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Scalar curvature

My question: Given a smooth compact manifold M, how does the space
Riem+(M) of Riemannian metrics of positive scalar curvature look like? Is
it empty? What are its homotopy groups?
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Positive scalar curvature and Gauß-Bonnet

Theorem (Gauß-Bonnet)

If F is a 2-dimensional compact Riemannian manifold without boundary,∫
F

scal(x) d vol(x) = 4πχ(F ).

Corollary

scal > 0 on F implies χ(F ) > 0, i.e. F = S2,RP2.
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Scalar curvature in dimension m

scal(x) is the integral of the scalar curvatures of all 2-dim surfaces through
the point x . It satisfies

vol(Br (x) ⊂ M)

vol(Br (0) ⊂ Rm)
= 1− scal(x)

cm
r2 + O(r4) small r .

It features in Einstein’s general relativity.
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Basic Dirac operators

Dirac: Differential operator D as
square root of matrix Laplacian
(using Pauli matrices).

Schrödinger: generalization to curved
space-time (local calculation) satisfies

D2 = ∇∗∇︸ ︷︷ ︸
≥0

+
1

4
scal .
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Global Dirac operator

Given an spin structure (a strengthened version of orientation) and a
Riemannian metric, one gets:

1 the spinor bundle S over M. Sections of this bundle are spinors

2 the Dirac operator D acting on spinors: a first order differential
operator which is elliptic.

In the following, for easy of exposition we concentrate on even dimensional

manifolds and only use complex C∗-algebras.
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K-theory of C ∗-algebras

Definition

A C ∗-algebra A is a norm-closed ∗-subalgebra of the algebra of bounded
operators on a Hilbert space.

We have for a (stable) C ∗-algebra A:

K1(A) are homotopy classes of invertible elements of A.

K0(A) are homotopy classes of projections in A.

6-term long exact K-theory sequence for ideal I ⊂ A:

→ K0(A/I )
δ−→ K1(I )→ K1(A)→ K1(A/I )

δ−→ K0(I )→
→ K0(A)→ K0(A/I )→

Thomas Schick (Göttingen) Topology of Positive Scalar Curvature ICM Seoul, August 2014



Framework of index

Using functional calculus, the Dirac operator gives the bounded
operator χ(D), contained in the C ∗-algebra A of bounded operators
on L2(S).
Here χ : R→ [−1, 1] is any odd functions with χ(x)

x→∞−−−−→ 1 (contractible choice).

dim M even: S = S+ ⊕ S−, χ(D) =
(

0 χ(D)−

χ(D)+ 0

)
.

If M is compact, ellipticity implies that

χ2(D)− 1 ∈ I , the ideal of compact operators on L2(S),

so also Uχ(D)+ is invertible in A/I (with any unitary U : L2(S−)→ L2(S+): contractible

choice).

It therefore defines a “fundamental class” [D] ∈ K1(A/I ).
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Apply the boundary map δ : K1(A/I )→ K0(I ) of the long exact K-theory
sequence 0→ I → A→ A/I → 0 to obtain

ind(D) := δ([D]) ∈ K0(I ) = Z.

We have the celebrated

Theorem (Atiyah-Singer index theorem)

ind(D) = Â(M)

Here Â(M) is a differential -topological invariant, given in terms of the
Pontryagin classes of TM, which can be efficiently computed.
It does not depend on the metric (the Dirac operator does).



Schrödinger-Lichnerowicz formula and consequences

Definition

Schrödinger’s local calculation relates the Dirac operator to scalar
curvature: D2 = ∇∗∇+ scal /4 ≥ scal /4. It implies:
if scal > c > 0 everywhere, spec(D) ∩ (−

√
c/2,
√

c/2) = ∅.
Choose then χ = ±1 on spec(D), therefore ch2(D) = 1 and
Uχ(D)+ is invertible in A, representing a structure class

ρ(Dg ) ∈ K1(A),

mapping to [D] ∈ K1(A/I ).

Potentially, ρ(Dg ) contains information about the positive scalar curvature
metric g .
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Schrödinger-Lichnerowicz formula and consequences II

Theorem

If M has positive scalar curvature, then ind(D) = 0 =⇒ Â(M) = 0:

Â(M) 6= 0 is an obstruction to positive scalar curvature!

Example: Kummer surface. Non-examples: CP2n, T n.

Proof.

