

Quasitriangular C*-quantum groups and braiding Sutanu Roy jointly with Ralf Meyer and Stanisław Lech Woronowicz

Mathematisches Institut, Georg-August Universität Göttingen, Germany

Introduction

We define the notion of *quasitriangularity* for C*-quantum groups using *unitary* R-matrices which are solutions of the *Yang-Baxter Equation*. Then the corepresentation category of Hilbert spaces along with the unitary R-matrix becomes a *braided tensor category*. Finally, we describe the *quantum codouble* and the *Drinfeld double* in the C*-algebraic setting associated to a C*-quantum group, and construct a unitary R-matrix on the quantum codouble. The theory of C*-quantum groups involved in this game is based on the concept of *manageable multiplicative unitaries*. In particular, we do not assume the existence of Haar weights

Example:

$$\begin{pmatrix} \pi \colon \hat{C} \to \mathbb{B}(\mathcal{H}) \\ \text{representation of} \\ \hat{C} \text{ on } \mathcal{H} \end{pmatrix} \implies \begin{pmatrix} U = (\pi \otimes \text{id}_C) \mathbb{W} \\ \text{corepresentation of} \\ \mathbb{G} \text{ on } \mathcal{H} \end{pmatrix}$$

Remark: Not every corepresentation of \mathbb{G} comes from a representation of $\hat{C}.$

Tensor product of corepresentations

C*-quantum groups $\mathbb{G} = (C, \Delta)$

- A locally compact quantum space (C*-algebra) C.
- A non-degenerate *-homomorphism (comultiplication) $\Delta \colon C \to \mathcal{M}(C \otimes C)$ which is coassociative: $(\mathrm{id}_C \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}_C) \circ \Delta.$

Example: $C_0(G)$ with $\Delta(f)(g_1,g_2) := f(g_1g_2)$ for all $f \in C_0(G)$ and $g_1,g_2 \in G$, where G is a locally compact group.

Dual quantum group $\widehat{\mathbb{G}} = (\widehat{C}, \hat{\Delta})$

- A locally compact quantum space (C*-algebra) \widehat{C} .
- A non-degenerate coassociative *-homomorphism (comultiplication) $\widehat{\Delta} : \widehat{C} \to \mathcal{M}(\widehat{C} \otimes \widehat{C})$.

Let $U \in \mathcal{M}(\mathbb{K}(\mathcal{H}) \otimes C)$ and $V \in \mathcal{M}(\mathbb{K}(\mathcal{K}) \otimes C)$ be corepresentations of \mathbb{G} on \mathcal{H} and \mathcal{K} respectively. Then $U \oplus V := U_{13}V_{23} \in \mathcal{M}(\mathbb{K}(\mathcal{H} \otimes \mathcal{K}) \otimes C)$ is a corepresentation of \mathbb{G} on $\mathcal{H} \otimes \mathcal{K}$.

Theorem (Meyer, R., Woronowicz, 2012)

There exists a unitary $X \in \mathbb{B}(\mathcal{H} \otimes \mathcal{K})$ which defines a map $\times^{(\mathcal{H},\mathcal{K})} := \Sigma \circ X$ with the G-equivariant property: $\times^{(\mathcal{H},\mathcal{K})}(U \oplus V) = (V \oplus U) \times^{(\mathcal{H},\mathcal{K})}$, where Σ is the flip operator acting on $\mathcal{H} \otimes \mathcal{K}$. $\times^{(\cdot,\cdot)}$ defines a braiding on the corepresentation category of Hilbert spaces associated to a quasitriangular quantum group. Let, $\pi : \hat{C} \to \mathbb{B}(\mathcal{H})$ and $\rho : \hat{C} \to \mathbb{B}(\mathcal{K})$ are representations. Then the following are representations of \hat{C} • $\pi \oplus \rho := (\pi \otimes \rho) \circ \sigma \circ \hat{\Delta}$ on $\mathcal{H} \otimes \mathcal{K}$ • $\rho \oplus \pi := (\rho \otimes \pi) \circ \sigma \circ \hat{\Delta}$ on $\mathcal{K} \otimes \mathcal{H}$. Moreover, $\times^{(\mathcal{H},\mathcal{K})} := \Sigma \circ (\pi \otimes \rho)\mathbb{R}$ satisfies $\times^{(\mathcal{H},\mathcal{K})} \circ \pi \oplus \rho = \rho \oplus \pi \circ \times^{(\mathcal{H},\mathcal{K})}$, where Σ is the flip operator. In particular, $\times^{(\mathcal{H},\mathcal{K})} U \oplus V = V \oplus U \times^{(\mathcal{H},\mathcal{K})}$ for the corepresentations $U = (\pi \otimes \operatorname{id}_C)\mathbb{W}$ and $V = (\rho \otimes \operatorname{id}_C)\mathbb{W}$ of G on \mathcal{H} and \mathcal{K} respectively.

