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Abstract
In this paper we give a short overview of Fourier series in the context of

n-dimensional tori, thus including the classical case of a function de�ned
on [0; 2�). We will focus on convergence and divergence issues.

1 Orthonormal Bases

De�nition 1 If H is a Hilbert space then we will call a subset S � H such that
1.) 8x; y 2 S; x 6= y : (x; y) = 0 (orthogonality)
2.) 8x 2 S : kxkH = 1 (normed vectors)
an orthonormal system in H. We will call an orthonormal system complete (or
orthonormal basis) if H = span(S).

It is important to note that an orthonormal basis is not a vector space basis
(unless H is �nite-dimensional). However, of course every orthonormal basis
can be enlarged to become a vector space basis.
There are other possible de�nitions of the completeness of an orthonormal

system. Our choice is based on the wish to keep proofs as short as possible.

Theorem 2 Every separable Hilbert space admits a countable, complete ortho-
normal system.

Theorem 3 (Generalized Pythagoras) Let x; y 2 H be orthogonal vectors,
that is (x; y) = 0. Then

kxk2H + kyk
2
H = kx+ yk

2
H (1)

This follows from a simple computation with the scalar product.

Theorem 4 (Bessel Inequality) If H is a Hilbert space, S = fe1; e2; :::g a
countable orthonormal system, then for all x 2 H we have

1X
k=1

j(x; ek)j2 � kxk2H (<1) (2)

This is an equality exactly if S is complete.
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Proof. Choose an arbitrary N � 1. Setting

xN = x�
NX
k=1

(x; ek)ek (3)

we easily see that xN is orthogonal to ej for j = 1; 2; : : : ; N since

(xN ; ej) =

 
x�

NX
k=1

(x; ek)ek; ej

!
= (x; ej)�

NX
k=1

(x; ek)(ek; ej) (4)

= (x; ej)� (x; ej) = 0 (5)

Hence, the Pythagoras equality gives us

kxk2H = kxNk2H +






NX
k=1

(x; ek)ek







2

H

(6)

= kxNk2H +
NX
k=1

j(x; ek)j2| {z }
since kekk=1

(7)

�
NX
k=1

j(x; ek)j2 (8)

However, our choice of a speci�c N was arbitrary. This implies the desired
inequality. We postpone the proof of the case of equality until the next theorem.

Now we come to the main theorem about orthonormal systems in Hilbert
spaces.

Theorem 5 Let H be a Hilbert space and S = fe1; e2; : : :g � H an orthonormal
system. Then the following statements are equivalent:
1.) H = span(S)

2.) 8x 2 H : x =
X
e2S
(x; e)e

3.) 8x; y 2 H : (x; y) =
X
e2S
(x; e)(e; y)

4.) 8x 2 H : kxk2H =
X
e2S

j(x; e)j2 (Parseval formula)

The second statement clari�es why a complete orthonormal system is called
an orthonormal basis.
Proof. (1.) ) (2.) Choose some �xed x 2 H. Since we assume span(S) to be
dense in H, we know that there are sequences (�k;n) such that

xn :=

C(n)X
k=1

�k;n � ek with xn ! x (9)
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Computing the scalar product of xn and some ej 2 S, we obtain

(xn; ej) =

C(n)X
k=1

�k;n � (ek; ej) = �j;n (10)

Using this formula, the Bessel inequality (cf. Thm. 4) now guarantees that






C(n)X
k=1

(x; ek)ek � xn








2

H

=








C(n)X
k=1

(x; ek)ek �
C(n)X
k=1

(xn; ek)ek








2

H

(11)

=








C(n)X
k=1

(x� xn; ek)ek








2

H

=

C(n)X
k=1

j(x� xn; ek)j2

� kx� xnk2H (via Bessel) (12)

Since we know that xn ! x, this gives us the desired result (via triangle in-
equality)

lim
n!1

nX
k=1

(x; ek)ek = x (13)

(2.) ) (3.) A simple computation now reveals that for all x; y 2 H

(x; y) =

 X
k1

(x; ek1) ek1 ;
X
k2

(y; ek2) ek2

!
(14)

