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Abstract

Coarse index theory has been introduced by John Roe. It provides
a theory to use tools from C∗-algebras to get information about the
geometry of non-compact manifolds via index theory of Dirac type
operators. Through the passage to the universal covering one also
gets important information about compact manifolds, and indeed, the
Baum-Connes assembly map becomes part of this theory. In the lecture
series, we discuss the basic constructions of the theory and three par-
ticular applications: to partitioned manifolds (as introduced by Roe),
to enlargeable manifolds (as defined by Gromov and Lawson [1]) and
to “the passage from the positive scalar curvature exact sequence to
analysis. Along the way, we discuss several new index theorems.

Many of the basics are due to John Roe and Nigel Higson [10]
(Kommentar: Abstract: perhaps remove references, but move
then (completed!) to a later place in the introduction), the
new results are joint with Hanke, Kotschick, Roe [4], Hanke and Pape
[5], and with Paolo Piazza [21].

Outline of the course

We first introduce the basic players: we start with a positive dimensional
spin manifold X, assign to it the Roe algebras C∗(X) ⊂ D∗(X). Using
an direct and easy construction in C∗-algebras, one defines the Roe-index
of the Dirac operator in K∗(C

∗(X)). If the manifold has positive scalar
curvature, this index vanishes. Instead, one gets a secondary invariant ρ(g) ∈
K∗(D

∗(X)) which contains information about the positive scalar curvature
metric (and can, e.g., distinguish between different components of the space
of all such metrics). We will develop this as a recurring theme: a geometric
reason for the vanishing of an index should indeed always give rise to a
secondary invariant which gives new information about the space.
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Given an isometric action by a discrete group Γ on X, we get algebras
of invariants C∗(X)Γ ⊂ D∗(X)Γ and a refined index/secondary invariant
in the K-theory of these algebras. There is an important map induced by
“forgetting the equivariance”.

We obtain such an isometric action in particular on covering spaces. This
is an interesting way to assign non-compact manifolds with extra structure
to compact manifolds, and via this route coarse geometry gives information
about compact manifolds. Moreover, it is not hard to see that the Baum-
Connes assembly map is just a special case of the general constructions of
coarse index theory.

The K-theory of C∗(X) and D∗(X) (and there equivariant cousins) ad-
mits tools for computation. In particular it is functorial for rather general
maps of spaces, and we will establish a Mayer-Vietoris sequence. We will
also establish some vanishing results, e.g. for spaces of the form X × [0,∞)
(with product metric). Crucial here (and a common theme in the application
of C∗-algebra techniques) is the implementation of geometric data —here
the subspaces into which a space is decomposed— by suitable C∗-ideals.

We will exploit functoriality and the computation machine to explain and
refine the obstruction to positive scalar curvature due to “enlargeability”
(introduced by Gromov-Lawson) in terms of the standard index obtained
via the Baum-Connes assembly map (the Rosenberg or Mishchenko index),
with values in the K-theory of the group C∗-algebra (this is joint with Hanke,
Kotschick, Roe).

We then obtain, as a first application, the partitioned manifold index
and the partitioned manifold index theorem: Whenever X can be parti-
tioned with a two-sided hypersurface M which is compact (or on which
Γ acts cocompactly) then the Dirac operator on X defines a partitioned
manifold index in K∗−1(C∗(M)Γ). The partitioned manifold index theorem
(proved for Γ = {1} by Roe and Higson, for general Γ and even dimension
by Esfahani-Zadeh) states that this partitioned manifold index coincides
with the one of M . As an application, we obtain that non-vanishing of the
index of the hypersurface M is an obstruction to uniformly positive scalar
curvature on X.

Next, we will discuss how one can use information like positive scalar
curvature given only on part of the manifold. It turns out that C∗-algebraic
methods also here apply very efficiently: by an appropriate choice of interme-
diate C∗-algebras (here, between C∗(X) and the trivial one) one can exploit
the additional information and sometimes get vanishing results. As an ap-
plication we will present a refined obstructions to positive scalar curvature
coming from submanifolds of codimension 2, in the spirit of Gromov-Lawson
but applicable in more general situations and explaining the theory using
C∗-index techniques. This is joint with Hanke and Pape.

Next, we will present a discussion of bordism invariance of the index
of the Dirac operator in the language of coarse geometry. As discussed
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above: a basic feature is the implementation of the geometric situation (here:
the manifold, its boundary, but also the relative theory of the manifold
relative to its boundary) as ideals within one big algebra (D∗X). Indeed,
this approach allows to get a secondary invariant of the bordism (some kind
of relative fundamental class) which explains the vanishing of the index of
the Dirac operator of a bounding manifold. Although this is certainly well
known to the experts, such an approach to bordism invariance does not seem
to be part of the available literature.

Finally, we will turn our attention to new index theorems (obtained
jointly with Paolo Piazza). The methods allow to define in a canonical way
a C∗(Γ)-index of the Dirac operator for a spin manifold X with boundary
and with fundamental group Γ, provided the boundary has positive scalar
curvature (and product structure).

We get a secondary Atiyah-Patodi-Singer index theorem for this coarse
index: its “delocalized” part, i.e. the image in the K-theory of D∗Γ, coincides
with the rho-invariant of the boundary.

