hol(M) ⊆ G2 then

Hol(M) = G2 ⇔ π1(M) finite



Twisted connected sums

Donaldson, Kovalev, Corti-Haskins-N-Pacini

! Construct simply-connected, complete Calabi-Yau 3-folds V , with
“asymptotically cylindrical end” R× S1 × K3.

! Hol(S1 × V ) = SU(3) ⊂ G2, so S1 × V has torsion-free G2-structure
! Find pairs of such V±, with a diffeomorphism F of the cylindrical ends of

S1 × V+ and S1 × V− ensuring
" Gluing G2-structures on the halves with “neck length” T ≫ 0 defines ϕT on

M with ∇ϕT exponentially small in T .
" M = S

1
× V+ ∪F S

1
× V

−
is simply-connected (F is “twisted”)

S1 × V+

!

S1 × V−

M

! Perturb to ϕT so that dϕT = d∗ϕT = 0. Then Hol(M) = G2.



Matching

The ACyl end of S1 × V± is R× S1 × S1 × K3+ ∼= R× T 2
± × K3±.

Glue the cylindrical ends using a product isometry

F := (−1)×m × r : R× T 2
+ × K3+ → R× T 2

− × K3−,

where m : T 2
+ → T 2

− is the reflection S1 × S1 → S1 × S1, (u, v) 2→ (v , u).

m swaps “internal” and “external” circles ⇒ π1M = 0 by van Kampen.

Matching problem: Find pairs V+ and V− such that there is an isometry
r : K3+ → K3− making F an isomorphism of the ACyl G2-structures.

Kovalev (2003): Use Fano 3-folds to produce examples of pairs V+, V−

with solution to the matching problem.

Corti-Haskins-N-
Pacini (2014):

Millions of examples from weak Fano 3-folds.
Topological type determined in many cases.
Many gluings give same smooth manifold.



Invariants of twisted connected sums

Theorem (C-N)

Any twisted connected sum has ν = 24 ∈ Z/48Z.

Theorem (C-G-N)

Any twisted connected sum has ν̂ = −24 ∈ Z.

Analytic computation reveals the result to be related to a geometric feature:
m : T 2

+ → T 2
− aligns “external” circle tangents ∂v at right angle.

∂u+

∂v+

m−→

∂u−

∂v−

Inevitable, because m is an isometry of rectangular tori, and is not allowed
to align the external circles: otherwise M would have an S1 factor.



Tori with symmetries

Warm-up question:

Let a : S1 → S1 be the antipodal map z 2→ −z .
Let T 2 := S1 × S1 / a× a where the S1 factors have circumference 1 and x .
For how many different x does T 2 have rotation symmetries other than ±1?

x = 1,
√
3, or

1√
3



Isometries between tori

Consider a pair of tori that are either rectangular (metric product S1 × S1)
or quotient of a rectangular one by an involution (S1 × S1/a× a).
For isometries between such tori, at what angles θ can the sides of the
rectangles be aligned?

Can achieve θ =
π

4
with an involution on one side.

−→



Isometries between tori

Consider a pair of tori that are either rectangular (metric product S1 × S1)
or quotient of a rectangular one by an involution (S1 × S1/a× a).
For isometries between such tori, at what angles θ can the sides of the
rectangles be aligned?

With involutions on both sides, one can achieve θ =
π

3
.

−→



Isometries between tori

Consider a pair of tori that are either rectangular (metric product S1 × S1)
or quotient of a rectangular one by an involution (S1 × S1/a× a).
For isometries between such tori, at what angles θ can the sides of the
rectangles be aligned?

With involutions on both sides, one can achieve θ =
π

6
.

−→



Extra-twisted connected sums

Suppose V is an ACyl Calabi-Yau with an involution τ , that acts on the
asymptotic cross-section S1 × K3 by a× IdK3.
Then S1 × V / a× τ is an ACyl G2-manifold with cross-section

(S1 × S1 / a× a)× K3 = T 2 × K3.

Let M± be a pair of ACyl G2-manifolds of this form, or of the form S1 × V .

Let m : T 2
+ → T 2

− be a reflection. Depending on the circumferences of the

circles, m can align the external circle directions at angle θ =
π

3
,
π

4
or

π

6
.

θ-matching problem: Find pairs V+ and V− with involution, and with an
isometry r : K3+ → K3− such that (−1)×m × r is an isomorphism of the
limits of the ACyl G2-structures of M+ and M−.

Can obtain some ACyl Calabi-Yau manifolds with involution, and solutions
to the matching problem, from branched double covers of Fano 3-folds.



Examples from extra-twisted connected sums

For each θ ̸= π
2 , a range of values of ν̂ can be realised by θ-TCSs.

Claim A

For a certain π
4 -TCS M2, compute that π2M2 = 0, H4(M2) ∼= Z97,

d(M2) = 2, and ν(ϕ2) = 36 ∈ Z/48Z.

