Singular foliations, examples and constructions

Georges Skandalis, joint work with lakovos Androulidakis

Université Paris-Diderot (Paris 7) Institut de Mathématiques de Jussieu - Paris Rive Gauche

Cortona, June 29, 2017

Androulidakis-S (Paris 7/ IMJ-PRG)

Singular foliations, examples and construction

Cortona, June 29, 2017

Regular foliations Definitions

Partition into connected submanifolds local picture:

In other words: there is an open cover of M by foliation charts of the form $U \times T$ where $U \subset \mathbb{R}^p$ and $T \subset \mathbb{R}^q$. T is the *transverse direction* and U is the leafwise direction. Change of charts: f(u, t) = (g(u, t), h(t)).

Vectors tangent to the leaves: subbundle F of the tangent bundle. Integrable subbundle: X, Y vector fields tangent to F, Lie bracket [X, Y] is tangent to F.

Conversely

Frobenius theorem

Every integrable subbundle of the tangent bundle corresponds to a foliation.

Androulidakis-S (Paris 7/ IMJ-PRG) Singular foliations, examples and construction Cortona, June 29, 2017 2 / 17

Examples of singular foliations

- **1** \mathbb{R} foliated with 3 leaves. $(-\infty, 0)$, $\{0\}$ and $(0, +\infty)$.
- 2 \mathbb{R}^2 , (\mathbb{R}^n for $n \ge 2$) foliated with 2 leaves. {(0,0)} and $\mathbb{R}^2 \setminus \{(0,0)\}$.
- 3 \mathbb{R}^3 (\mathbb{R}^n for $n \ge 2$) with co-centric spheres: { $x \in \mathbb{R}^3$; $||x||_2 = r$ } ($r \in \mathbb{R}_+$).

Remark. Will not allow any partition into manifolds: foliations have to be defined by vector fields.

Not allowed: \mathbb{R}^2 partitioned into $\mathbb{R} \times \{0\}$ and $\{x\} \times (-\infty, 0)$ and $\{x\} \times (0, +\infty)$

Androulidakis-S (Paris 7/ IMJ-PRG) Singular foliations, examples and construction Cortona, June 29, 2017 3 / 17

Definition of a singular foliations

Theorem (Stefan Sussman)

Let $\mathcal{F} \subset C^{\infty}_{c}(M; TM)$ be a submodule such that

- \mathcal{F} is locally finitely generated
- 2 if $X, Y \in \mathcal{F}$, then $[X, Y] \in \mathcal{F}$ integrability condition.

Then \mathcal{F} gives rise to a nice partition into leaves.

Definition (Stefan Sussman)

A singular foliation is a partition into leaves associated with such a submodule $\mathcal{F} \subset C_c^{\infty}(M; TM)$.

Different submodules can give the same partition into leaves: $x\partial_x$ or $x^2\partial_x...$

Androulidakis-S (Paris 7/ IMJ-PRG) Singular foliations, ex

Singular foliations, examples and construction

Cortona, June 29, 2017 4

Our definition of a singular foliation

Definition (Androulidakis-S)

A singular foliation is a locally finitely generated, integrable submodule $\mathcal{F} \subset C_c^{\infty}(M; TM)$.

For us $x\partial_x$ and $x^2\partial_x$ define different foliations.

This because we wish to do index theory along the foliation. We need to know:

5 / 17

• which are the order 1 differential operators allowed;

what is the ellipticity involved.

Androulidakis-S (Paris 7/ IMJ-PRG) Singular foliations, examples and construction Cortona, June 29, 2017

Very singular foliations

- Constant rank: regular foliation *i.e.* integrable subbundle of the tangent bundle.
- Projective submodule: algebroid with anchor "almost injective" (↓_x : 𝔄_x → T_xM injective on a dense set): nice singular foliation. Debord: integrates to a Lie groupoid.
- just finitely generated: very singular foliation.

Theorem (Androulidakis-S, 2009-2011)

Construction of

- a holonomy groupoid which is a very singular Lie groupoid (longitudinally smooth Debord)
- full and reduced $C^*(M, \mathcal{F})$

Moreover, elliptic operators are regular unbounded multipliers, index takes values in K-theory of $C^*(M, \mathcal{F})$...

6 / 17

Androulidakis-S (Paris 7/ IMJ-PRG) Singular foliations, examples and construction Cortona, June 29, 2017

Why these constructions?

Why the C*-algebra?

- Contains the resolvants of elliptic differential operators.
- Puts together representations on L²(M) and on L²(leaf) of say longitudinal laplacian.
- Essential self-adjointness results, equality of spectra, possible shapes of the spectrum...