=
X
k1

(x; ek1)

 
ek1 ;

X
k2

(y; ek2) ek2

!
=

X
k1

X
k2

(x; ek1) (y; ek2) (ek1 ; ek2)

=
X
k

(x; ek) (ek; y) (15)

(3.) ) (4.) Simply set x = y.
(4.) ) (1.) (we will not need this implication) Assume span(S) 6= H. Then
there must be a h 2 H with h =2 span(S). We de�ne

h0 := h�
X
k

(h; ek) ek. (16)
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We know h0 6= 0 since h =2 span(S) and it is clear that h0 is orthogonal to all
(ek). Now the Parseval identity gives us

kh0k2H =
X
k

j(h0; ek)j2 = 0 (17)

However, we know that h0 6= 0. This contradiction implies the desired result.

Theorem 6 (Fischer-Riesz) For every separable, complex Hilbert space H of
in�nite dimension and every countable orthonormal basis S = fe1; e2; : : :g � H
there is an isometric isomorphism

F : H ! l2(S;C) (18)

x 7! ((x; e))e2S

Proof. For every x 2 H we de�ne

F(x) := ((x; e))e2S (19)

The Bessel Inequality (cf. Thm. 4) guarantees that F(x) 2 l2(S;C). It is
clear that F is linear and Parseval�s formula (cf. Thm. 5) assures us that F
is isometric (and continuous). It remains to show that F is bijective: Take an
arbitrary (ye)e2S 2 l2(S;C) and de�ne

x :=
X
e2S

yee (20)

This series converges as (ye)e2S 2 l2(S;C) and clearly F(x) = (ye)e2S . This
completes the proof (continuity of the inverse map is clear by isometry).

2 Convergence in L2(Tn;C)
The Fourier series of a given complex-valued function f 2 L2(Tn;C) is actually
de�ned to be the orthonormal basis representation of f with respect to a special
orthonormal basis, which we are going to de�ne now.

Theorem 7 (Fourier Orthonormal System) 1The complex-valued functions
ek : Tn ! C with k 2 Zn, given by

ek(x) := (2�)
�n

2 eikx = (2�)�
n
2

nY
j=1

eikjxj (21)

1We will read Tn as the space (R=2�Z)n, where we will identify equivalence classes with
their canonical representatives in [0; 2�)n. This supplies us with a coordinate system on Tn.
We will interpret jkj with k 2 Zn as jkj1 (maximum norm). For multi-indices � 2 Nn we

will read j�j as j�j1.
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constitute an orthonormal basis of L2(Tn;C), which we will call the Fourier
basis.

Remark 8 From a historical perspective the Fourier basis was originally de�ned
to be a system of sine and cosine functions. However, thanks to Euler�s formula
we can express such functions as sums of exponential functions, which turns out
to give a much more comfortable theory as it simpli�es formulas signi�cantly.

Proof. (Step 1) First we will show that the functions fekg are an orthonormal
system in L2(Tn;C). To do this, let k; l 2 Zn be arbitrary. We compute
straightforwardly

(ek; el)L2 = (2�)�n
Z
Tn

nY
j=1

eikjxj �
nY
j=1

eiljxjdx

= (2�)�n
Z
Tn

nY
j=1

ei(kj�lj)xjdx,

where we have exploitet the relation eix = e�ix. Now we apply Fubini�s Theo-
rem and get

= (2�)�n
nY
j=1

2�Z
0

ei(kj�lj)xjdxj

= (2�)�n
nY
j=1

�
2� for kj = lj
0 for kj 6= lj

=

�
1 for k = l
0 for k 6= l

Hence, fekg is an orthonormal system of L2(Tn;C). It remains to show that
this orthonormal system is also complete.
(Step 2) The completeness can be proven by the denseness of spanC(ek) in
C(Tn;C) (which is again dense in L2(Tn;C)), which is a consequence of the
Stone-Weierstraßtheorem2 . We will not go into any details, since this will also
follow from later results.
Now we are in the position to de�ne Fourier series.

