Homomorphisms of quantum groups

Sutanu Roy (joint work with R. Meyer and S.L.Woronowicz)

Mathematics Institute Georg-August-University Göttingen

29 June 2011 XXX Workshop on Geometric Methods in Physics, Białowieża, Poland

Sutanu Roy (Göttingen) Homomorphisms of quantum groups

I bought a new car

Image: A mathematical states and a mathem

Outline

- Locally compact quantum groups
- 3 Hopf *-homomorphisms
- Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Universal bicharacter
 - Right or left coactions as homomorphisms
 - Morphism as a functor between coaction categories

Summary

- Multiplicative unitaries
- 2 Locally compact quantum groups
- Hopf *-homomorphisms
- - Right or left coactions as homomorphisms
 - Morphism as a functor between coaction categories

A (1) < A (1)</p>

- Multiplicative unitaries
- 2 Locally compact quantum groups
- Hopf *-homomorphisms
- - Right or left coactions as homomorphisms
 - Morphism as a functor between coaction categories

- Multiplicative unitaries
- 2 Locally compact quantum groups
- Hopf *-homomorphisms
- Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Universal bicharacter
 - Right or left coactions as homomorphisms
 - Morphism as a functor between coaction categories

- Multiplicative unitaries
- 2 Locally compact quantum groups
- Hopf *-homomorphisms
- Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Universal bicharacter
 - Right or left coactions as homomorphisms
 - Morphism as a functor between coaction categories

Summary

Multiplicative unitaries

- 2 Locally compact quantum groups
- Hopf *-homomorphisms
- 4 Equivalent pictures of homomorphisms of quantum groups a Pickare stars
 - Bicharacters
 - Universal bicharacter
 - Right or left coactions as homomorphisms
 - Morphism as a functor between coaction categories

æ

Summary

Locally compact quantum groups Hopf *-homomorphisms Equivalent pictures of homomorphisms of quantum groups Summary

Definition

Multiplicative unitary

Definition

An operator $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ is said to be multiplicative unitary on the Hilbert space \mathcal{H} if it satisfies the *pentagon equation*

 $\mathbb{W}_{23}\mathbb{W}_{12}=\mathbb{W}_{12}\mathbb{W}_{13}\mathbb{W}_{23}.$

Examples

Consider $\mathcal{H}_G = L^2(G, \lambda)$ for a locally compact group G with a right Haar measure λ . Then, $\mathbb{W}_G \in \mathcal{U}(L^2(G \times G, \lambda \times \lambda))$ defined by $\mathbb{W}_G T(x, y) = T(xy, y)$ is a multiplicative unitary on \mathcal{H}_G .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Locally compact quantum groups Hopf *-homomorphisms Equivalent pictures of homomorphisms of quantum groups Summary

Definition

Multiplicative unitary

Definition

An operator $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ is said to be multiplicative unitary on the Hilbert space \mathcal{H} if it satisfies the *pentagon equation*

 $\mathbb{W}_{23}\mathbb{W}_{12}=\mathbb{W}_{12}\mathbb{W}_{13}\mathbb{W}_{23}.$

Examples

Consider $\mathcal{H}_G = L^2(G, \lambda)$ for a locally compact group G with a right Haar measure λ . Then, $\mathbb{W}_G \in \mathcal{U}(L^2(G \times G, \lambda \times \lambda))$ defined by $\mathbb{W}_G T(x, y) = T(xy, y)$ is a multiplicative unitary on \mathcal{H}_G .

(日) (同) (三) (三)

Locally compact quantum groups Hopf *-homomorphisms Equivalent pictures of homomorphisms of quantum groups Summary

Definition Legs of a multiplicative unitary

Observations

One can define two non-degenerate, normal, coassociative *-homomorphisms from $\mathbb{B}(\mathcal{H})$ to $\mathbb{B}(\mathcal{H} \otimes \mathcal{H})$:

$$\Delta(x) = \mathbb{W}(x \otimes I)\mathbb{W}^*$$

 $\widehat{\Delta}(y) = \mathsf{Ad}(\Sigma) \circ (\mathbb{W}^*(I \otimes y)\mathbb{W}).$

for all $x, y \in \mathbb{B}(\mathcal{H})$ and Σ is the flip operator acting on $\mathcal{H} \otimes \mathcal{H}$. Consider the slices/legs of the multiplicative unitaries:

$$egin{aligned} \mathcal{C} &= \overline{\{(\omega \otimes \mathsf{id})\mathbb{W}: \omega \in \mathbb{B}(\mathcal{H})_*\}}^{\|\cdot\|} \ \widehat{\mathcal{C}} &= \overline{\{(\mathsf{id} \otimes \omega)\mathbb{W}: \omega \in \mathbb{B}(\mathcal{H})_*\}}^{\|\cdot\|} \end{aligned}$$

Locally compact quantum groups Hopf *-homomorphisms Equivalent pictures of homomorphisms of quantum groups Summary

Definition Legs of a multiplicative unitary

Observations

One can define two non-degenerate, normal, coassociative *-homomorphisms from $\mathbb{B}(\mathcal{H})$ to $\mathbb{B}(\mathcal{H} \otimes \mathcal{H})$:

$$\Delta(x) = \mathbb{W}(x \otimes I)\mathbb{W}^*$$

 $\widehat{\Delta}(y) = \mathsf{Ad}(\Sigma) \circ (\mathbb{W}^*(I \otimes y)\mathbb{W}).$

for all $x, y \in \mathbb{B}(\mathcal{H})$ and Σ is the flip operator acting on $\mathcal{H} \otimes \mathcal{H}$. Consider the slices/legs of the multiplicative unitaries:

$$egin{aligned} \mathcal{C} &= \overline{\{(\omega \otimes \mathsf{id})\mathbb{W}: \omega \in \mathbb{B}(\mathcal{H})_*\}}^{\|.\|} \ \widehat{\mathcal{C}} &= \overline{\{(\mathsf{id} \otimes \omega)\mathbb{W}: \omega \in \mathbb{B}(\mathcal{H})_*\}}^{\|.\|}. \end{aligned}$$