Similarly, we obtain a secondary partitioned manifold index theorem:
if X is a partitioned manifold as above with uniformly positive scalar cur-
vature, then one has (as in the primary case) a partitioned manifold rho-
invariant.

The index theorem say that this rho-invariant coincides with the rho-
invariant of a partitioning hypersurface. We discuss the (surprisingly diffi-
cult) proofs of these theorems.

Finally, we give as an application a direct construction, using index the-
ory, of a transformation from the positive-scalar-curvature exact sequence
of Stolz to the long exact sequence of the pair C∗ ⊂ D∗. This establishes a
“map for psc to analysis”, in analogy to Higson-Roe’s construction of a map
from “surgery to analysis”. The construction presented here is even more
directly using methods from index theory and C∗-algebras.

1 Lecture 1: basic setup of coarse index theory

In the first lecture, we introduce the main players. We start with a Rie-
mannian manifold X of positive dimension, but many of the definitions here
generalize to arbitrary metric spaces.

1.1 The Roe algebras C∗(X) ⊂ D∗(X)

The most important main players are: the sequence of C∗-algebras associ-
ated to X, 0 → C∗(X) → D∗(X) → D∗(X)/C∗(X) → 0. Here, C∗(X)
is the so-called Roe-algebra of locally compact operators of finite propaga-
tion, whereas D∗(X) is the larger algebra of pseudolocal operators of finite
propagation.
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1.1 Definition. Given a metric space X (e.g. a Riemannian manifold of
positive dimension), a C0(X)-module is a Hilbert space X with an action of
C0(X) such that no non-zero element acts as a compact operator. The proto-
typical example is H = L2(E), the square summable sections of a Hermitean
vector bundle on the manifold X (with action by pointwise multiplication).

For φ ∈ C0(X) we simply write φ also for the operator of multiplication
by φ.

An operator T ∈ B(H) has propagation ≤ R if φ ◦ T ◦ ψ = 0 whenever
φ, ψ ∈ C0(X) whose supports have distance at least R.

An T ∈ B(H) is called locally compact if Tφ and φT are compact oper-
ators for each φ ∈ C0(X).

T ∈ B(H) is called pseudolocal if φTψ is compact whenever supp(φ) ∩
supp(ψ) = ∅.

D∗(X) := {T ∈ B(H) | T pseudolocal and of finite propagation}
C∗(X) := {T ∈ D∗(X) | T locally compact}.

Here, we take the C∗-closure. Note that C∗(X) is an ideal in D∗(X).

1.2 Remark. Strictly speaking, the definition of C∗(X) and D∗(X) depends
on the C0(X)-module H. However, by our ampleness condition (no φ ∈
C0(X) acts as a compact operator) any two such algebras are isomorphic
(actually, for D∗(X) one has to be a bit more demanding). The isomorphism
is not quite canonical, but the induced isomorphism in K-theory is canonical.

1.3 Example. If X is compact then C∗(X) ∼= K(H) is isomorphic to the
compact operators on a separable Hilbert space.

1.4 Definition. If a discrete group Γ acts isometrically on X (e.g if X is
a Γ-covering of a compact manifold X/Γ) we define C∗(X)Γ ⊂ D∗(X)Γ by
only looking at Γ-equivariant operators.

1.2 Functoriality

1.5 Definition. A map f : X → Y is called coarse if for each R > 0 there
is S > 0 such that d(f(x), f(y)) ≤ S whenever d(x, y) ≤ R and if the inverse
image of every bounded subset is bounded (“metric properness”).

Note that we do not require continuity!

1.6 Definition. A coarse homotopy between f, g : X → Y is a coarse map
H : X × [0,∞)→ Y such that H0 = f , for each x ∈ X, Ht(x) is constantly
equal to g(x) for t > T (x) for a coarse map T : X → [0,∞) satisfying certain
additional requirements.
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1.7 Proposition. Any coarse map f : X → Y induces a homomorphism
C∗(X)→ C∗(Y ). The induced map in K-theory is canonical and functorial.

If f is in addition continuous, it induces a homomorphism D∗(X) →
D∗(Y ). Again, the induced map in K-theory is canonical and functorial.

K∗(C
∗(f)) is coarsely homotopy invariant; K∗(D

∗(f)) is continuously
coarsely homotopy invariant.

Proof. The map is obtained by conjugation with a suitable unitary embed-
ding U : HX → HY which covers f , i.e. does move the supports approxi-
mately as f does. One needs sufficiently ample HY to be able to construct
such a U .

1.3 Reduced group C∗-algebra

1.8 Example. If Γ acts freely and cocompactly on X, then there is a K-
theory isomorphism

C∗redΓ⊗K → C∗(X)Γ.

The map is induced by the inclusion of one Γ-orbit (identified with |Γ|)
into X. Because Γ acts cocompactly, the inclusion of the orbit is a coarse
equivalence and therefore induces a K-theory isomorphism C∗ |Γ| → C∗X.
For |Γ|, we use the C0(Γ)-module is H = l2(Γ) ⊗ l2(N). Equivariant finite
propagation operators are given by CΓ ⊗ B, local compactness requires to
use CΓ⊗K. The norm-closure is by definition C∗redΓ⊗K.