De�nition 9 (Fourier Series in the L2-sense) Suppose f 2 L2(Tn;C). For
every k 2 Zn we de�ne the k-th Fourier coe¢ cient of f to be the complex number

f̂k := (2�)
�n
Z
Tn

f(x)e�ikxdx (22)

2which requires the functions to be a unital C-algebra, being point-separating and having
complex conjugates.
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(which equals (2�)�
n
2 (f; ek)) and we will callX

k2Zn
f̂k � eikx (23)

the corresponding Fourier series. The Fourier series of f converges to f w.r.t.
the norm of L2(Tn;C) (which follows from Thm. 5). Additionally we have the
(classical) Parseval formula, which statesZ

Tn

jf(x)j2 dx = (2�)n
X
k2Zn

���f̂k���2 (24)

Remark 10 For notational convenience it is usual to scale the coe¢ cients ob-
tained by the Fischer-Riesz isomorphism with a factor of (2�)�

n
2 , hereby avoid-

ing the factor to appear in the Fourier series. We follow this convention (as
Roe does).

Remark 11 The Fischer-Riesz isomorphism provides the mathematical back-
ground for the interesting insight that it makes no di¤erence whether we ap-
proximate a given function f by least-squares-method for its values or for its
frequency distribution.

2.0.1 Pointwise Convergence

It is important to note that convergence in the L2-norm does not imply point-
wise convergence almost everywhere. So what about pointwise convergence in
L2 (or more generally Lp)? We have the following results:

Theorem 12 (Kolmogorov, 1926) 3In L1(T1) there exists a function with a
Fourier series that diverges almost everywhere.

After this result Lusin conjectured that the theorem would carry over to L2.
This became known as Lusin Conjecture, which was generally expected to
be true (for example by Zygmund).

Theorem 13 (Carleson, 1966) 4In L2(T1) the Fourier series of every func-
tion converges pointwise almost everywhere.

This result was a big surprise; Carleson actually found his proof as a result
of an unsuccessful attemp to disprove it. Richard Hunt generalized the result.

3A. N. Kolmogorov "Une série de Fourier-Lebesgue divergente presque partout", C. R.
Acad. Sci. Paris 183 (1926), 2 pages

4L. Carleson "On convergence and growth of partial sums of Fourier series", Acta Math.
116, (1966), 22 pages
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Theorem 14 (Carleson-Hunt, 1967) 5In Lp(T1) with p > 1 the Fourier se-
ries of every function converges pointwise almost everywhere.

A generalization of these results to the higher-dimensional case seems to
be di¢ cult and is still subject of research. If partial sums are taken over a
"growing" polygon of �xed shape (in Z2), then the result carries over to the 2-
dimensional case. However, C. Fe¤erman has given a polygon of varying shape
(a rectangle indeed), for which the result becomes wrong.6

There is an "8-page-proof" of the Carleson theorem7 , however the step from
what the authors actually prove to the Carleson result is not really immediate.

3 Convergence in Cm(Tn;C) (m � 1)
Now we will consider the situation to reconstruct a function f in Cm(Tn;C) from
given Fourier coe¢ cients. Note that the norm of Cm(Tn;C) is very di¤erent
from the norm of L2(Tn;C), so it is no wonder that convergence problems arise.
For our �rst observation, assume that fgkgk2Zn are arbitrary complex numbers.
We will try to interpret them as Fourier coe¢ cients of a (hopefully existing)
unknown function on Tn. The p-th partial sum of the Fourier series is

fp(x) =
X

max(jkj j)�p

gk � eikx (25)

Observe that the �-th partial derivative of fp consequently satis�es

D�fp(x) =
X

max(jkj j)�p

gk � (ik)� � eikx (26)

By the Fischer-Riesz isomorphism (Thm. 6) we know that all "coe¢ cients" g 2
l2(Zn;C) have a corresponding function f 2 L2(Zn;C), which has exactly these
Fourier coe¢ cients. We will start with the question, how far this reconstruction
of a function f from given "coe¢ cients" works in Cm(Tn;C).