Locally compact quantum groups Hopf *-homomorphisms Equivalent pictures of homomorphisms of quantum groups Summary

Definition Legs of a multiplicative unitary

Special class of multiplicative unitaries

Manageability and modularity

- Manageable multiplicative unitary. [Woronowicz, 1997]
- Modular multiplicative unitary. [Soltan-Woronowicz, 2001]

< ロ > < 同 > < 回 > < 回 >

Locally compact quantum groups Hopf *-homomorphisms Equivalent pictures of homomorphisms of quantum groups Summary

Definition Legs of a multiplicative unitary

Nice legs of modular multiplicative unitaries

Theorem (Sołtan, Woronowicz, 2001)

Let, $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ be a modular multiplicative unitary. Then,

- *C* and \widehat{C} are *C*^{*}-sub algebras in $\mathbb{B}(\mathcal{H})$ and $W \in \mathcal{UM}(\widehat{C} \otimes C)$.
- there exists a unique $\Delta_C \in Mor(C, C \otimes C)$ such that

•
$$(\operatorname{id}_{\widehat{C}} \otimes \Delta)W = W_{12}W_{13}.$$

- Δ_C is coassociative: $(\Delta_C \otimes id_C) \circ \Delta_C = (id_C \otimes \Delta_C) \circ \Delta_C$.
- $\Delta(C)(1 \otimes C)$ and $(C \otimes 1)\Delta(C)$ are linearly dense in $C \otimes C$.
- There exists an involutive normal antiautomorphism R_C of C.

Multiplicative unitaries

2 Locally compact quantum groups

- Hopf *-homomorphisms
- Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Universal bicharacter
 - Right or left coactions as homomorphisms
 - Morphism as a functor between coaction categories

<ロ> (四) (四) (三) (三) (三)

æ

Summary

Locally compact quantum groups

Definition [Soltan-Woronowicz, 2001]

The pair $\mathbb{G} = (C, \Delta_C)$ is said to be a locally compact quantum group if the C*-algebra C and $\Delta_C \in Mor(C, C \otimes C)$ comes from a modular multiplicative unitary \mathbb{W} . We say \mathbb{W} giving rise to the quantum group $\mathbb{G} = (C, \Delta_C)$.

Observation

The unitary operator $\widehat{\mathbb{W}} = \operatorname{Ad}(\Sigma)(\mathbb{W}^*)$ gives rise to the quantum group $\widehat{\mathbb{G}} = (\widehat{C}, \Delta_{\widehat{C}})$ which is dual to $\mathbb{G} = (C, \Delta_{C})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Locally compact quantum groups

Definition [Soltan-Woronowicz, 2001]

The pair $\mathbb{G} = (C, \Delta_C)$ is said to be a locally compact quantum group if the C*-algebra C and $\Delta_C \in Mor(C, C \otimes C)$ comes from a modular multiplicative unitary \mathbb{W} . We say \mathbb{W} giving rise to the quantum group $\mathbb{G} = (C, \Delta_C)$.

Observation

The unitary operator $\widehat{\mathbb{W}} = \operatorname{Ad}(\Sigma)(\mathbb{W}^*)$ gives rise to the quantum group $\widehat{\mathbb{G}} = (\widehat{C}, \Delta_{\widehat{C}})$ which is dual to $\mathbb{G} = (C, \Delta_C)$.

・ロト ・同ト ・ヨト ・ヨト

From groups to quantum groups

Given a locally compact group G:

- $\mathbb{G} = (C_0(G), \Delta)$ is a locally compact quantum group with $\Delta f(x, y) = f(xy)$.
- $\widehat{\mathbb{G}} = (C_r^*(G), \hat{\Delta})$ is the dual quantum group of \mathbb{G} with $\Delta(\lambda_g) = \lambda_g \otimes \lambda_g$ for all $g \in G$.
- ^ΩG^u = (C^{*}(G), Â^u) is a C^{*}-bialgebra which is known as
 quantum group C^{*}-algebra of G.

・ロト ・同ト ・ヨト ・ヨト

From groups to quantum groups

Given a locally compact group G:

- $\mathbb{G} = (C_0(G), \Delta)$ is a locally compact quantum group with $\Delta f(x, y) = f(xy)$.
- $\widehat{\mathbb{G}} = (C_r^*(G), \hat{\Delta})$ is the dual quantum group of \mathbb{G} with $\Delta(\lambda_g) = \lambda_g \otimes \lambda_g$ for all $g \in G$.
- ^ΩG^u = (C^{*}(G), Â^u) is a C^{*}-bialgebra which is known as
 quantum group C^{*}-algebra of G.

From groups to quantum groups

Given a locally compact group G:

- $\mathbb{G} = (C_0(G), \Delta)$ is a locally compact quantum group with $\Delta f(x, y) = f(xy)$.
- $\widehat{\mathbb{G}} = (C_r^*(G), \hat{\Delta})$ is the dual quantum group of \mathbb{G} with $\Delta(\lambda_g) = \lambda_g \otimes \lambda_g$ for all $g \in G$.

・ロト ・得ト ・ヨト ・ヨト

Notations

Let, \mathbb{W} be a modular multiplicative unitary giving rise to the quantum group $\mathbb{G} = (C, \Delta_C)$. We write:

- W, when we consider it as an unitary operator action on the Hilbert space $\mathcal{H}\otimes\mathcal{H}$
- W, when we consider it as in element of of $\mathcal{UM}(\hat{C} \otimes C)$.
- *f*: *A* → *B*, when we consider *f* ∈ Mor(*A*, *B*) or
 f: *A* → *M*(*B*) where *A* and *B* are C*-algebras.

・ロト ・同ト ・ヨト ・ヨト

2 Locally compact quantum groups

Hopf *-homomorphisms

- Equivalent pictures of homomorphisms of quantum groups
 Bicharacters
 - Universal bicharacter
 - Right or left coactions as homomorphisms
 - Morphism as a functor between coaction categories

æ

Summary

Hopf *-homomorphism

Let us consider $\mathbb{G} = (C, \Delta_C)$ and $\mathbb{H} = (A, \Delta)$ be two C*-bialgebras.