1.9 Remark. It is typically very difficult to map out of C∗redΓ or its K-theory
(in contrast to C∗maxΓ, which admits by construction a C∗-homomorphism
out for each unitary representation of Γ).

Forgetting equivariance: C∗(X)Γ → C∗(X) (or more concretely C∗(|Γ|)Γ →
C∗(|Γ|)) provides one example of an interesting homomorphism “out”. Its
target comes from the world of coarse geometry, where efficient calculation
tools are available (which do not work for C∗red).

1.4 Paschke duality

1.10 Proposition. If X is compact then Kn(D∗(X)/C∗(X)) ∼= Kn−1(X):
the K-theory of the quotient C∗-algebra is isomorphic to the topological K-
homology of the space X.

1.11 Proposition. If X/Γ is compact then Kn(D∗(X)Γ/C∗(X)Γ) ∼= Kn−1(X/Γ):
indeed, by a localization principle, up to adding elements of C∗(X/Γ), ev-
ery element of D∗(X/Gamma) can be given arbitrarily small propagation.
Then it lifts to a unique equivariant operator in D∗(X)Γ. This gives a canon-
ical isomorphism D∗(X)Γ/C∗(X)Γ ∼= D∗(X/Γ)/C∗(X/Γ). Then one applies
Proposition 1.10.
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1.5 Index constructions

One of the appealing aspects of coarse index theory are the very direct con-
structions of index invariants, in the rather general non-compact situation
at hand.

1.12 Proposition. If D is a geometric Dirac type operator on X, and
f : R→ R is smooth and rapidly decaying, then f(D) ∈ C∗(X).

1.13 Proposition. If χ : R → R is a chopping function, i.e. smooth and
χ(x)−1 is rapidly decaying for x→ +∞, whereas χ(x)+1 is rapidly decaying
for x→ −∞ then χ(D) ∈ D∗(X).

Proof. This and the previous statement follow from unit propagation speed
of the wave kernel and elliptic regularity.

1.14 Definition. Using an odd chopping function χ : R → R we define
(if dim(X) ≡ 1 (mod 2)) a fundamental class [D] = [(1 + χ(D))/2] ∈
K0(D∗(X)/C∗(X)). The index ind(D) is then defined as the image under
the boundary map in K1(C∗(X)).

1.15 Definition. If M is even dimensional, D is an odd operator on a Z/2-
graded vector bundle and we use a suitable unitary U between odd and even
spinors (a unitary covering the identity map of X) to define the fundamental
class [D] := [Uχ(D)+] ∈ K1(D∗(X)/C∗(X)). Again, the image under the
boundary map is ind(D) ∈ K0(C∗(X)).

1.16 Definition. Assume that M is a compact spin manifold with funda-
mental group Γ and with universal covering X (with cocompact Γ-action)
with Dirac operator D. Define the equivariant fundamental class

[D] ∈ Km+1(D∗(X)Γ/C∗(X)Γ)

and the Mishchenko index

α(M) := ind([D]) ∈ Km(C∗redΓ) = Km(C∗(X)Γ),

using the calculation of Example 1.8. (Kommentar: Add remarks/definitions
to Mishchenko bundle and Mishchenko index.)

1.17 Remark. Of course, the standard definition of α(M) is as Mishchenko-
Fomenko index of the Dirac operator on M twisted with the Mishchenko
bundle, or by applying the descent homomorphism to a fundamental class
in equivariant KK-theory. It is a well known (but non-trivial) theorem that
the coarse construction gives the same result. (Kommentar: A detailed
proof is missing).
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2 Lecture 2 — First applications: Enlargeability
and partitioned manifolds

2.1 rho-classes as secondary invariants

2.1 Definition. If the operator D is invertible (e.g. if D is the spin Dirac op-
erator andX has uniformly positive scalar curvature, so that the Weitzenböck
formula implies invertibility) then one can use a chopping function which is
identically ±1 on the spectrum of D. It follows that the above constructions
make sense without passing to the quotient D∗/C∗.

We define the (secondary) coarse rho-invariant ρ(D) := [(1+χ(D))/2] ∈
K0(D∗(X)) if dim(X) is odd, and ρ(D) := [Uχ(D)+] ∈ K1(D∗(X)/C∗(X))
if dim(X) is even. This has not the same stability results as the index: it
depends on the metric of positive scalar curvature.

If we have a group Γ acting isometrically, then D and the functions of
D used above are Γ-equivariant, and we can also choose U Γ-equivariant.
Therefore, we get an index in K∗(C

∗(X)Γ), and also ρ(D) ∈ K∗(D∗(X)Γ).

2.2 Corollary. By homotopy invariance: if we have two metrics of positive
scalar curvature on X which are homotopic through metrics of positive scalar
curvature in the same bilipschitz class, the rho-invariants of the associated
Dirac operators coincide.

Consequently, ρ(D) can be used to distinguish different components of
the space of metrics of positive scalar curvature.

2.3 Remark. A note on K1: this group is made to classify automorphisms!
In particular, cycles for K1 must be automorphisms of some object. Oc-
casionally, we don’t expect this or do not want it, for example if we think
of the index of a Fredholm operator A : H1 → H2 between two different
Hilbert spaces. The key point here is that the two Hilbert spaces are iso-
morphic such that, by composing with such an isomorphism we really get an
invertible element in the Calkin algebra of H1. Moreover, the K1-element
it represents is independent of the choice of the isomorphism H2 → H1 (in-
deed, the space of these is contractible by Kuiper’s theorem if H2 is infinite
dimensional).