Theorem 15 (Reconstruction) Suppose fgkgk2Zn are arbitrary complex num-
bers. If there is a natural number m � 0, such that for all j�j � m the inequalityX

k2Zn
jk�j � jgkj <1 (27)

holds, then there is a complex-valued function f 2 Cm(Tn;C) which has Fourier
coe¢ cients f̂k = gk.

5R. Hunt "On the convergence of Fourier series", Southern Illinois Univ. Press, Carbondale,
1968, 20 pages

6 I quote these two results from Ash, J.M. "Review of S. Krantz �A Panorama of Harmonic
Analysis" (2000), who himself quotes from Krantz.

7M. Lacey, C.M. Thiele "Convergence of Fourier series", preprint, 8 pages (available online)
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Proof. The proof of this theorem is rather straightforward, although it is an
existence proof 8 . Surely (27) is a Cauchy sequence. Hence, for every " > 0
there is a N("), such that for all q > p � N(") the inequalityX

p<max(jkj j)�q

jk�j � jgkj < " (28)

holds. Now we use this inequality to give an estimate for the Fourier series with
coe¢ cients gk. The triangle inequality guarantees that������

X
p<max(jkj j)�q

(ik)� � gk � eikx
������ �

X
p<max(jkj j)�q

��(ik)� � gk � eikx�� (29)

=
X

p<max(jkj j)�q

jk�j � jgkj < ": (30)

Now a direct computation of the norm in Cm gives us

kfp � fqkCm =
X
j�j�m

kD�(fp � fq)kC0 (31)

=
X
j�j�m

sup
x2Tn

������
X

p<max(jkj j)�q

(ik)� � gk � eikx
������ (32)

< (m+ 1)n � ": (33)

Hence, fp is a Cauchy sequence and by completeness of Cm(Tn;C) we obtain
the existence of a function f . It is clear that f has the Fourier coe¢ cients fgkg
(compute them!).

We originally intended to show the convergence of the Fourier series of a
function f 2 Cm(Tn;C). We will do this by showing that the Fourier coe¢ cients
of such a function satisfy the conditions of the preceding theorem, which then
implies the desired result. Quite surprisingly f 2 Cm(Tn;C) does not turn out
to su¢ ce for convergence of the Fourier series in Cm(Tn;C). We will need to
require stronger regularity conditions on f in the form of higher di¤erentiability.9

Theorem 16 (Convergence for Cm) Let m � 0 be some natural number.

Suppose f 2 Cm+d
n+1
2 e(Tn;C). Then

f(x) =
X
k2Zn

f̂k � eikx (34)

w.r.t. the norm of Cm(Tn;C).
8This is because we delegate the "hard work" to show existence to the completeness of

Cm.
9 In the one-dimensional case there are several criteria that su¢ ce for convergence in C0

which are weaker that di¤erentiability; for example it is enough to require f to be of bounded
variation (= the di¤erence of two monotonously increasing functions).
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Proof. For the Fourier coe¢ cients of f we have

f̂k = (2�)
�n
Z
Tn
f(x) � e�ikxdx (35)

Clearly the partial derivatives of f (as far as they exist) can also be expressed as
Fourier series. Assume j�j � m+

�
n+1
2

�
. We will denote the Fourier coe¢ cients

of D�f with f̂�k . For these coe¢ cients we compute

f̂�k = (2�)�n
Z
Tn
D�f(x) � e�ikxdx (36)

= (2�)�n
Z
Tn
f(x) � (�ik)� � e�ikxdx| {z }
partial integration

(37)

= (�ik)� �
�
(2�)�n

Z
Tn
f(x) � e�ikxdx

�
(38)

= (�ik)� � f̂k (39)

From this, we conclude the following inequality, which will be slightly more
convenient for our purposes.X

k2Zn
jkj2(m+d

n+1
2 e) �

���f̂k���2 =
X
k2Zn

max(jk1j ; : : : ; jknj)2(m+d
n+1
2 e) �

���f̂k���2(40)
�

nX
j=1

X
k2Zn

jkj j2(m+d
n+1
2 e) �

���f̂k���2 (41)