Definition

A Hopf *-homomorphism between them is a morphism $f: C \rightarrow A$ that intertwines the comultiplications, that is, the following diagram commutes:

Drawback of Hopf *-homomorphisms

Let G and H are two locally compact groups.

- Consider a Hopf * homomorphism from $f: C_0(H) \to C_0(G)$.
- f induces a continuous group homomorphism $\phi: G \to H$.
- *φ* induces a Hopf *-homomorphism *f* : C^{*}_r(G) → C^{*}_r(H) if and only if kernel of *φ* is amenable.

Conclusion

Hopf *-homomorphisms are not compatible with the duality. But, ϕ induces a Hopf * morphism $\hat{f}^{u}: C^{*}(G) \to C^{*}(H)$.

Drawback of Hopf *-homomorphisms

Let G and H are two locally compact groups.

- Consider a Hopf * homomorphism from $f: C_0(H) \to C_0(G)$.
- f induces a continuous group homomorphism $\phi: G \to H$.
- *φ* induces a Hopf *-homomorphism *f* : C^{*}_r(G) → C^{*}_r(H) if and only if kernel of *φ* is amenable.

Conclusion

Hopf *-homomorphisms are not compatible with the duality. But, ϕ induces a Hopf * morphism $\hat{f}^{u}: C^{*}(G) \to C^{*}(H)$.

Drawback of Hopf *-homomorphisms

Let G and H are two locally compact groups.

- Consider a Hopf * homomorphism from $f: C_0(H) \to C_0(G)$.
- f induces a continuous group homomorphism $\phi: G \to H$.
- *φ* induces a Hopf *-homomorphism *f*: C^{*}_r(G) → C^{*}_r(H) if and only if kernel of *φ* is amenable.

Conclusion

Hopf *-homomorphisms are not compatible with the duality. But, ϕ induces a Hopf * morphism $\hat{f}^{u}: C^{*}(G) \to C^{*}(H)$.

Drawback of Hopf *-homomorphisms

Let G and H are two locally compact groups.

- Consider a Hopf * homomorphism from $f: C_0(H) \to C_0(G)$.
- f induces a continuous group homomorphism $\phi: G \to H$.
- *φ* induces a Hopf *-homomorphism *f*: C^{*}_r(G) → C^{*}_r(H) if and only if kernel of *φ* is amenable.

Conclusion

Hopf *-homomorphisms are not compatible with the duality. But, ϕ induces a Hopf * morphism $\hat{f}^{u}: C^{*}(G) \to C^{*}(H)$.

(日) (同) (三) (三)

Drawback of Hopf *-homomorphisms

Let G and H are two locally compact groups.

- Consider a Hopf * homomorphism from $f: C_0(H) \to C_0(G)$.
- f induces a continuous group homomorphism $\phi: G \to H$.
- *φ* induces a Hopf *-homomorphism *f* : C^{*}_r(G) → C^{*}_r(H) if and only if kernel of *φ* is amenable.

Conclusion

Hopf *-homomorphisms are not compatible with the duality. But, ϕ induces a Hopf * morphism $\hat{f}^{u}: C^{*}(G) \to C^{*}(H)$.

- Multiplicative unitaries
- 2 Locally compact quantum groups
- Hopf *-homomorphisms
- 4 Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Universal bicharacter
 - Right or left coactions as homomorphisms
 - Morphism as a functor between coaction categories

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

- Multiplicative unitaries
- 2 Locally compact quantum groups
- Hopf *-homomorphisms
- Equivalent pictures of homomorphisms of quantum groups
 Bicharacters
 - Universal bicharacter
 - Right or left coactions as homomorphisms
 - Morphism as a functor between coaction categories

Summary

Bicharacters

Bicharacters

Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let,
$$\mathbb{G}=(\mathcal{C},\Delta_{\mathcal{C}})$$
 and $\mathbb{H}=(\mathcal{A},\Delta_{\mathcal{A}})$ are two quantum groups.

Definition

A unitary $V \in \mathcal{UM}(\hat{C} \otimes A)$ is called a *bicharacter from C to A* if

$$\begin{split} &(\Delta_{\hat{C}}\otimes \operatorname{id}_{A})V = V_{23}V_{13} & \text{ in } \mathcal{UM}(\hat{C}\otimes \hat{C}\otimes A),\\ &(\operatorname{id}_{\hat{C}}\otimes \Delta_{A})V = V_{12}V_{13} & \text{ in } \mathcal{UM}(\hat{C}\otimes A\otimes A). \end{split}$$

Bicharacters

Bicharacters

Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

(日) (同) (三) (三)

Lemma

A unitary $\mathbb{V} \in \mathcal{U}(\mathcal{H}_C \otimes \mathcal{H}_A)$ comes from a bicharacter $V \in \mathcal{UM}(\hat{C} \otimes A)$ (which is necessarily unique) if and only if

$$\begin{split} \mathbb{V}_{23}\mathbb{W}_{12}^{\mathsf{C}} &= \mathbb{W}_{12}^{\mathsf{C}}\mathbb{V}_{13}\mathbb{V}_{23} & \text{ in } \mathcal{U}(\mathcal{H}_{\mathsf{C}}\otimes\mathcal{H}_{\mathsf{C}}\otimes\mathcal{H}_{\mathsf{A}}), \\ \mathbb{W}_{23}^{\mathsf{A}}\mathbb{V}_{12} &= \mathbb{V}_{12}\mathbb{V}_{13}\mathbb{W}_{23}^{\mathsf{A}} & \text{ in } \mathcal{U}(\mathcal{H}_{\mathsf{C}}\otimes\mathcal{H}_{\mathsf{A}}\otimes\mathcal{H}_{\mathsf{A}}). \end{split}$$

Bicharacters

Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

・ロト ・同ト ・ヨト ・ヨト

An important theorem

Theorem [Woronowicz, 2010]

Let \mathcal{H} be a Hilbert space and let $\mathbb{W} \in \mathbb{B}(\mathcal{H} \otimes \mathcal{H})$ be a modular multiplicative unitary. If $a, b \in \mathbb{B}(\mathcal{H})$ satisfy $\mathbb{W}(a \otimes 1) = (1 \otimes b)\mathbb{W}$, then $a = b = \lambda 1$ for some $\lambda \in \mathbb{C}$. More generally, if $a, b \in \mathcal{M}(\mathbb{K}(\mathcal{H}) \otimes D)$ for some C*-algebra D satisfy $\mathbb{W}_{12}a_{13} = b_{23}\mathbb{W}_{12}$, then $a = b \in \mathbb{C} \cdot 1_{\mathcal{H}} \otimes \mathcal{M}(D)$.