In general, a morphism between two different objects will only represent
a K1-class if there is a sufficiently canonical (up to effects in K-theory)
isomorphism between these two objects. In our situation, this is given by
the unitary U . We have to make sure that U is a multiplier of D∗(X). This
is guaranteed if U covers the identity map of X in a sufficiently strict sense.

This is somewhat delicate: one has to use the very ample C0(X)-modules
we mentioned above to be sure that one can find such a unitary. However,
replacing L2(S) the ⊕n∈NL

2(S) and D by the diagonal operator which is D
in the first summand and the identity in all others, this is possible without
changing anything of the construction. (Kommentar: Make precise the
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ampleness conditions; show why this is giving rise to well defined
K-theory classes here.)

2.4 Remark. The construction of ρ(D) reveals a general principle one should
use: find the smallest possible subalgebra (depending on the geometric situ-
ation) modulo which the construction is permitted, i.e. modulo which χ(D)
is a symmetry. Without any further assumptions, this is C∗(X). If one
assumes positive scalar curvature, one can use the ideal 0. We will meet
further instances of this principle later.

2.2 Baum-Connes map in coarse index theory

Assume that X has a free cocompact Γ-action. Then we obtain the long
exact K-theory sequence for C∗(X)Γ → D∗(X)Γ → D∗(X)Γ/C∗(X)Γ, which
under the identifications possible by Proposition 1.11 and Example 1.8 be-
comes

· · · → Km(C∗redΓ)→ Km(D∗(X)Γ)→

Km−1(X/Γ)
BC−−→ Km−1(C∗redΓ)→ · · ·

where the map denoted BC indeed is the usual (Baum-Connes) assembly
map in topological K-theory. In particular, we can use X = EΓ (a con-
tractible free Γ-space) to obtain the usual version of the assembly map which,
for torsion-free groups, is conjecturally an isomorphism.

2.3 C∗-rho invariant contains APS and L2-rho invariant

If Γ is finite, or more generally if Γ contains an element of finite order, the
map BC is definitely not an isomorphism.

Instead, Higson and Roe [12] show (with significant analytical effort)
that there is a non-trivial homomorphism K0(D∗(EΓ)Γ)→ R. If this homo-
morphism is applied to ρ(D) for a metric of positive scalar curvature on X/Γ
one obtains the classical Atiyah-Patodi-Singer rho-invariant of the Dirac op-
erator for the regular representation (the difference of the eta-invariant on
X/Γ and the L2-eta invariant on X (if Γ is finite and therefore X is compact,
this is the eta-invariant on X normalized by dividing by |Γ|).

Note that these APS-rho invariants are one of the most important sources
of information which allows us to distinguish metrics of positive scalar cur-
vature (e.g. on lens spaces).

2.4 Enlargeability

2.5 Definition. A compact manifold M of dimension m is called (univer-
sally) enlargeable if for every R > 0 the universal covering X admits a map
fR : X → (Sm

R ) such that
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• Sm
R is the sphere with standard metric but rescaled such that diam(Sm

R ) =
R

• fR is a smooth Lipschitz 1-map (i.e. each differential has norm ≤ 1)

• fR is compactly supported, i.e. constant outside a compact subset of
X

• deg(fR) 6= 0. Here, the degree is the sum of the local degrees of f at
the points of the inverse image of a regular value: a finite sum because
f is compactly supported.

For the more general concept of enlargeability (instead of universal enlarge-
ability) one allows any covering, which may also depend on R.

2.6 Example. Every manifold of non-positive sectional curvature is en-
largeable. To construct the maps fR, choose first one compactly supported
map g : X → Sm of degree 1 (the usual maps which collapses the comple-
ment of a disc to the extra point of the sphere). Compose this map with
the radial contraction with factor R/c to the center of the disc to obtain fR
(c is the Lipschitz constant of g).

2.7 Theorem (Gromov-Lawson). If M is an enlargeable closed spin man-
ifold then M does not admit a metric of positive scalar curvature.

2.8 Theorem (Hanke-Kotschick-Roe-Schick). If M is a universally en-
largeable spin manifold, then the Rosenberg index α(M) 6= 0 ∈ Km(C∗redΓ).
This implies that M does not admit a metric of positive scalar curvature,
but is stronger (by the failure of the Gromov-Lawson-Rosenberg conjecture,
exhibited by an example in [27]).

Proof. (1) The balloon space Bm is the union of a half-line [0,∞) with the
spheres Sm

k for k ∈ N>0; where the south pole of Sm
k is identified with

k ∈ [0,∞) and Bm is given the path metric induced from the given
metrics on the building blocks.

Using the Γ-action and composition with a suitable translation, one
can arrange that the support of fk is contained in some Bz(R2k) \
Bz(R2k−1) where Rj ≥ Rj−1 + 1 for each j (z ∈ X some basepoint).

One can then combine all the maps fk to one continuous coarse map
f : X → Bm.

