Quasitriangular C*-quantum groups and braiding
Sutanu Roy
jointly with Ralf Meyer and Stanisław Lech Woronowicz
Mathematisches Institut, Georg-August Universität Göttingen, Germany

Introduction

We define the notion of quasitriangularity for C^{*}-quantum groups using unitary R-matrices which are solutions of the Yang-Baxter Equation. Then the corepresentation category of Hilbert spaces along with the unitary R-matrix becomes a braided tensor category. Finally, we describe the quantum codouble and the Drinfeld double in the C^{*}-algebraic setting associated to a C^{*}-quantum group, and construct a unitary R -matrix on the quantum codouble. The theory of C^{*}-quantum groups involved in this game is based on the concept of manageable multiplicative unitaries. In particular, we do not assume the existence of Haar weights

```
C*-quantum groups }\mathbb{G}=(C,\Delta
```

- A locally compact quantum space (C ${ }^{*}$-algebra) C.
- A non-degenerate $*$-homomorphism (comultiplication) $\Delta: C \rightarrow \mathcal{M}(C \otimes C)$ which is coassociative: $\left(\mathrm{id}_{C} \otimes \Delta\right) \circ \Delta=\left(\Delta \otimes \mathrm{id}_{C}\right) \circ \Delta$.

Example: $C_{0}(G)$ with $\Delta(f)\left(g_{1}, g_{2}\right):=f\left(g_{1} g_{2}\right)$ for all $f \in C_{0}(G)$ and $g_{1}, g_{2} \in G$, where G is a locally compact group.

Dual quantum group $\widehat{\mathbb{G}}=(\widehat{C}, \hat{\Delta})$

- A locally compact quantum space (C^{*}-algebra) \widehat{C}.
- A non-degenerate coassociative $*$-homomorphism (comultiplication) $\widehat{\Delta}: \widehat{C} \rightarrow \mathcal{M}(\widehat{C} \otimes \widehat{C})$.

Example: $\mathrm{C}_{\mathrm{red}}^{*}(\boldsymbol{G})$ with $\widehat{\Delta}\left(\boldsymbol{\lambda}_{g}\right)=\boldsymbol{\lambda}_{g} \otimes \boldsymbol{\lambda}_{g}$, where $\boldsymbol{\lambda}_{g}$ is the left regular representation on $L^{2}(G)$ for $g \in G$ - a locally compact group.

Reduced bicharacter and dual pairing

There exists a unitary bicharacter $\mathrm{W} \in \mathcal{M}(\hat{C} \otimes C)$:
$\left(\mathrm{id}_{\widehat{C}} \otimes \Delta\right) \mathrm{W}=\mathrm{W}_{12} \mathrm{~W}_{13} \quad\left(\widehat{\Delta} \otimes \mathrm{id}_{C}\right) \mathrm{W}=\mathrm{W}_{23} \mathrm{~W}_{13}$.
Notation: We write $W \in \mathcal{U M}(\widehat{\mathbb{G}} \otimes \mathbb{G})$ for the above reduced bicharacter W.

Quasitriangular C*-quantum groups

$\mathrm{A} \mathrm{C}^{*}$-quantum group $\mathbb{G}=(C, \Delta)$ is quasitriangular if there exists a unitary bicharacter $\mathrm{R} \in \mathcal{M}(\hat{C} \otimes \hat{C})$:

- Bicharacter condition:

$$
\left(\operatorname{id}_{\hat{C}} \otimes \widehat{\Delta}\right) \mathrm{R}=\mathrm{R}_{12} \mathrm{R}_{13} \quad\left(\widehat{\Delta} \otimes \mathrm{id}_{\hat{C}}\right) \mathrm{R}=\mathrm{R}_{23} \mathrm{R}_{13}
$$