�
nX
j=1

X
k2Zn

jk�j2 �
���f̂k���2

(with �=(0;:::;m+dn+12 e;:::;0) at j-th place)

(42)

=
nX
j=1

X
k2Zn

���(�ik)� � f̂k���2| {z }
=kf̂�k2

l2

(43)

=
nX
j=1

kD�fk2L2 <1 (by Fischer-Riesz) (44)

It is time to work on the boundedness conditions that we will need to invoke
Thm. 15. Assume j�j � m. We getX

k2Zn
k 6=0

��k��� � ���f̂k��� = X
k2Zn
k 6=0

max(
���k�11 ��� ; : : : ; ��k�nn ��) � ���f̂k���
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�
X
k2Zn
k 6=0

jkjm �
���f̂k��� (45)

=
X
k2Zn
k 6=0

1

jkjd
n+1
2 e

� jkjm+d
n+1
2 e

| {z }
=jkjm

�
���f̂k��� (46)

=







  

1

jkjd
n+1
2 e

!
�
�
jkjm+d

n+1
2 e �

���f̂k����!






l1

(47)

Then the Cauchy-Schwarz inequality supplies us with the estimate

�
2

vuuutX
k2Zn
k 6=0

1

jkj2d
n+1
2 e

�
2

vuuutX
k2Zn
k 6=0

jkj2(m+d
n+1
2 e) �

���f̂k���2 (48)

One sees that the �rst sum is constant over "boxes" of same extent. Hence, for
some constant Cn (only depending on dimension) we get

�
2

vuuutCn �X
k̂2Z
k̂>0

1

k̂2d
n+1
2 e

� k̂n�1

| {z }
summing over "balls" of constant value

�
2

vuuutX
k2Zn
k 6=0

jkj2(m+d
n+1
2 e) �

���f̂k���2 (49)

�
2

vuuutCn �X
k̂2Z
k̂>0

�k̂�2 �
2

vuuutX
k2Zn
k 6=0

jkj2(m+d
n+1
2 e) �

���f̂k���2 (50)

Now the �rst sum converges (to Cn�
2

6 ) and the second one as well by (40-44).
This is the desired boundedness and Thm. 15 �nishes the proof.
As a by-product we see

Corollary 17 Suppose f 2 C1(Tn;C). Then the Fourier series of f converges
to f w.r.t. the norm of Cm and we haveX

k2Zn
jkjm �

���f̂k���2 <1 (51)

for any m of our choice. Hence the Fourier series of smooth functions are also
very well-behaved.

4 Convergence in Cm(Tn;C) (m = 0)

Why do we need f to be of higher di¤erentiability order than m for an m-
times continuously di¤erentiable Fourier series? We will investigate the case for
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m = 0. So we focus on the more special question: How can the Fourier series
of a continuous function fail to converge? Let us take a closer look at how the
inversion of a Fourier series works. We can actually interpret it as a composition
of two maps; the �rst mapping the function f to its Fourier coe¢ cients f̂ , the
second mapping these coe¢ cients to a function finv (which we hope to coincide
with f).

f

R
Tn
:::du

�! f̂

P
Zn :::�! finv (52)

In order to see why convergence may not work, looking at the composition
of these two maps reveals to be a good approach. We know that this gives the
identity map in L2(Tn;C), however, is this also the case in C(Tn;C)? Suppose
we are given a function f 2 C(Tn;C). Then the partial sums of the Fourier
series have the form

sg(x) =
X

max(jkj j)�g

f̂k � eikx (53)

=
X

max(jkj j)�g

(2�)�n
Z
Tn
f(u)e�ikudu � eikx (54)

= (2�)�n
Z
Tn

X
max(jkj j)�g

f(u)e�iku � eikxdu (55)

= (2�)�n
Z
Tn

X
max(jkj j)�g

f(x� u)eikudu (56)

= (2�)�n
Z
Tn
f(x� u) �

X
max(jkj j)�g

eiku

| {z }
=:Dg (Dirichlet Kernel)

du (57)

= (2�)�n(Dg � f). (58)

De�nition 18 (Dirichlet Kernel) For every g � 0 we de�ne the Dirichlet
kernel Dg : Rn ! C to be

Dg(u) :=
X

�g�kj�g
eiku = (2g + 1)c �

nY
j=1
uj 6=0

sin
��
g + 1

2

�
� uj
�

sin
�
1
2 � uj

� (59)

where c is the number of components of u 2 Rn with uj = 0.