(2) Using Mayer-Vietoris and a decomposition into the union of discs glued
along Bm−1, one computes K∗(C

∗Bm) ∼= K∗−m(C∗(B0)). An explicit
calculation for this simple space then giveK0(C∗B0) =

∏
k∈N Z/

⊕
k∈N Z

(and K1(c∗B0) = 0).
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(3) The “forget equivariance” homomorphism composed with the map in-
duced by f therefore mapsKm(C∗redΓ)→ Km(C∗Bm) =

∏
k∈N Z/

⊕
k∈N Z,

the image of α(M) is an equivalence class indBn(M) of a sequence of
integers.

(4) Finally, one uses an L2-index theorem to obtain a topological formula
for the index sequence indBn(M). Indeed, one obtains indBn(M) =
[(deg(f1), deg(f2), . . . )]. By assumption, all degrees are non-zero, there-
fore also α(M).

2.5 Mayer-Vietoris

2.9 Definition. Assume A ⊂ X is a subset of a metric space. We want to
replace the inclusion C∗(A) ↪→ C∗(X) by the inclusion of an ideal C∗(A ⊂
X) ⊂ C∗(X), but with a K-theory isomorphism C∗(A)→ C∗(A ⊂ X).

We set C∗(A ⊂ X) as the C∗-closure of all operators T ∈ C∗(X) which
are supported near A, i.e. such that there is R > 0 with Tφ = 0 = φT
whenever φ ∈ C0(X) and d(supp(φ), A) ≥ R.

We define D∗(A ⊂ X) in the corresponding way.

2.10 Lemma. The inclusion C∗(A) → C∗(A ⊂ X) is a K-theory isomor-
phism. The inclusion is given by extending the operator on A by 0.

If X = A ∪∂A A× [0,∞) (as metric space, in particular as Riemannian
manifold) then again we get a K-theory isomorphism D∗(A)→ D∗(A ⊂ X).

The same applies to the algebras of invariant operators, if everything
above is Γ-equivariant.

Proof. It follows from coarse invariance of C∗(A) (and coarse homotopy
invariance of D∗(A)) that the inclusions C∗(A) ↪→ C∗(UR(A)) are K-theory
isomorphisms for all A; D∗(A) ↪→ D∗(UR(A)) are K-theory isomorphisms.
Then one observes that C∗(A ⊂ X) is (by definition) the limit of C∗(UR(A))
and D∗(A ⊂ X) is the limit of D∗(UR(A))) and applies continuity of K-
theory for limits of C∗-algebras.

2.11 Definition. A decomposition X = X1 ∪ X2 with X0 = X1 ∩ X2 of
metric spaces is called coarsely excisive if for each R > 0 there is S > 0 such
that UR(X1) ∩ UR(X2) ⊂ US(X0).

2.12 Theorem. For a coarsely excisive decomposition X = X1 ∪ X2 one
obtains long exact Mayer-Vietoris sequences

· · · → Kn(C∗(X0 ⊂ X))→ Kn(C∗(X1 ⊂ X))⊕Kn(C∗(X2 ⊂ X))→
→ Kn(C∗(X))→ Kn−1(C∗(X0 ⊂ X))→ · · ·
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· · · → Kn(D∗(X0 ⊂ X))→ Kn(D∗(X1 ⊂ X))⊕Kn(D∗(X2 ⊂ X))→
Kn(D∗(X))→ Kn−1(D∗(X0 ⊂ X))→ · · ·

Using the K-theory isomorphisms of Lemma 2.10 we can (and will) replace
C∗(A ⊂ X) by C∗(A) and D∗(A ⊂ X) by D∗(A) whenever appropriate.

If everything is Γ-invariant, the corresponding result holds for the Γ-
invariant algebras.

Proof. The coarse excisiveness implies that C∗(X1 ⊂ X) ∩ C∗(X2 ⊂ X) =
C∗(X0 ⊂ X). Moreover, the sum of the two ideals is equal to C∗(X) by
the finite propagation condition. One then applies the general K-theory
Mayer-Vietoris principle.

The same argument applies to D∗.

2.13 Remark. Because the K-theory of D∗ “sees” the topology, K∗(D
∗(A))

and K∗(D
∗(A ⊂ X)) in general will differ significantly! Therefore, we have

not established a general Mayer-Vietoris sequence for K∗(D
∗). On the other

hand, as K∗(D∗/C∗) is K-homology, for which one also has a Mayer-Vietoris
sequence, one should expect a Mayer-Vietoris sequence for K∗(D

∗) for rather
general decompositions. This does not seem to be established in the litera-
ture.

2.14 Proposition. If X is any metric space, then K∗(C
∗(X× [0,∞))) and

K∗(D
∗(X × [0,∞))) both vanish. Dito with Γ-action.

Spaces of the form X × [0,∞) are examples of flasque spaces, a concept
introduced by Roe. The statement generalizes to arbitrary flasque spaces.

Proof. This is based on an Eilenberg swindle: the shift to the right (by 1) is
a continuous coarse homotopy equivalence and therefore induces the identity
on K∗(D

∗) and on K∗(C
∗).

On the other hand, its inverse (the shift one step to the left) by the fi-
nite propagation condition eventually (i.e. after sufficiently many iterations)
maps every class to zero (this is a rough argument, the precise construction
is quite a bit more complicated). The identity map is equal to 0 only on the
zero group and the statement follows.