K1(A) −−−−→ K1(A/I )
δ−−−−→ K0(I )

ρ(Dg ) 7→ [D] 7→ ind(D) = 0

using exactness of the K-theory sequence.
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Generalized index situation

General goal: find sophisticated algebras I ⊂ A to arrive at similar index
situations. Criteria:

index construction must be possible (operator in A, invertible modulo
an ideal I )

calculation tools for K∗(A), K∗(I ) and the index

positive scalar curvature must imply vanishing of index (and give

structure class ρ ∈ K∗(A))

Useful/crucial is the context of C ∗-algebras, where positivity implies
invertibility.
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Non-compact manifolds

What can we do if M is not compact?
Why care in the first place?
This is of relevance even when studying compact manifolds:

extra information can be obtained by studying the covering spaces
with their group of deck transformation symmetries (e.g. Rn → T n

with deck transformation action by Zn).

attaching an infinite half-cylinder to the boundary of a compact
manifold with boundary assigns a manifold without boundary, but
which is non-compact.

Many important cases where M is non-compact (general relativity).
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Large scale/Coarse C ∗-algebras

Definition (Roe)

M Riemannian spin manifold (not necessarily compact). The coarse
algebra/Roe algebra C ∗(M) is the closure of the algebra of bounded
operators T on L2(S) satisfying

T has finite propagation: there is RT such that the support of T (s)
is contained in the RT -neighborhood of the support of s for each s.

local compactness: if φ ∈ C0(M) has compact support, the
composition of T with multiplication by φ (on either side) is a
compact operator.

Schwarz (distributional) integral kernel:
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Large scale/Coarse C ∗-algebras II

D∗(M) is defined similar to C ∗(M), but replacing local compactness
by the weaker condition of pseudolocality:

φTψ compact whenever supp(φ) ∩ supp(ψ) = ∅.

Schwarz kernel:

C ∗(M) ⊂ D∗(M) is an ideal

functoriality for Lipschitz maps
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Analysis of Dirac operator

Theorem (Roe)

χ(D) ∈ D∗(M), χ(D)2 − 1 ∈ C ∗(M).

By Fourier inversion

χ(D) =
1√
2π

∫ ∞
−∞

χ̂(ξ) exp(iξD) dξ.

Here, exp(iξD) is the wave operator, it has propagation |ξ|.
Consequence: if χ̂ has compact support, χ(D) has finite propagation.

By (local) elliptic regularity, χ(D) is pseudolocal (compact only
outside the diagonal as χ̂ is singular at 0)

and χ(D)2 − 1 locally compact.
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Large scale/Coarse index theory

Exactly as above, the Dirac operator on a spin manifold M defines

fundamental class [D] ∈ D∗(M)/C ∗(M),

coarse index indc(D) ∈ K∗(C ∗(M))

Theorem

If scal > c > 0, the Dirac operator defines a

structure class ρ(Dg ) ∈ D∗(M),

so indc(D) = 0 ∈ K∗(C ∗(M)) in this case.
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Computability

There are good tools to compute K∗(C ∗(M)), K∗(D∗(M)), e.g.

coarse Mayer-Vietoris sequence to put the information together by
breaking up M in simpler pieces

vanishing for suitable kinds of coarse contractibility, in particular if
M = Y × [0,∞).

. . .

Example consequence:

Theorem

K0(C ∗(R2n)) = Z; K1(C ∗(R2n+1)) = Z.
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Large scale/Coarse index application

Let P be a connected compact spin manifold without boundary with
Â(P) 6= 0. Let P → M → T n be a fiber bundle. Does M admit a
metric of positive scalar curvature? Example: M = T n if P = {∗}.
We can pass to the covering P → M̃

p−→ Rn. Using functoriality, we
can map the coarse index of M̃ to p∗(indc(D)) ∈ Kn(C ∗(Rn)) = Z.

Theorem (Partitioned manifold index theorem (Roe, Higson, Siegel,
S.-Zadeh))

p∗(indc(D)) = Â(P).

Corollary

M̃ and therefore M does not admit a metric of positive scalar curvature.
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Codimension 2 obstruction (Gromov-Lawson)

Theorem (Hanke-S.)

M compact spin, N ⊂ M codimension 2 submanifold with tubular
neighborhood N × D2 ⊂ M. π1(N)→ π1(M) is injective, π2(M) = 0.
ind(DN) 6= 0 ∈ K∗(C ∗π1(N)) =⇒ M does not have positive scalar
curvature.