- R-matrix condition:

$$
\mathrm{R}(\sigma \circ \widehat{\Delta}(\hat{c})) \mathrm{R}^{*}=\widehat{\Delta}(\hat{c}) \text { for all } \hat{c} \in \hat{C}
$$

where $\sigma\left(\hat{c}_{1} \otimes \hat{c}_{2}\right)=\hat{c}_{2} \otimes \hat{c}_{1}$ for all \hat{c}_{1}, \hat{c}_{2}.
Such an R satisfies the Yang-Baxter Equation:

$$
\mathrm{R}_{23} \mathrm{R}_{13} \mathrm{R}_{12}=\mathrm{R}_{12} \mathrm{R}_{13} \mathrm{R}_{23}
$$

Corepresentation of C*-quantum groups

A unitary $U \in \mathcal{M}(\mathbb{K}(\mathcal{H}) \otimes C)$ is said to be a corepresentation of $\mathbb{G}=(C, \Delta)$ on a Hilbert space \mathcal{H} if it is a character in the second leg: $(\mathrm{id} \otimes \Delta) \boldsymbol{U}=\boldsymbol{U}_{12} \boldsymbol{U}_{13}$.

Example:

$$
\left(\begin{array}{c}
\pi: \hat{C} \rightarrow \mathbb{B}(\mathcal{H}) \\
\text { representation of } \\
\hat{C} \text { on } \mathcal{H}
\end{array}\right) \Longrightarrow\left(\begin{array}{c}
U=\left(\pi \otimes \mathrm{id}_{C}\right) \mathrm{W} \\
\text { corepresentation of } \\
\mathbb{G} \text { on } \mathcal{H}
\end{array}\right)
$$

Remark: Not every corepresentation of \mathbb{G} comes from a representation of $\hat{\boldsymbol{C}}$.

Tensor product of corepresentations

Let $\boldsymbol{U} \in \mathcal{M}(\mathbb{K}(\mathcal{H}) \otimes C)$ and $\boldsymbol{V} \in \mathcal{M}(\mathbb{K}(\mathcal{K}) \otimes C)$ be corepresentations of \mathbb{G} on \mathcal{H} and \mathcal{K} respectively. Then $\boldsymbol{U} \uparrow \boldsymbol{V}:=\boldsymbol{U}_{13} \boldsymbol{V}_{23} \in \mathcal{M}(\mathbb{K}(\mathcal{H} \otimes \mathcal{K}) \otimes C)$ is a corepresentation of \mathbb{G} on $\mathcal{H} \otimes \mathcal{K}$.

Theorem (Meyer, R., Woronowicz, 2012)

There exists a unitary $\boldsymbol{X} \in \mathbb{B}(\mathcal{H} \otimes \mathcal{K})$ which defines a map $X^{(\mathcal{H}, \mathcal{K})}:=\Sigma \circ \boldsymbol{X}$ with the \mathbb{G}-equivariant property:
$X^{(\mathcal{H}, \mathcal{K})}(\boldsymbol{U} \uparrow \boldsymbol{V})=(\boldsymbol{V} \uparrow \boldsymbol{U}) X^{(\mathcal{H}, \mathcal{K})}$, where $\boldsymbol{\Sigma}$ is the flip operator acting on $\mathcal{H} \otimes \mathcal{K}$.
$\chi^{(\cdot, \cdot)}$ defines a braiding on the corepresentation category of Hilbert spaces associated to a quasitriangular quantum group.
Let, $\pi: \hat{C} \rightarrow \mathbb{B}(\mathcal{H})$ and $\rho: \hat{C} \rightarrow \mathbb{B}(\mathcal{K})$ are representations.
Then the following are representations of \hat{C}

- $\pi \mathbb{T} \rho:=(\pi \otimes \rho) \circ \sigma \circ \hat{\Delta}$ on $\mathcal{H} \otimes \mathcal{K}$
- $\rho \mathbb{T} \pi:=(\rho \otimes \pi) \circ \sigma \circ \hat{\Delta}$ on $\mathcal{K} \otimes \mathcal{H}$.