Proof. Here we need to prove the equality of the two given formulas. This
is a rather straightforward computation based on the summation of geometric
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series. We obtainX
�g�kj�g

eiku =
nY
j=1

gX
kj=�g

eikjuj (60)

=
nY
j=1

e�iguj
2gX
kj=0

eikjuj (61)

= (2g + 1)c �
nY
j=1
uj 6=0

e�iguj
ei(2g+1)uj � 1
eiuj � 1| {z }

geometric series

(62)

= (2g + 1)c �
nY
j=1
uj 6=0

ei(2g+1�g)uj � 1 � e�iguj
eiuj � 1 � e

�i 12uj

e�i
1
2uj| {z }

=1

(63)

= (2g + 1)c �
nY
j=1
uj 6=0

ei(g+
1
2 )uj � e�i(g+ 1

2 )uj

ei
1
2uj � e�i 12uj

(64)

= (2g + 1)c �
nY
j=1
uj 6=0

sin
��
g + 1

2

�
� uj
�

sin
�
1
2 � uj

� , (65)

which is exactly what we have claimed to be true.

As we would like the Fourier series of every function f 2 C(Tn;C) to converge
to f , we hope that (Dg � f) converges to f w.r.t. the norm of C(Tn;C). Thus
fDggg!1 needs to be an approximate identity. The sequence Dg induces a
sequence of operators (Dg � �) : C(Tn;C)! C(Tn;C). We will de�ne pointwise
evaluation operators Fg : C(Tn;C)! C by applying (Dg��) and then evaluating
(Dg �f) at some �xed point of Tn (the choice of the point is arbitrary, of course,
we will take (0; 0; : : : ; 0) 2 Tn). Hence,Fg(f) :=

Z
Tn
Dg(�u) � f(u)du

Lemma 19 The norm of these operators turns out to beZ
Tn

jDg(u)j du (66)

Proof. (Step 1) It is rather easy to �nd an upper bound for the operator norm.
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A direct computation leads to

jFg(f)jC :=

������
Z
Tn

Dg(�u) � f(u)du

������ (67)

�
Z
Tn

jDg(u)j � jf(u)j du (68)

�
Z
Tn

jDg(u)j du � sup
x2Tn

jf(x)j (69)

=

Z
Tn

jDg(u)j du � kfkC(Tn;C) (70)

) kFgkL(C(Tn;C);C) �
Z
Tn

jDg(u)j du (71)

(Step 2) Obtaining a lower bound reveals to be a more complicated issue. We
need to construct a sequence of functions that exhausts our desired bound,
showing that no lower number than our claim can be the operator norm. Let
" > 0 be given. We set

f"(u) :=
Dg(u)

jDg(u)j+ "
(72)

( Dg(u)
jDg(u)j would be perfect, but unfortunately it fails to be continuous as the
Dirichlet kernel has zeros) and it is easy to see that f" 2 C(Tn;C) and kf"kC(Tn;C) �
1. Next, we compute

Fg(f") =

Z
Tn

Dg(�u) �
Dg(u)

jDg(u)j+ "
du (73)

=

Z
Tn

Dg(u) �
Dg(u)

jDg(u)j+ "
du (74)

=

Z
Tn

Dg(u) �Dg(u)
jDg(u)j+ "

du (75)

=

Z
Tn

jDg(u)j2

jDg(u)j+ "
du (76)