Why the groupoid?

- Allows to construct the C*-algebra!
- f(D) lives on this groupoid if D elliptic self-adjoint order 1 differential operator, f Schwartz function on R, such that f compact support.

Androulidakis-S (Paris 7	7/ IMJ-PRG)	Singular foliations,	examples and construction	Cortona, June	29, 2017	7 / 17
--------------------------	-------------	----------------------	---------------------------	---------------	----------	--------

The holonomy groupoid

The elements of the holonomy groupoid are germs of (local) diffeomorphisms φ in the subgroup $\exp(\mathcal{F})$ of Diff(M) generated by exponentials of elements of \mathcal{F} , divided by an equivalence relation.

- If just one leaf $(\mathcal{F} = C_c(M; TM))$, then $G = M \times M$ and we only retain the pair $(\varphi(x), x)$.
- If regular foliation, we just retain the (germ of the) action of φ on the transversal.

Definition

 (x, φ) is the trivial element if $\varphi \in \exp(I_x \mathcal{F})$ where I_x is the ideal of smooth functions vanishing at x.

Topology?

Androulidakis-S (Paris 7/ IMJ-PRG) Singular foliations, examples and construction Cortona, June 29, 2017 8 / 17

Bi-submersions

In the case of a regular foliation:

- $U \times T$ and $U' \times T'$ foliated charts.
- $h: T \rightarrow T'$ a holonomy.
- A chart of the holonomy groupoid: $U' \times U \times T$.
- Source and range maps s(u', u, t) = (u, t) and r(u', u, t) = (u', h(t)).

Cannot hope for a manifold with a local diffeomorphism to G. We look for manifolds with a submersion to G. We will call them bi-submersions.

A bi-submersion is a manifold U, with submersions $U \stackrel{r,s}{\Rightarrow} M$, with a submersion-family from the fibers of s to the leaves of the foliation.

Formally

Definition

A bi-submersion (U, r, s) where $U \stackrel{r,s}{\Rightarrow} M$ submersions such that

$$r^*(\mathcal{F}) = s^*(\mathcal{F}) = C_c^\infty(U; \ker dr) + C_c^\infty(U; \ker ds).$$

Androulidakis-S (Paris 7/ IMJ-PRG) Singular foliations, examples and construction Cortona, June 29, 2017 9 / 17

Bi-submersions and the holonomy groupoid

- Inverse of a bi-submersion (U, r, s): (U, s, r).
- Composition of bi-submersions: fibered product.
- Existence of bi-submersions: small exponentiation of ${\mathcal F}$ around a point.

Equivalence relation. (U, r, s) at $u \in U$ equivalent to (U', r', s') at $u' \in U'$ if $\exists f : U \to U'$ over r and s with f(u) = u'.

Holonomy groupoid: Equivalence quotient. The holonomy groupoid is locally a quotient of a smooth manifold...

Androulidakis-S (Paris 7/ IMJ-PRG) Singular foliations, examples and construction Cortona, June 29, 2017 10 / 17

Examples

- R split in three leaves. Various *F_n* generated by xⁿ∂_x. Different groupoids (but similar C*-algebras). Of course, one can legitimately choose *F*₁. Groupoid R ⋊ R^{*}₊.
- **2** \mathbb{R}^2 foliated with two leaves: $\{0\}$ and $\mathbb{R}^2 \setminus \{0\}$.

We put \mathcal{F} = vector fields that vanish at $\{0\}$.

Generated by

- ∂_x, ∂_y far from 0 and
- $x\partial_x$, $y\partial_x$, $x\partial_y$, $y\partial_y$ at 0.

Given by the action of $GL(2, \mathbb{R})$ on \mathbb{R}^2 .

 $Hol(M, \mathcal{F})$ is a quotient of $\mathbb{R}^2 \rtimes GL(2, \mathbb{R})$:

 $Hol(M,\mathcal{F}) = (\mathbb{R}^2 \setminus \{0\}) \times (\mathbb{R}^2 \setminus \{0\}) \coprod \{0\} \rtimes GL(2,\mathbb{R})$

Examples (2)

Remark. Could have taken

- vector fields that vanish at higher $(k^{th} ?)$ order at 0. Dimension 2(k+1)...
- the action of $SL(2,\mathbb{R})$ or of \mathbb{C}^* .

Different foliations.

More generally...