Among the millions of 2-connected ordinary TCS, find one that also has
H4(M1) = Z97 and d(M1) = 2. By the classification of 2-connected
7-manifolds, it is diffeomorphic to M2.

However, the ordinary TCS has ν(ϕ1) = 24 ∈ Z/48Z, so the G2-structures
ϕ1 and ϕ2 are not homotopic (not even after changing the diffeomorphism
that identifies M1 and M2). Hence the constructed G2-metrics g1 and g2 lie
in different components of the G2 moduli space on M.



Examples from extra-twisted connected sums

Claim B

For a certain π
6 -TCS M3, compute that π2M3 = 0, H4(M3) ∼= Z97,

d(M3) = 2, and ν̂(ϕ3) = −72 ∈ Z.

M3 is thus diffeomorphic to M1 above.

On this manifold, there are precisely 24Numerator( d

112 ) = 24 classes of
G2-structures modulo homotopy and diffeomorphism, all distinguished by ν.

Since ν(ϕ1) = ν(ϕ3) = 24 ∈ Z/48Z, the diffeomorphism M1
∼= M3 can

therefore be chosen so that the torsion-free G2-structures are homotopic.

However, the ordinary TCS has ν̂(ϕ1) = −24, so the two torsion-free
G2-structures lie in different components of the G2 moduli space.

π
3 -TCSs have 3-torsion in H4(M), making it harder to apply classification
results to find different examples realising the same smooth manifold.



4. Computation
Limits of the eta invariants

M± := S1 × V± or S1 × V±/a× τ , with asymptotic limit R× T 2
± × K3.

m : T 2
+ → T 2

− reflection, aligning external circle factors at angle θ ∈ (0, π
2 ].

Construct family of torsion-free G2-structures ϕT on M the result of gluing
M+ to M− by (−1)×m × r with “neck length” T .

Theorem
Let ρ := π − 2θ. Then η(D) → ρ

π as T → ∞.

Let R± : H2(K3;R) → H2(K3;R) be reflection in Im(H2(V±) → H2(K3))

Theorem
Define a unitary map U : H2(K3;C) → H2(K3;C) by e±iρR+R− on
H2,±(K3;C). Then

η(B) →
1

π

∑

λ∈SpecU
λ ̸=−1

arg λ

as T → ∞, where the branch of arg takes values in (−π,π).



Evaluating ν̂

U := e±iρR+R− on H2,±(K3;C). The theorems imply

ν̂0 = −24η(D) + 3η(B) = −24
ρ

π
+

3

π

∑

λ∈SpecU
λ ̸=−1

arg λ.

If θ = π
2 then ρ = π−2θ = 0, and U is the real orthogonal map R+R−.

Hence eigenvalues are ±1 or occur in conjugate pairs, so
∑

arg λ = 0, and

ν̂0 = 0.

In general
∑

λ∈SpecU
λ ̸=−1

arg λ =
∑

±ρ +
∑

λ∈SpecR+R−

λ ̸=−1

arg λ + π b = −16ρ+ π b,

where b ∈ Z counts “half branch jumps” between λ and e±iρλ. Then

ν̂0 = −72
ρ

π
+ 3b.



Sketch proof of theorem for η(B)

Theorem
η(B) →

1

π

∑

λ∈SpecU
λ ̸=−1

arg λ

as T → ∞, for U := e±iρR+R− on H2,±(K3;C).

The proof relies on

Kirk-Lesch gluing formula:

η(B) → η(B+) + η(B−) + Maslov index

as T → ∞, for B± the odd signature operators on manifolds with boundary.

Because M± have an S1-factor they have an orientation-reversing isometry.
Therefore B± has spectral symmetry, so η(B±) = 0!

Hence it remains only to evaluate the Maslov index.



The Maslov index

Consider H3(T 2 ×K3) as a complex vector space, with complex structure ∗.

Maslov index :=
1

π

∑

λ∈Spec(−R̃+R̃−)
λ ̸=−1

arg λ

where R̃± is reflection of H3(T 2 × K3) in the image of H3(M±).

Thus it suffices to prove that −R̃+R̃− has the same spectrum as U.

H3(T 2 × K3) ∼= H1(T 2)⊗ H2(K3) ∼= C⊗ H2,+(K3) ⊕ C⊗ H2,−(K3).

R̃±
∼= R∂u±

⊗ R±, where

R∂u±
: H1(T 2) → H1(T 2) is reflection in internal circle direction of M±

R± : H2(K3) → H2(K3) is reflection in Im(H2(V±) → H2(K3)) as before.

−R∂u+
R∂u−

is rotation by ρ = π − 2θ. Therefore on H2,±(K3;C)

−R̃+R̃−
∼= e±iρR+R−