Here we integrate a positive function, thus

�
Z
Tn

jDg(u)j2 � "2
jDg(u)j+ "

du
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The third binomial formula leads to

=

Z
Tn

(jDg(u)j � ")(jDg(u)j+ ")
jDg(u)j+ "

du (77)

=

Z
Tn

jDg(u)j � "du (78)

This completes our proof if we let 0 < "! 0.
We will need a little more machinery. Without proof we state the following

theorem:

Theorem 20 (Banach-Steinhaus) 10Let X be a Banach space, Y a normed
space, I some index set and Fi 2 L(X;Y ) (with i 2 I). If we have

sup
i2I

kFi(x)kY <1 (for all x) (79)

then this implies (even)
sup
i2I

kFikL(X;Y ) <1 (80)

for the operator norms.

Now let us assume that all Fourier series of continuous functions converge
uniformly (this is what we are looking to �nd a contradiction for). Hence they
also converge pointwise11 . Consequently, the (ordinary complex) norm of the
sequence Fg(f) must be bounded for every function f (by de�nition and as-
sumption Fg(f) converges to f(0) as g ! 1). The Banach-Steinhaus theorem
assures us that even

sup
g
kFgk <1 (81)

holds. However, we will now explicitly compute a lower bound for kFgk,
which will tend to in�nity as g !1. This is the desired contradiction.
10also known as �uniform boundedness principle�. Proofs can be found in any book about

functional analysis.
11The whole argument actually also works for showing the stronger result that not even

pointwise convergence is sure
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Via our formula (66) for the operator norm of Fg, we compute

kFgk =

Z
Tn

jDg(u)j du (82)

=

Z
Tn

(2g + 1)c �
nY
j=1
uj 6=0

����� sin
��
g + 1

2

�
� uj
�

sin
�
1
2 � uj

� ����� du (83)

=

Z
Tn

nY
j=1

����� sin
��
g + 1

2

�
� uj
�

sin
�
1
2 � uj

� ����� du (84)

=
nY
j=1

2�Z
0

����� sin
��
g + 1

2

�
� uj
�

sin
�
1
2 � uj

� ����� duj (85)

The simple estimate sin(x) � x (for x � 0) admits the following lower bound

�
nY
j=1

2�Z
0

��sin ��g + 1
2

�
� uj
���

1
2 � juj j

duj (86)

=
nY
j=1

2��(g+ 1
2 )Z

0

jsin (uj)j
1
2 � juj j

duj (substitution) (87)

= 2n
nY
j=1

2��(g+ 1
2 )Z

0

jsin (uj)j
juj j

duj (88)

� 2n
nY
j=1

gX
k=1

2�kZ
2�(k�1)

jsin (uj)j
juj j

duj (89)

We have introduced the sum splitting of the integrals in order to estimate the
single summands individually.

� 2n
nY
j=1

gX
k=1

2�kZ
2�(k�1)

jsin (uj)j
2�k

duj (90)

= ��n
nY
j=1

gX
k=1

1

k

2�kZ
2�(k�1)

jsin (uj)j duj (91)

= ��n

 
gX
k=1

4

k

!n
(92)
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We see that this tends to in�nity even for n = 1. There also exist constructive
counter-examples. The �rst one was found by DuBois-Reymond in 1876.

Remark 21 There are several ways to "repair" this defect of Fourier series.
The �rst solution which became widely known was due to L. Fejer (around
1900). He sums the Fourier series by means of Cesaro summation (use the
limit of the averages of the partial sums of the Fourier series instead of the
partial sums themselves). This leads to the so-called Fejér-Kernel, which has
signi�cantly nicer properties than the Dirichlet-Kernel (they are positive kernels
and have totally bounded operator norm. The positivity of the kernels makes
them into a Dirac family. S. Lang gave a proof in his recent lecture that such
families approximate a unit element in the convolution algebra. This argument
can be used to show convergence for the Fejér kernel (Lang actually had it on
the board, however, he did not mention the name Fejér)). Using Fejér�s method,
every continuous function can be reconstructed from its (Cesàro-) Fourier series.

~ The End ~
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