Example (Gromov-Lawson, new proof)

No 3-manifolds with π2 = 0 and with infinite π1 admits scal > 0: pick for
N a circle which is non-trivial in π1(M).

1 pass to a suitable covering M̄, take out N × D2 and double along N × S1

2 apply improved vanishing (where we glue: no psc) and partitioned
manifold index for C∗-coefficients instead of C.



Change of scalars

Throughout, we can replace the complex numbers by any C ∗-algebra
A; get algebras C ∗(M; A),D∗(M; A) (Mishchenko, Fomenko, Higson,

Pedersen, Roe,. . . ).

In particular: C ∗π1(M), a C ∗-closure of the group ring Cπ1(M).

The whole story then relates to the Baum-Connes conjecture.

Throughout, we can use the Dirac operator twisted with a flat bundle
of Hilbert A-modules, e.g. the Mishchenko bundle. All constructions
and results carry over (in our setup without too much extra work).

For compact M, we get Rosenberg index

ind(D) ∈ KdimM(C ∗π1M)

refining ind(D) ∈ Z we started with.
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Gromov-Lawson-Rosenberg conjecture

Former conjecture (Gromov-Lawson-Rosenberg): if M compact spin,
dim M ≥ 5:
M positive scalar curvature ⇐⇒ 0 = ind(D) ∈ KdimM(C ∗Rπ1M).

5-dimensional Counterexample (S.) with π1(M) = Z3 × (Z/3Z)2

Question: how much exactly does ind(D) ∈ K∗(C ∗π1M) see about
positive scalar curvature?
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Improved vanishing

Theorem (Roe, Hanke-Pape-S.)

If M contains a geodesic ray R ⊂ M and scal > c > 0 outside an
r-neighborhood of R for some r > 0, then already

indc(D) = 0 ∈ K∗(C ∗(M)).

For the proof, consider the ideal C ∗(R ⊂ M) in D∗(M) of operators in
C ∗(M) supported near R.

local analysis shows that χ(D) is invertible module C ∗(R ⊂ M)

K1(D∗(M)/C ∗(R ⊂ M)) −−−−→ K0(C ∗(R ⊂ M))= 0y y
K1(D∗(M)/C ∗(M)) −−−−→ K0(C ∗(M))

apply naturality.

Thomas Schick (Göttingen) Topology of Positive Scalar Curvature ICM Seoul, August 2014



Relative index of metrics

Goal: we want to compare two families of Riemannian metrics
(gp

0 )p∈Sk , (gp
1 )p∈Sk with scal > 0 on M, representing two elements in

πk(Riem(M)).

We choose an interpolating family of metrics (gp
t )p∈Sd on M × [0, 1]

—leading to a metric g on M × [0, 1].

Adding the half cylinders left and right provides a non-compact
Riemannian manifold M∞ without boundary with positive scalar
curvature near the two ends.

Partial vanishing gives an Atiyah-Patodi-Singer index in
K∗(C ∗(M ⊂ M∞; C 0(Sk ,C ∗π1M))) ∼= K∗−k(C ∗π1M)⊕ K∗(C ∗π1M).
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Space of metrics of positive scalar curvature

Theorem (Hanke-S.-Steimle)

Given k ∈ N, as long as dim(M) is big enough and dim(M) + k ≡ 1
(mod 4), if g0 ∈ Riem+(M) 6= ∅ then there are elements of infinite order in
πk(Riem+(M), g0) detected by this method.
If M is a sphere, these classes remain of infinite order in πd of the
(observer) moduli space of metrics of positive scalar curvature.

Construction is based on Gromov-Lawson surgery construction of psc
metrics in families (Walsh)

and the construction (via surgery theory and smoothing theory) of
interesting bundles over Sk whose total space has non-vanishing
Â-genus (Hanke-S.-Steimle).
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Questions.

What of this remains true for manifolds without spin structure (where
even the universal cover is non-spin)?

Does the Rosenberg index ind(D) ∈ K∗(C ∗π1M) capture all
information about positive scalar curvature obtainable via index
theory (weak Gromov-Lawson-Rosenberg conjecture)? In particular,
how does it relate to the codimension 2 obstruction?

What about the “modified n-torus with fundamental group (Z/3Z)n

obtained by doing surgery on T n to adjust π1?

Fully compute the homotopy type of Riem+(M) when non-empty.

In any case: THANK YOU for your attention.
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