2.15 Corollary. K∗(C
∗(Rn)) ∼= K∗−n(C∗(pt)) ∼=

{
Z ∗ − n ≡ 0 (mod 2)

0 ∗ − n ≡ 1 (mod 2)
.

Proof. Induction and Mayer-Vietoris for the decomposition of Rn into two
half-spaces.

2.6 Roe’s partitioned manifold index

2.16 Definition. Given a discrete group Γ, there is (up to Γ-equivariant
homotopy equivalence) a unique contractible free Γ-space EΓ. It has the
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universal property that every free Γ-space maps equivariantly to EΓ (with
a map which is unique up to Γ-homotopy).

It is characterized by the property of being contractible (non-equivariantly).

The quotient BΓ = EΓ/Γ is the associated classifying space.

2.17 Definition. Let X be an m-dimensional spin manifold partitioned by
a compact 2-sided hypersurface Y ⊂ X. The signed distance to Y defines a
coarse (proper because Y is compact) map f : X → R.

We now define the partitioned manifold index as

f∗(ind(D)) ∈ Km(C∗R) =

{
Z; m ≡ 1 (mod 2)

0; m ≡ 0 (mod 2).

More generally, if there is an isometric free Γ-action on X preserving
Y and now Y/Γ is compact, then we get in addition a classifying map
to EΓ, a contractible space with free Γ-action (the universal covering of
BΓ). We can assume that BΓ is compact (otherwise we use some lim-
iting argument). This combines with the previous map to R to a coarse
continuous equivariant map f : X → R × EΓ. Using Mayer-Vietoris then
K∗(C

∗(R × EΓ)Γ) ∼= K∗−1(C∗(EΓ)Γ) ∼= K∗−1(C∗redΓ). Then we obtain a
Γ-equivariant partitioned manifold index

f∗(ind(D)) ∈ Km(C∗(R× EΓ)Γ) ∼= Km−1(C∗redΓ).

2.18 Theorem (Partitioned manifold index theorem). In the above situa-
tion,

f∗(ind(DX)) = ind(DY ) ∈ Km−1(C∗redΓ).

This means that a global object, spread a priori over all of X, can be read
off from the hypersurface Y .

2.19 Corollary. As ind(DX) is homotopy invariant, it does depend only
mildly on the Riemannian metric on X: as long as one stays in the same
bilipschitz-class (so that the identity map is a continuous coarse equivalence),
the index doesn’t change.

Therefore, if ind(DY ) 6= 0, then DX can’t be invertible, in particular
X does not admit a metric of positive scalar curvature within the given
bilipschitz class of metrics.

Proof of Theorem 2.18. The proof consists of two steps:

(1) one shows a cut-and-paste invariance of the partitioned manifold index
(this uses general K-theory of C∗-algebra techniques): it is based on
the way how the K-theory of C∗R is computed (by the Mayer-Vietoris
principle, there is indeed an inherent concentration of the index infor-
mation near hypersurfaces).
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For this, take the disjoint union with Y ×R, but with map to R given by
the absolute value (i.e. with a silly partition where we put everything
on one side). As this factors through a map to C∗[0,∞) which has
zero K-theory, we don’t change the partitioned manifold index.

By cut-and-paste invariance, we can then cut off the “positive part
of X” and replace it by Y × [0,∞) without changing the partitioned
manifold index. In a second step, replace also the “negative part of X
by Y × (−∞, 0] to arrive at Y × R with projection map to R.

(2) In the model product case one has now to carry out an explicit cal-
culation and really compute the partitioned manifold index, using
e.g. a separation of variable technique. This involves also an explicit
understanding of the index map giving rise to the identification of
Km(C∗(R× EΓ)Γ) with Km−1(C∗redΓ).

2.20 Remark. The calculation has been carried for Γ = 1 by Higson [8] (and
previously by Roe); Higson’s argument has been adapted to general Γ by
Esfahani-Zadeh [28], but only for m odd. The case m even still waits to be
worked out explicitly.

2.7 Secondary partitioned manifold index theorem

2.21 Definition. Fundamental in our constructions was the free contractible
Γ-space EΓ. We saw that C∗(EΓ)Γ ∼= C∗redΓ ⊗ K. Of equal significance is
D∗Γ := D∗(EΓ)Γ and its K-theory; the latter is canonically associated to Γ
(Kommentar: to be precise, one has to approximate EΓ by cocom-
pact subspaces and then pass to a limit, to simplify notation we
pretend that EΓ is cocompact —although in the most interesting
situations, namely if Γ contains non-trivial torsion, this can never
be the case.)

2.22 Definition. Assume thatX has free Γ-action as before with Γ-invariant
partitioning hypersurface Y such that Y/Γ is compact. Assume in addition
that X admits a metric of uniformly positive scalar curvature.

We define the partitioned manifold ρ-invariant as

f∗(ρ(D)) ∈ Km+1(D∗(R× EΓ)Γ) ∼= Km(D∗Γ).

2.23 Theorem (Secondary partitioned manifold index theorem [21]). As-
sume that X is as in Definition 2.22 and that, in addition, the metric is of
product form near Y (in particular, the metric on Y also has positive scalar
curvature, and there is the usual coarse rho-invariant defined for Y ). Then
we have equality
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• of the partitioned manifold ρ-invariant of X (with values in Km(D∗Γ))

• the image of ρ(DY ) under the induced map to EΓ, i.e. also with values
in Km(D∗Γ).