Moreover, $X^{(\mathcal{H}, \mathcal{K})}:=\Sigma \circ(\pi \otimes \rho) \mathrm{R}$ satisfies
$X^{(\mathcal{H}, \mathcal{K})} \circ \pi \mathbb{T} \rho=\rho \mathbb{\top} \pi \circ X^{(\mathcal{H}, \mathcal{K})}$, where Σ is the flip operator. In particular, $\chi^{(\mathcal{H}, \mathcal{K})} \boldsymbol{U} \subset \boldsymbol{V}=\boldsymbol{V} \oplus \boldsymbol{U} X^{(\mathcal{H}, \mathcal{K})}$ for the
corepresentations $\boldsymbol{U}=\left(\boldsymbol{\pi} \otimes \mathrm{id}_{C}\right) \mathrm{W}$ and $\boldsymbol{V}=\left(\boldsymbol{\rho} \otimes \mathrm{id}_{C}\right) \mathrm{W}$ of \mathbb{G} on \mathcal{H} and \mathcal{K} respectively.

Theorem (Woronowicz, 2011)

There exist $\alpha: \widehat{C} \rightarrow \mathbb{B}(\mathcal{H})$ and $\beta: C \rightarrow \mathbb{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} with the commutation relation:

$$
\mathrm{W}_{1 \beta} \mathrm{~W}_{13} \mathrm{~W}_{\alpha 3}=\mathrm{W}_{\alpha 3} \mathrm{~W}_{13} \mathrm{~W}_{1 \beta} \text { in } \mathcal{U} \mathcal{M}(\hat{C} \otimes \mathbb{K}(\mathcal{H}) \otimes C)
$$

and $D:=[\alpha(\widehat{C}) \beta(C)]=[\beta(C) \alpha(\widehat{C})]$ is a C^{*}-algebra where $[\cdot]$ denotes the closed linear span.
Quantum codouble: $\widehat{\mathrm{D}(\mathbb{G})}:=\left(C \otimes \widehat{C}, \Delta_{\widehat{\mathrm{D}(\mathbb{G})}}\right)$,
$\Delta_{\widehat{D}(\mathbb{G})}(c \otimes \hat{c}):=\mathrm{W}_{23}\left(\left(\mathrm{id}_{C} \otimes \sigma \otimes \mathrm{id}_{\hat{C}}\right)(\Delta(c) \otimes \widehat{\Delta}(\hat{c}))\right) \mathrm{W}_{23}^{*}$
Drinfel'd double: $\mathrm{D}(\mathbb{G}):=\left(D, \Delta_{\mathrm{D}(\mathbb{G})}\right)$,
$\Delta_{\mathrm{D}(\mathbb{G})}(\alpha(\widehat{c}) \beta(c)):=((\alpha \otimes \alpha) \widehat{\Delta}(\hat{c}))((\beta \otimes \beta) \Delta(c))$.
Reduced bicharacter:
$V:=\mathrm{W}_{\alpha 2} \widehat{\mathrm{~W}}_{\beta 3} \in \mathcal{U} \mathcal{M}(\mathrm{D}(\mathbb{G}) \otimes \widehat{\mathrm{D}(\mathbb{G})})$ where
$\widehat{\mathrm{W}}:=\sigma\left(\mathrm{W}^{*}\right)$ in $\mathcal{U} \mathcal{M}(C \otimes \widehat{C})$.
Hence $\widehat{D(G)}$ and $D(\mathbb{G})$ are dual to each other, and the dual pairing is established by \boldsymbol{V}.

R-matrix for $\widehat{D}(\mathbb{G})$

The bicharacter $\mathrm{R}:=(\alpha \otimes \beta) \mathrm{W} \in \mathcal{U M}(D \otimes D)$ satisfies the R-matrix condition. Hence $\widehat{D(G)}$ is quasitriangular C^{*}-quantum group.