Bicharacters

Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

An important theorem

Corollary

Let (C, Δ_C) be a quantum group. If $c \in \mathcal{M}(C)$, then $\Delta_C(c) \in \mathcal{M}(C \otimes 1)$ or $\Delta_C(c) \in \mathcal{M}(1 \otimes C)$ if and only if $c \in \mathbb{C} \cdot 1$. More generally, if D is a C*-algebra and $c \in \mathcal{M}(C \otimes D)$, then $(\Delta_C \otimes \mathrm{id}_D)(c) \in \mathcal{M}(C \otimes 1 \otimes D)$ or $(\Delta_C \otimes \mathrm{id}_D)(c) \in \mathcal{M}(1 \otimes C \otimes D)$ if and only if $c \in \mathbb{C} \cdot 1 \otimes \mathcal{M}(D)$.

Bicharacters

Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Properties of bicharacters I

Consider $\mathbb{G} = (C, \Delta_C)$, $\mathbb{H} = (A, \Delta_A)$ and $\mathbb{I} = (B, \Delta_B)$ are quantum groups.

- Given a bicharacter $V \in \mathcal{UM}(\hat{C} \otimes A)$ we have:
 - $(R_{\hat{C}}\otimes R_A)V = V.$
 - $\hat{V} = \sigma(V^*) \in \mathcal{UM}(A \otimes \hat{C})$ is the dual bicharacter.

Bicharacters

Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Properties of bicharacters I

Consider
$$\mathbb{G} = (C, \Delta_C)$$
, $\mathbb{H} = (A, \Delta_A)$ and $\mathbb{I} = (B, \Delta_B)$ are quantum groups.

• Given a bicharacter $V \in \mathcal{UM}(\hat{C} \otimes A)$ we have:

•
$$(R_{\hat{C}} \otimes R_A)V = V.$$

• $\hat{V} = \sigma(V^*) \in \mathcal{UM}(A \otimes \hat{C})$ is the dual bicharacter.
Bicharacters

Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< ロ > < 同 > < 回 > < 回 >

Properties of bicharacters II

• Given two bicharacters $V^{C \to A} \in \mathcal{UM}(\hat{C} \otimes A)$ and $V^{A \to B} \in \mathcal{UM}(\hat{A} \otimes B)$, there exists unique bicharacter $V^{C \to B} \in \mathcal{UM}(\hat{C} \otimes B)$ satisfying

$$\mathbb{V}_{13}^{C \to B} = (\mathbb{V}_{12}^{C \to A})^* \mathbb{V}_{23}^{A \to B} \mathbb{V}_{12}^{C \to A} (\mathbb{V}_{23}^{A \to B})^*$$

We denote $V^{C \to B} = V^{A \to B} * V^{C \to A}$ as composition of $V^{C \to A}$ and $V^{A \to B}$.

• Identity bicharacter:

$$V^{C \to A} = V^{C \to A} * W^{C}$$
 and $V^{C \to A} = W^{A} * V^{C \to A}$.

Bicharacters

Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

・ロト ・同ト ・ヨト ・ヨト

Properties of bicharacters II

• Given two bicharacters $V^{C \to A} \in \mathcal{UM}(\hat{C} \otimes A)$ and $V^{A \to B} \in \mathcal{UM}(\hat{A} \otimes B)$, there exists unique bicharacter $V^{C \to B} \in \mathcal{UM}(\hat{C} \otimes B)$ satisfying

$$\mathbb{V}_{13}^{C \to B} = (\mathbb{V}_{12}^{C \to A})^* \mathbb{V}_{23}^{A \to B} \mathbb{V}_{12}^{C \to A} (\mathbb{V}_{23}^{A \to B})^*$$

We denote $V^{C \to B} = V^{A \to B} * V^{C \to A}$ as composition of $V^{C \to A}$ and $V^{A \to B}$.

• Identity bicharacter:

$$V^{C \to A} = V^{C \to A} * W^{C}$$
 and $V^{C \to A} = W^{A} * V^{C \to A}$

Bicharacters

Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< 日 > < 同 > < 三 > < 三 >

Properties of bicharacters III

• Composition of bicharacters is associative:

$$(\mathsf{V}^{B\to D}*\mathsf{V}^{A\to B})*\mathsf{V}^{C\to A}=\mathsf{V}^{B\to D}*(\mathsf{V}^{A\to B}*\mathsf{V}^{C\to A}).$$

where $V^{B \to D} \in \mathcal{UM}(\hat{B} \otimes D)$ where $\mathbb{J} = (D, \Delta_D)$ is a quantum group.

• Compatibility with duality:

$$\widehat{\mathsf{V}_{13}^{C \to B}} = \widehat{\mathsf{V}_{12}^{A \to B}}^* \widehat{\mathsf{V}_{23}^{C \to A}} \widehat{\mathsf{V}_{12}^{A \to B}} \widehat{\mathsf{V}_{23}^{C \to A}}^*$$

Bicharacters

Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Properties of bicharacters III

• Composition of bicharacters is associative:

$$(\mathsf{V}^{B\to D}*\mathsf{V}^{A\to B})*\mathsf{V}^{C\to A}=\mathsf{V}^{B\to D}*(\mathsf{V}^{A\to B}*\mathsf{V}^{C\to A}).$$

where $V^{B \to D} \in \mathcal{UM}(\hat{B} \otimes D)$ where $\mathbb{J} = (D, \Delta_D)$ is a quantum group.