Example: $C^*_{red}(G)$ with $\widehat{\Delta}(\lambda_g) = \lambda_g \otimes \lambda_g$, where λ_g is the left regular representation on $L^2(G)$ for $g \in G$ – a locally compact group.

Reduced bicharacter and dual pairing

There exists a unitary bicharacter $W \in \mathcal{M}(\widehat{C} \otimes C)$: $(\mathrm{id}_{\widehat{C}} \otimes \Delta)W = W_{12}W_{13}$ $(\widehat{\Delta} \otimes \mathrm{id}_{C})W = W_{23}W_{13}.$

Notation: We write $W \in \mathcal{UM}(\widehat{\mathbb{G}} \otimes \mathbb{G})$ for the above reduced bicharacter W.

Quasitriangular C*-quantum groups

A C^{*}-quantum group $\mathbb{G} = (C, \Delta)$ is *quasitriangular* if there exists a unitary bicharacter $\mathsf{R} \in \mathcal{M}(\hat{C} \otimes \hat{C})$:

• Bicharacter condition:

$$(\mathsf{id}_{\hat{C}} \otimes \widehat{\Delta})\mathsf{R} = \mathsf{R}_{12}\mathsf{R}_{13} \qquad (\widehat{\Delta} \otimes \mathsf{id}_{\hat{C}})\mathsf{R} = \mathsf{R}_{23}\mathsf{R}_{13}$$

• R-matrix condition:

Theorem (Woronowicz, 2011)

There exist $\alpha : \widehat{C} \to \mathbb{B}(\mathcal{H})$ and $\beta : C \to \mathbb{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} with the commutation relation: $W_{1\beta}W_{13}W_{\alpha3} = W_{\alpha3}W_{13}W_{1\beta}$ in $\mathcal{UM}(\widehat{C} \otimes \mathbb{K}(\mathcal{H}) \otimes C)$ and $D := [\alpha(\widehat{C})\beta(C)] = [\beta(C)\alpha(\widehat{C})]$ is a C*-algebra where [·] denotes the closed linear span. Quantum codouble: $\widehat{D}(\mathbb{G}) := (C \otimes \widehat{C}, \Delta_{\widehat{D}(\mathbb{G})}),$ $\Delta_{\widehat{D}(\mathbb{G})}(c \otimes \widehat{c}) := W_{23}((\mathrm{id}_C \otimes \sigma \otimes \mathrm{id}_{\widehat{C}})(\Delta(c) \otimes \widehat{\Delta}(\widehat{c})))W_{23}^*$ Drinfel'd double: $D(\mathbb{G}) := (D, \Delta_{D(\mathbb{G})}),$ $\Delta_{D(\mathbb{G})}(\alpha(\widehat{c})\beta(c)) := ((\alpha \otimes \alpha)\widehat{\Delta}(\widehat{c}))((\beta \otimes \beta)\Delta(c)).$ Reduced bicharacter: $V := W_{\alpha2}\widehat{W}_{\beta3} \in \mathcal{UM}(D(\mathbb{G}) \otimes \widehat{D}(\mathbb{G}))$ where $\widehat{W} := \sigma(W^*)$ in $\mathcal{UM}(C \otimes \widehat{C}).$ Hence $\widehat{D}(\mathbb{G})$ and $D(\mathbb{G})$ are dual to each other, and the dual pairing is established by V.

$$\mathsf{R}(\sigma \circ \widehat{\Delta}(\widehat{c}))\mathsf{R}^* = \widehat{\Delta}(\widehat{c})$$
 for all $\widehat{c} \in \widehat{C},$
where $\sigma(\widehat{c}_1 \otimes \widehat{c}_2) = \widehat{c}_2 \otimes \widehat{c}_1$ for all $\widehat{c}_1, \widehat{c}_2$.

Such an R satisfies the *Yang-Baxter Equation*:

 $\mathsf{R}_{23}\mathsf{R}_{13}\mathsf{R}_{12} = \mathsf{R}_{12}\mathsf{R}_{13}\mathsf{R}_{23}$

Corepresentation of C*-quantum groups

A unitary $U \in \mathcal{M}(\mathbb{K}(\mathcal{H}) \otimes C)$ is said to be a corepresentation of $\mathbb{G} = (C, \Delta)$ on a Hilbert space \mathcal{H} if it is a character in the second leg: $(\mathrm{id} \otimes \Delta)U = U_{12}U_{13}$.

R-matrix for $\widehat{D}(\mathbb{G})$

The bicharacter $R := (\alpha \otimes \beta) W \in \mathcal{UM}(D \otimes D)$ satisfies the R-matrix condition. Hence $\widehat{D}(\mathbb{G})$ is quasitriangular C^{*}-quantum group.

http://www.uni-math.gwdg.de/sutanu sutanu@uni-math.gwdg.de