2.24 Corollary. Assume that we have two metrics of positive scalar cur-
vature on Y/Γ which can be distinguished by different rho-invariants in
Km(D∗Γ).

Then also the product metrics on Y ×R can not be homotoped into each
other through metrics of positive scalar curvature within the given bilipschitz
type.

Proof. Again, the proof of the Theorem consists of two steps. The first step
is, as in the absolute partitioned manifold index theorem, is a rather soft
reduction to the product case, using the finite propagation property and
functional calculus.

The second step is surprisingly thorny and technical: it is again an
explicit calculation of these secondary indices. We don’t know how to do
it differently than by using relatively brute force (and precise application
e.g. of the definition of the index map in 6-term K-theory sequences).

For the time being, the proof has only be carried out for m even.

3 Lecture 3: Mapping positive scalar curvature to
analysis

3.1 Delocalized coarse Atiyah-Patodi-Singer index theorem

3.1 Proposition. Let X be a complete Riemannian spin manifold, Y ⊂ X
such that the scalar curvature is uniformly positive outside Y . Let χ be
an odd chopping function of absolute value 1 outside a sufficiently close
neighborhood of 0. Then χ(D)2 − 1 = 0 ∈ D∗(X)/C∗(Y ⊂ X).

Proof. Combination of unit propagation speed and functional calculus with
invertibility coming from the (local) Weitzenböck formula. A complete proof
can be found in [19].

3.2 Corollary. We get a vanishing theorem for the coarse index:

Assume X is a complete connected non-compact connected Riemannian
spin manifold and there is a compact subset Y such that the scalar curvature
is uniformly positive outside Y . Then ind(DX) = 0 ∈ K∗(C∗X).

In particular, if the index is non-zero, we can’t have uniformly positive
scalar curvature outside a compact set.

Proof. Choose a ray [0,∞) =: R ⊂ X (starting at Y ). This is possible
because X is non-compact, connected and complete.
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Then we have the factorization (as Y is compact)

K∗(C
∗(Y ⊂ X))→ K∗(C

∗(R ⊂ X))→ K∗(C
∗X)

We know by Proposition 3.1 that ind(DX) lifts to K∗(C
∗(Y ⊂ X)), but

by the vanishing Proposition 2.14 K∗(C
∗(R ⊂ X) ∼= K∗(C

∗[0,∞)) = 0.
Therefore our index, factoring through the zero group, has to vanish.

3.3 Proposition. State and explain the codimension 2 obstruction to posi-
tive scalar curvature of [5].

3.4 Definition. Assume that X is a metrically complete m-dimensional
Riemannian spin manifold with boundary Y , with a product structure near
the boundary. Let X∞ := X ∪Y (Y × [0,∞)) be the same manifold with
infinite cylinder attached, and we think of X ⊂ X∞.

Moreover, assume that Y has uniformly positive scalar curvature; there-
fore the same is true for the cylinder part of X∞.

Then, for a suitable choice of chopping function χ, χ(D)2 − 1 = 0 ∈
D∗(X∞)/C∗(X ⊂ X∞) by Proposition 3.1.

Consequently, the index has a canonically defined lift to Km(C∗(X ⊂
X∞)) ∼= Km(C∗X). This is the coarse APS-index of D (based on invertibil-
ity near the boundary).

With Γ-action, the same extends to the Γ-equivariant algebras.

3.5 Theorem (Delocalized coarse APS-index theorem). In the situation of
Definition 3.4, the image of the APS-index in Km(D∗X) coincides with the
image of ρ(DY ) under the map from Km(D∗Y )→ Km(D∗X).

Dito for the equivariant versions.

Proof. The proof [21] proceeds in two steps.

First, one uses some soft methods, exploiting C∗-techniques, functional
calculus, finite propagation speed to replace X by Y ×R, but with an index
problem where we compress (spacially) the operator to Y × [0,∞).

The second step then consists of a model calculation for this case. This
model calculation is exactly the same as for the secondary partitioned man-
ifold index theorem.

As a consequence, the proof so far is complete only for m ≡ 0 (mod 2).

(Kommentar: More details should be given.)

3.2 The Stolz exact sequence for the classification of positive
scalar curvature

Given a reference space X (we should think of X = BΓ) we consider the
following three abelian groups:
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• Ωspin
n (X) consist of compact n-dimensional spin manifolds with a map

to X; two such pairs are equivalent, if there is a compact spin manifold
W with a map to X whose boundary decomposes ∂W = M1 q (−M2)
and the maps to X coincide. The group operation is disjoint union.
This is a generalized homology group of X: there are good tools to
compute it (Mayer-Vietoris sequences, Atiyah-Hirzebruch spectral se-
quence,. . . )

• Posn(X) consists of compact n-dimensional spin manifolds with pos-
itive scalar curvature metric and with reference map to X; two are
equivalent if they are bordant; where the bordism W now is required
to have a metric of positive scalar curvature (product near the bound-
ary) which restricts to the given metrics on the boundary, we also need
to have the reference map to X on W . If we consider the subset with
fixed spin manifold M and fixed reference map (e.g. if X = M and we
use the identity), this classifies metrics of positive scalar curvature on
M up to bordism. In some sense, this is the geometrically interesting
group: the structure group of metrics of positive scalar curvature.