• Compatibility with duality:

$$\widehat{\mathsf{V}_{13}^{C \to B}} = \widehat{\mathsf{V}_{12}^{A \to B}}^* \widehat{\mathsf{V}_{23}^{C \to A}} \widehat{\mathsf{V}_{12}^{A \to B}} \widehat{\mathsf{V}_{23}^{C \to A}}^*$$

Bicharacters

Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< ロ > < 同 > < 回 > < 回 >

Category of locally compact quantum groups

Proposition [Ng, 1997; Meyer, R., Woronowicz, 2011]

The composition of bicharacters is associative, and the multiplicative unitary W^{C} is an identity on C. Thus bicharacters with the above composition and locally compact quantum groups are the arrows and objects of a category. Duality is a contravariant functor acting on this category.

Outline

- Multiplicative unitaries
- 2 Locally compact quantum groups
- Hopf *-homomorphisms

4 Equivalent pictures of homomorphisms of quantum groups

- Bicharacters
- Universal bicharacter
- Right or left coactions as homomorphisms
- Morphism as a functor between coaction categories

< □ > < □ > < □ > < □ > < □ > < □ > = □

Summary

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< 日 > < 同 > < 三 > < 三 >

Corepresentation and universal bialgebra of a quantum group

Definition

A corepresentation of $(\hat{C}, \Delta_{\hat{C}})$ on a C*-algebra D is a unitary multiplier $V \in \mathcal{UM}(\hat{C} \otimes D)$ that satisfies $(\Delta_{\hat{C}} \otimes id_D)(V) = V_{23}V_{13}.$

Remark

Similarly corepresentation of (C, Δ_C) on a C*-algebra D is a unitary multiplier $V \in \mathcal{UM}(D \otimes C)$ that satisfies $(\mathrm{id}_D \otimes \Delta_C)(V) = V_{12}V_{13}.$

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< ロ > < 同 > < 回 > < 回 >

Corepresentation and universal bialgebra of a quantum group

Definition

A corepresentation of $(\hat{C}, \Delta_{\hat{C}})$ on a C*-algebra D is a unitary multiplier $V \in \mathcal{UM}(\hat{C} \otimes D)$ that satisfies $(\Delta_{\hat{C}} \otimes id_D)(V) = V_{23}V_{13}.$

Remark

Similarly corepresentation of (C, Δ_C) on a C*-algebra D is a unitary multiplier $V \in \mathcal{UM}(D \otimes C)$ that satisfies $(\mathrm{id}_D \otimes \Delta_C)(V) = V_{12}V_{13}.$

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< ロ > < 同 > < 回 > < 回 >

Universal quantum group C^* -algebra

Proposition[Soltan, Woronowicz, 2007]

- There exists a maximal corepresentation *Ṽ* ∈ *UM*(*Ĉ*^u ⊗ *C*) of (*C*, Δ_C) on a C*-algebra *Ĉ*^u such that for any corepresentation *U* ∈ *UM*(*D* ⊗ *C*) there exists a unique *φ̃* ∈ Mor(*Ĉ*^u, *D*) such that (*φ̃* ⊗ id_C)*Ṽ* = *U*.
- There exists a unique $\Delta_{\hat{C}^{u}} \in Mor(\hat{C}^{u}, \hat{C}^{u} \otimes \hat{C}^{u})$ such that:

•
$$(\Delta_{\hat{C}^{\mathsf{u}}} \otimes \mathsf{id}_{\mathcal{C}}) \tilde{\mathcal{V}} = \tilde{\mathcal{V}}_{23} \tilde{\mathcal{V}}_{13}$$

• $\Delta_{\hat{C}^{u}}(\hat{C}^{u})(1 \otimes \hat{C}^{u})$ and $(\hat{C}^{u} \otimes 1)\Delta_{\hat{C}^{u}}$ are linearly dense in $(\hat{C}^{u} \otimes \hat{C}^{u})$.

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< ロ > < 同 > < 回 > < 回 >

Universal quantum group C^* -algebra

Proposition[Soltan, Woronowicz, 2007]

- There exists a maximal corepresentation *Ṽ* ∈ *UM*(*Ĉ*^u ⊗ *C*) of (*C*, Δ_C) on a C*-algebra *Ĉ*^u such that for any corepresentation *U* ∈ *UM*(*D* ⊗ *C*) there exists a unique *φ̃* ∈ Mor(*Ĉ*^u, *D*) such that (*φ̃* ⊗ id_C)*Ṽ* = *U*.
- There exists a unique $\Delta_{\hat{C}^{u}} \in Mor(\hat{C}^{u}, \hat{C}^{u} \otimes \hat{C}^{u})$ such that:

•
$$(\Delta_{\hat{C}^{u}} \otimes \mathsf{id}_{C})\tilde{\mathcal{V}} = \tilde{\mathcal{V}}_{23}\tilde{\mathcal{V}}_{13}$$

• $\Delta_{\hat{C}^{u}}(\hat{C}^{u})(1 \otimes \hat{C}^{u})$ and $(\hat{C}^{u} \otimes 1)\Delta_{\hat{C}^{u}}$ are linearly dense in $(\hat{C}^{u} \otimes \hat{C}^{u})$.

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

イロト イポト イヨト イヨト

Universal C^* -bialgebras associated to a quantum group

Universal qunatum groups C*-algebra

 $(\hat{C}^u,\Delta_{\hat{C}^u})$ is known as quantum group C*-algebra or the universal dual of (C,Δ) .

Corollary

There exists a maximal corepresentation $\mathcal{V} \in \mathcal{U}(\hat{C} \otimes C^{u})$ of $(\hat{C}, \Delta_{\hat{C}})$ and C^{*}-bialgebra $(C^{u}, \Delta_{C^{u}})$.

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< 日 > < 同 > < 三 > < 三 >

Universal C^* -bialgebras associated to a quantum group

Universal qunatum groups C*-algebra

 $(\hat{C}^u,\Delta_{\hat{C}^u})$ is known as quantum group C*-algebra or the universal dual of (C,Δ) .

Corollary

There exists a maximal corepresentation $\mathcal{V} \in \mathcal{U}(\hat{C} \otimes C^{u})$ of $(\hat{C}, \Delta_{\hat{C}})$ and C^{*}-bialgebra $(C^{u}, \Delta_{C^{u}})$.