Let $G \subset GL_n(\mathbb{R})$ be a connected subgroup. The transformation groupoid $\mathbb{R}^n \rtimes G$ defines a foliation. Holonomy groupoid is a quotient of $\mathbb{R}^n \rtimes G$.

If the action on $\mathbb{R}^n \setminus \{0\}$ transitive, the holonomy groupoid is

$$(\mathbb{R}^n \setminus \{0\}) \times (\mathbb{R}^n \setminus \{0\}) \coprod \{0\} \rtimes G.$$

Androulidakis-S (Paris 7/ IMJ-PRG) Singular foliations, examples and construction Cortona, June 29, 2017 12 / 17

If the action of G on $\mathbb{R}^n \setminus \{0\}$ is not transitive...

3 Action of
$$SO(3)$$
 on \mathbb{R}^3 . Groupoid

 $SO(3) \times \{0\} \prod \{(x, y) \in (\mathbb{R}^3 \setminus 0) \times (\mathbb{R}^3 \setminus 0); \|x\|_2 = \|y\|_2\}.$

④ Let G_n = upper triangular matrices with positive diagonal. Invariant subspaces $\{0\} = E_0 \subset E_1 \subset E_2 \subset \ldots \subset E_{n-1} \subset E_n = \mathbb{R}^n$.

For $0 < k \le n$, let $\Omega_k = \mathbb{R}^n \setminus E_{k-1}$ and $Y_k = E_k \setminus E_{k-1}$. The set Y_k consists of two *G* orbits. Put $Y_0 = \{0\}$ and $\Omega_0 = \mathbb{R}^n$.

Let also $p_k : \mathbb{R}^n \to \mathbb{R}^n / E_k = \mathbb{R}^{n-k}$. Let then

 $\mathcal{G}_k = \{(x, g, y) \in \Omega_k \times \mathcal{G}_{n-k} \times \Omega_k; \ p_k(x) = gp_k(y)\} \rightrightarrows \mathcal{G}_k.$

Proposition

The holonomy groupoid of the foliation of \mathbb{R}^n is a union $\prod_{i=0}^n (\mathcal{G}_i)|_{Y_i}$.

Androulidakis-S (Paris 7/ IMJ-PRG) Singular foliations, examples and construction Cortona, June 29, 2017 13 / 17

Other examples of the same flavor

Androulidakis-S (Paris 7/ IMJ-PRG) Singular foliations, examples and construction Cortona, June 29, 2017

Baum-Connes conjecture?

Why a Baum-Connes conjecture? We constructed a C^* -algebra which is a receptacle for index problems. Is there a guess of what this K-theory should be?

Androulidakis S - 2016

- Set a general framework where such a conjecture can be formulated: we assume the foliation to be nicely described by a sequence of groupoids.
- Prove it in some cases... Essentially when the groupoids are amenable.

Remark

Even in the regular case, there are counterexamples to the Baum-Connes conjecture (Higson-Lafforgue-S), so we cannot hope our BC conjecture to hold...

Androulidakis-S (Paris 7/ IMJ-PRG) Singular foliations, examples and construction Cortona, June 29, 2017

Computation of examples

• The SO(3) action on \mathbb{R}^3 . $Hol(\mathbb{R}^3, \mathcal{F}) = \mathbb{R}^*_+ \times (\mathbb{S}^2 \times \mathbb{S}^2) \coprod SO(3)$. Exact sequence:

$$0 \rightarrow C_0(R^*_+) \otimes \mathcal{K} \rightarrow C^*(M, \mathcal{F}) \rightarrow C^*(SO(3)) \rightarrow 0$$

Also the mapping cone of $C^*(SO(3)) \to \mathcal{K}(L^2(\mathbb{S}^2))$. $\mathcal{K}_0(C^*(M, \mathcal{F}))$ is the kernel of the K-theory map $\mathbb{Z}^{(\mathbb{N})} \to \mathbb{Z}$ $(\mathcal{K}_1 = 0)$.

2 $G = SL(n, \mathbb{R})$ or $GL(n, \mathbb{R})$ or... acting on \mathbb{R}^n with two orbits 0 and $\mathbb{R}^n \setminus \{0\}: 0 \to \mathcal{K} \to C^*(\mathcal{M}, \mathcal{F}) \to C^*(\mathcal{G}) \to 0$ (full C^* -algebras). Diagram

Androulidakis-S (Paris 7/ IMJ-PRG) Singular foliations, examples and construction Cortona, June 29, 2017 16 / 17

Thank you for your attention.

Androulidakis-S (Paris 7/ IMJ-PRG) Singular foliations, examples and construction Cortona, June 29, 2017 17 / 17