• Rn+1(X) consists of compact (n+ 1)-dimensional spin manifolds with
boundary and with reference map to X, and with a given metric of
positive scalar curvature on the boundary. The equivalence relation
again is bordism (with all the structure!). Using a surgery construc-
tion of Gromov-Lawson and Schoen-Yau, it is shown (by Stolz, Hajac)
that Rn+1(X), despite its geometric definition, only depends on the
fundamental group Γ of X, we therefore usually write Rn+1(Γ). Un-
fortunately, there is no purely algebraic definition (and consequently
no computations) of Rn+1(Γ). Still: it should be though of as an al-
gebraic correction term. So far, it is not even calculated for Γ = 1.
However, using rho-invariants we do know instances where the group
is highly non-trivial (lower bounds, but no upper bounds).

The group structure is always given by disjoint union.

3.6 Theorem. There is a long exact sequence

→ Rn+1(X)
∂−→ Posn(X)→ Ωspin

n (X)→ Rn(X)→

where the maps are the obvious ones: take the boundary of a cycle for Rn+1

to obtain a cycle for Posn, then forget the metric to obtain a cycle for Ωspin
n ,

then consider a manifold without boundary as a manifold whose boundary is
∅ (where each point has positive scalar curvature).

Proof. The proof of exactness is a direct consequence of the definitions and
an easy exercise.
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3.3 Mapping positive scalar curvature to analysis

One of the culminating results of [21] is:

3.7 Theorem. There is a commutative diagram of well defined homomor-
phisms from the Stolz positive scalar curvature sequence to the coarse index
theory sequence

Rn+1(BΓ) −−−−→ Posn(BΓ) −−−−→ Ωspinn (BΓ) −−−−→ Rn(BΓ)yα yβ yγ yα
Kn+1(C∗(EΓ)Γ) −−−−→ Kn+1(D∗(EΓ)Γ) −−−−→ Kn+1(D∗(EΓ)Γ/C∗(EΓ)Γ) −−−−→ Kn(C∗(EΓ)Γ)y=

y=

y=

y=

Kn+1(C∗
redΓ) −−−−→ Kn+1(D∗Γ) −−−−→ Kn(BΓ) −−−−→ Kn(C∗

redΓ)

We construct the maps α, β, γ as follows:

(1) for α, take a cycle for Rn+1(BΓ): a compact manifold with boundary
of positive scalar curvature and with map to BΓ. Then pass to the
associated Γ-covering with map to EΓ, take the coarse APS-index as
described in Definition 3.4 and push forward to Kn+1(C∗(EΓ)Γ).

(2) For the map β, take the coarse rho-invariant of the positive scalar
curvature metric on the associated Γ-covering as in Definition 2.1 and
push it forward to Kn+1(D∗Γ).

(3) for the map γ, associate to the compact spin manifold the equivariant
fundamental class [D] as in Definition 1.16 and push it forward to
Kn+1(D∗(EΓ)Γ/C∗(EΓ)Γ).

The non-trivial task now is to check that the maps are well defined and that
the diagram becomes commutative.

This relies on the secondary partitioned manifold index theorem (giving
bordism invariance of the coarse rho-class), on the coarse delocalized APS-
index theorem and on further (already known) bordism invariance results for
indices.

3.8 Remark. It is our hope that one can map further to some exact sequence
of cyclic homology; where finally numerical invariants should live. Because
of the structure of D∗Γ this is a rather non-trivial task. Even the treatment
of the APS rho-invariant by Higson and Roe in [12] required great effort.

3.9 Remark. An older cousin of the Stolz positive scalar curvature exact
sequence is the surgery exact sequence, which has the same flavor: the
structure set (for surgery of manifold structures on a given homotopy type)
is computed in an exact sequence containing as other terms a homology
group (with coefficients in the L-theory spectrum) and an algebraic object:
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the L-theory of the group ring. Higson and Roe have carried out the program
to map this sequence to the coarse geometry exact sequence in [13–15]. In
some sense, this is more difficult as one does not have automatic invertibility
—which we gain from positive scalar curvature. Higson and Roe use analytic
Poincaré duality complexes to achieve their goal.

An interesting project is the construction of such a collection of maps
directly from the signature operators; for the structure set this will require
an additional perturbation step to obtain the required invertibility (such a
perturbation has been carried out in detail in [20].

4 Lecture 4: bordism invariance of coarse index

We have seen that bordism invariance of the (coarse) index is an important
structural result. Put it differently: if Y is the spin-boundary of X, then
the index of Y vanishes.

Our goal now is twofold:

(1) We want to give a proof of this result which is intrinsic to coarse
C∗-methods

(2) we want to implement our philosophy: if there is a geometric reason
why an index vanishes, this should actually be implemented by a sec-
ondary invariant: here we expect a secondary invariant depending on
the bordism X.

Classically, such vanishing results depend on the existence of a rela-
tive fundamental class in the relative homology of the pair (X,Y ) which is
mapped to the fundamental class of Y under a suitable boundary map. This
indicates which structure we have to look for: a suitable C∗-ideal which en-
codes the relative K-homology (in the same way D∗(X)/C∗(X) encode the
absolute K-homology of X).
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