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categori

Reducing morphisms

There exists two Hopf *-homomorphisms $\Lambda \in Mor(C^u, C)$ and $\hat{\Lambda} \in Mor(\hat{C}^u, \hat{C})$ such that

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Preparation results for lifting of bicharacter

Results

Let (A, Δ_A) be a C*-bialgebra. Bicharacters in UM(Ĉ ⊗ A) correspond bijectively to Hopf *-homomorphisms from (C^u, Δ_{C^u}) to (A, Δ_A).

• There is a unique bicharacter $\mathcal{X} \in \mathcal{UM}(\hat{C}^u \otimes C^u)$ such that

 $\mathcal{V}_{23}\tilde{\mathcal{V}}_{12}=\tilde{\mathcal{V}}_{12}\mathcal{X}_{13}\mathcal{V}_{23}\qquad\text{in }\mathcal{UM}(\hat{C}^{u}\otimes\mathbb{K}(\mathcal{H}_{C})\otimes C^{u}).$

Moreover, \mathcal{X} is universal in the following sense: $(\mathrm{id}_{\hat{\mathcal{C}}^u} \otimes \Lambda)\mathcal{X} = \tilde{\mathcal{V}}, (\hat{\Lambda} \otimes \mathrm{id}_{\mathcal{C}^u})\mathcal{X} = \mathcal{V} \text{ and } (\hat{\Lambda} \otimes \Lambda)\mathcal{X} = W.$

• A bicharacter in $\mathcal{UM}(\hat{C} \otimes A)$ lifts uniquely to a bicharacter in $\mathcal{UM}(\hat{C}^u \otimes A^u)$ and hence to bicharacters in $\mathcal{UM}(\hat{C} \otimes A^u)$ and $\mathcal{UM}(\hat{C}^u \otimes A)$.

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Preparation results for lifting of bicharacter

Results

- Let (A, Δ_A) be a C*-bialgebra. Bicharacters in UM(Ĉ ⊗ A) correspond bijectively to Hopf *-homomorphisms from (C^u, Δ_{C^u}) to (A, Δ_A).
- There is a unique bicharacter $\mathcal{X} \in \mathcal{UM}(\hat{C}^u \otimes C^u)$ such that

$\mathcal{V}_{23}\tilde{\mathcal{V}}_{12}=\tilde{\mathcal{V}}_{12}\mathcal{X}_{13}\mathcal{V}_{23}\qquad\text{in }\mathcal{UM}(\hat{C}^{\mathsf{u}}\otimes\mathbb{K}(\mathcal{H}_{\mathcal{C}})\otimes\mathcal{C}^{\mathsf{u}}).$

Moreover, \mathcal{X} is universal in the following sense: $(\mathrm{id}_{\hat{C}^{u}} \otimes \Lambda)\mathcal{X} = \tilde{\mathcal{V}}, (\hat{\Lambda} \otimes \mathrm{id}_{C^{u}})\mathcal{X} = \mathcal{V} \text{ and } (\hat{\Lambda} \otimes \Lambda)\mathcal{X} = W.$

• A bicharacter in $\mathcal{UM}(\hat{C} \otimes A)$ lifts uniquely to a bicharacter in $\mathcal{UM}(\hat{C}^{u} \otimes A^{u})$ and hence to bicharacters in $\mathcal{UM}(\hat{C} \otimes A^{u})$ and $\mathcal{UM}(\hat{C}^{u} \otimes A)$.

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Preparation results for lifting of bicharacter

Results

- Let (A, Δ_A) be a C*-bialgebra. Bicharacters in UM(Ĉ ⊗ A) correspond bijectively to Hopf *-homomorphisms from (C^u, Δ_{C^u}) to (A, Δ_A).
- There is a unique bicharacter $\mathcal{X} \in \mathcal{UM}(\hat{C}^u \otimes C^u)$ such that

$$\mathcal{V}_{23}\tilde{\mathcal{V}}_{12}=\tilde{\mathcal{V}}_{12}\mathcal{X}_{13}\mathcal{V}_{23} \qquad \text{in } \mathcal{UM}(\hat{C}^{\mathsf{u}}\otimes\mathbb{K}(\mathcal{H}_{\mathcal{C}})\otimes C^{\mathsf{u}}).$$

Moreover, \mathcal{X} is universal in the following sense: $(\mathrm{id}_{\hat{C}^{u}} \otimes \Lambda)\mathcal{X} = \tilde{\mathcal{V}}, (\hat{\Lambda} \otimes \mathrm{id}_{C^{u}})\mathcal{X} = \mathcal{V} \text{ and } (\hat{\Lambda} \otimes \Lambda)\mathcal{X} = W.$

• A bicharacter in $\mathcal{UM}(\hat{C} \otimes A)$ lifts uniquely to a bicharacter in $\mathcal{UM}(\hat{C}^u \otimes A^u)$ and hence to bicharacters in $\mathcal{UM}(\hat{C} \otimes A^u)$ and $\mathcal{UM}(\hat{C}^u \otimes A)$.

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Preparation results for lifting of bicharacter

Results

- Let (A, Δ_A) be a C*-bialgebra. Bicharacters in UM(Ĉ ⊗ A) correspond bijectively to Hopf *-homomorphisms from (C^u, Δ_{C^u}) to (A, Δ_A).
- There is a unique bicharacter $\mathcal{X} \in \mathcal{UM}(\hat{C}^u \otimes C^u)$ such that

$$\mathcal{V}_{23}\tilde{\mathcal{V}}_{12}=\tilde{\mathcal{V}}_{12}\mathcal{X}_{13}\mathcal{V}_{23}\qquad\text{in }\mathcal{UM}(\hat{C}^{\mathsf{u}}\otimes\mathbb{K}(\mathcal{H}_{C})\otimes C^{\mathsf{u}}).$$

Moreover, \mathcal{X} is universal in the following sense: $(\mathrm{id}_{\hat{\mathcal{C}}^{u}} \otimes \Lambda)\mathcal{X} = \tilde{\mathcal{V}}, (\hat{\Lambda} \otimes \mathrm{id}_{\mathcal{C}^{u}})\mathcal{X} = \mathcal{V} \text{ and } (\hat{\Lambda} \otimes \Lambda)\mathcal{X} = W.$

• A bicharacter in $\mathcal{UM}(\hat{C} \otimes A)$ lifts uniquely to a bicharacter in $\mathcal{UM}(\hat{C}^u \otimes A^u)$ and hence to bicharacters in $\mathcal{UM}(\hat{C} \otimes A^u)$ and $\mathcal{UM}(\hat{C}^u \otimes A)$.

Bicharacters Universal bicharacter Right or left coactions as homomorphism

< 日 > < 同 > < 三 > < 三 >

Category of universal objects

Theorem [Ng, 1997; Meyer, R., Woronowicz, 2011]

There is an isomorphism between the categories of locally compact quantum groups with bicharacters from *C* to *A* and with Hopf *-homomorphisms $C^{u} \rightarrow A^{u}$ as morphisms $C \rightarrow A$, respectively. The bicharacter associated to a Hopf *-homomorphism $\varphi: C^{u} \rightarrow A^{u}$ is $(\Lambda_{\hat{C}} \otimes \Lambda_{A}\varphi)(\mathcal{X}^{C}) \in \mathcal{UM}(\hat{C} \otimes A)$. Furthermore, the duality on the level of bicharacters corresponds to the duality $\varphi \mapsto \hat{\varphi}$ on Hopf *-homomorphisms, where $\hat{\varphi}: \hat{A}^{u} \rightarrow \hat{C}^{u}$ is the unique Hopf *-homomorphism with $(\hat{\varphi} \otimes id_{A^{u}})(\mathcal{X}^{A}) = (id_{\hat{C}^{u}} \otimes \varphi)(\mathcal{X}^{C}).$

Bicharacters Universal bicharacter Right or left coactions as homomorphism

・ロト ・同ト ・ヨト ・ヨト

Category of universal objects

Theorem [Ng, 1997; Meyer, R., Woronowicz, 2011]

There is an isomorphism between the categories of locally compact quantum groups with bicharacters from *C* to *A* and with Hopf *-homomorphisms $C^{u} \rightarrow A^{u}$ as morphisms $C \rightarrow A$, respectively. The bicharacter associated to a Hopf *-homomorphism $\varphi: C^{u} \rightarrow A^{u}$ is $(\Lambda_{\hat{C}} \otimes \Lambda_{A}\varphi)(\mathcal{X}^{C}) \in \mathcal{UM}(\hat{C} \otimes A)$. Furthermore, the duality on the level of bicharacters corresponds to the duality $\varphi \mapsto \hat{\varphi}$ on Hopf *-homomorphisms, where $\hat{\varphi}: \hat{A}^{u} \rightarrow \hat{C}^{u}$ is the unique Hopf *-homomorphism with $(\hat{\varphi} \otimes \mathrm{id}_{A^{u}})(\mathcal{X}^{A}) = (\mathrm{id}_{\hat{C}^{u}} \otimes \varphi)(\mathcal{X}^{C}).$

Outline

- Multiplicative unitaries
- 2 Locally compact quantum groups
- Hopf *-homomorphisms

Equivalent pictures of homomorphisms of quantum groups

- Bicharacters
- Universal bicharacter
- Right or left coactions as homomorphisms
- Morphism as a functor between coaction categories

5 Summary

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< ロ > < 同 > < 回 > < 回 >

Right/Left coactions

Definition

A right or left coaction of (A, Δ_A) on a C*-algebra C is a morphism $\alpha_R \colon C \to C \otimes A$ or $\alpha_L \colon C \to A \otimes C$ for which following diagram in the left or the right hand side commutes:

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

・ロト ・同ト ・ヨト ・ヨト

Right quantum group homomorphisms

Definition

A right quantum group homomorphism from (C, Δ_C) to (A, Δ_A) is a morphism $\Delta_R \colon C \to C \otimes A$ for which following two diagram commute:

 $C \xrightarrow{\Delta_R} C \otimes A \qquad C \xrightarrow{\Delta_R} C \otimes A$ $\Delta_R \downarrow \qquad \downarrow^{id_C \otimes \Delta_A} \qquad \Delta_C \downarrow \qquad \downarrow^{\Delta_C \otimes id_A}$ $C \otimes A \xrightarrow{\Delta_R \otimes id_A} C \otimes A \otimes A. \qquad C \otimes C \xrightarrow{id_C \otimes \Delta_R} C \otimes C \otimes A,$

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< ロ > < 同 > < 回 > < 回 >

Left quantum group homomorphisms

Definition

A left quantum group homomorphism from (C, Δ_C) to (A, Δ_A) is a morphism $\Delta_L : C \to A \otimes C$ for which following two diagram commute:

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Right quantum group homomorphisms and bicharacters

Theorem [Meyer, R., Woronowicz, 2011]

For any right quantum group homomorphism $\Delta_R \colon C \to C \otimes A$, there is a unique unitary $V \in \mathcal{UM}(\hat{C} \otimes A)$ with

 $(\mathrm{id}_{\hat{C}}\otimes \Delta_R)(\mathsf{W})=\mathsf{W}_{12}V_{13}.$

This unitary is a bicharacter.

Conversely, let V be a bicharacter from C to A, and let $\mathbb{V} \in \mathcal{U}(\mathcal{H}_C \otimes \mathcal{H}_A)$ be the corresponding concrete bicharacter. Then

 $\Delta_R(x) := \mathbb{V}(x \otimes 1)\mathbb{V}^*$ for all $x \in C$

defines a right quantum group homomorphism from C to A. These two maps between bicharacters and right quantum group homomorphisms are inverse to each other.

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Right quantum group homomorphisms and bicharacters

Theorem [Meyer, R., Woronowicz, 2011]

For any right quantum group homomorphism $\Delta_R \colon C \to C \otimes A$, there is a unique unitary $V \in \mathcal{UM}(\hat{C} \otimes A)$ with

 $(\mathrm{id}_{\hat{C}}\otimes \Delta_R)(\mathsf{W})=\mathsf{W}_{12}V_{13}.$

This unitary is a bicharacter.

Conversely, let V be a bicharacter from C to A, and let $\mathbb{V} \in \mathcal{U}(\mathcal{H}_C \otimes \mathcal{H}_A)$ be the corresponding concrete bicharacter. Then

$$\Delta_R(x) := \mathbb{V}(x \otimes 1)\mathbb{V}^*$$
 for all $x \in C$

defines a right quantum group homomorphism from C to A. These two maps between bicharacters and right quantum group homomorphisms are inverse to each other.

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Left quantum group homomorphisms and bicharacters

Theorem [Meyer, R., Woronowicz, 2011]

For any left quantum group homomorphism $\Delta_L \colon C \to A \otimes C$, there is a unique unitary $V \in \mathcal{UM}(\hat{C} \otimes A)$ with

 $(\mathrm{id}_{\hat{C}}\otimes\Delta_L)(\mathsf{W})=V_{12}\mathsf{W}_{13}.$

This unitary is a bicharacter.

Conversely, let V be a bicharacter from C to A, let $\mathbb{V} \in \mathcal{U}(\mathcal{H}_C \otimes \mathcal{H}_A)$ be the corresponding concrete bicharacter. Then

 $\Delta_L(x) := (R_A \otimes R_C)(\hat{\mathbb{V}}^*(1 \otimes R_C(x))\hat{\mathbb{V}})$ for all $x \in C$

is a left quantum group homomorphism from C to A. These two maps between bicharacters and left quantum group homomorphisms are bijective and inverse to each other.

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Left quantum group homomorphisms and bicharacters

Theorem [Meyer, R., Woronowicz, 2011]

For any left quantum group homomorphism $\Delta_L \colon C \to A \otimes C$, there is a unique unitary $V \in \mathcal{UM}(\hat{C} \otimes A)$ with

 $(\mathrm{id}_{\hat{C}}\otimes\Delta_L)(\mathsf{W})=V_{12}\mathsf{W}_{13}.$

This unitary is a bicharacter.

Conversely, let V be a bicharacter from C to A, let $\mathbb{V} \in \mathcal{U}(\mathcal{H}_C \otimes \mathcal{H}_A)$ be the corresponding concrete bicharacter. Then

$$\Delta_L(x) := (R_A \otimes R_C)(\hat{\mathbb{V}}^*(1 \otimes R_C(x))\hat{\mathbb{V}}) \qquad ext{for all } x \in C$$

is a left quantum group homomorphism from C to A. These two maps between bicharacters and left quantum group homomorphisms are bijective and inverse to each other.

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Commutation relation between left and right homomorphisms

Lemma

Let $\Delta_L: C \to A \otimes C$ and $\Delta_R: C \to C \otimes B$ be a left and a right quantum group homomorphism. Then the following diagram commutes:

$$C \xrightarrow{\Delta_L} A \otimes C$$

$$\Delta_R \bigvee id_A \otimes \Delta_R$$

$$C \otimes B \xrightarrow{\Delta_L \otimes id_B} A \otimes C \otimes B.$$

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Commutation relation between left and right homomorphisms

Lemma

 Δ_L and Δ_R are associated to the same bicharacter $V \in \mathcal{UM}(\hat{C} \otimes A)$ if and only if the following diagram commutes:

$$C \xrightarrow{\Delta_C} C \otimes C$$

$$\Delta_C \downarrow \qquad \qquad \downarrow^{\mathrm{id}_C \otimes \Delta_L}$$

$$C \otimes C \xrightarrow{\Delta_R \otimes \mathrm{id}_C} C \otimes A \otimes C.$$

Outline

- Multiplicative unitaries
- 2 Locally compact quantum groups
- Hopf *-homomorphisms

Equivalent pictures of homomorphisms of quantum groups

- Bicharacters
- Universal bicharacter
- Right or left coactions as homomorphisms
- Morphism as a functor between coaction categories

Summary

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

イロト イポト イヨト イヨト

Coaction category

Lemma

Right or left quantum group homomorphisms are injective and satisfies

 $\Delta_R(C)(1\otimes A)$ is linearly dense in $C\otimes A$

 $\Delta_L(C)(A \otimes 1)$ is linearly dense in $A \otimes C$

Equivalently right and left quantum group homomorphisms are injective and continuous as coactions.

- Let C*alg(A) or C*alg(A, Δ_A) denote the category of C*-algebras with a continuous, injective A-coaction.
- A-equivariant morphisms as arrows in C*alg(A).

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< 日 > < 同 > < 三 > < 三 >

Coaction category

Lemma

Right or left quantum group homomorphisms are injective and satisfies

 $\Delta_R(C)(1\otimes A)$ is linearly dense in $C\otimes A$

 $\Delta_L(C)(A \otimes 1)$ is linearly dense in $A \otimes C$

Equivalently right and left quantum group homomorphisms are injective and continuous as coactions.

- Let C*alg(A) or C*alg(A, Δ_A) denote the category of C*-algebras with a continuous, injective A-coaction.
- A-equivariant morphisms as arrows in C*alg(A).

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< 日 > < 同 > < 三 > < 三 >

Coaction category

Lemma

Right or left quantum group homomorphisms are injective and satisfies

 $\Delta_R(C)(1\otimes A)$ is linearly dense in $C\otimes A$

 $\Delta_L(C)(A \otimes 1)$ is linearly dense in $A \otimes C$

Equivalently right and left quantum group homomorphisms are injective and continuous as coactions.

- Let C*alg(A) or C*alg(A, Δ_A) denote the category of C*-algebras with a continuous, injective A-coaction.
- A-equivariant morphisms as arrows in $\mathfrak{C}^*\mathfrak{alg}(A)$.

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Assumptions

- (A, Δ_A) and (B, Δ_B) be locally compact quantum groups.
- $\alpha: C \to C \otimes A$ be a continuous right coaction of (A, Δ_A) on a C*-algebra C.
- $\Delta_R \colon A \to A \otimes B$ be a right quantum group homomorphism.
- $\mathfrak{For}: \mathfrak{C}^*\mathfrak{alg}(A) \to \mathfrak{C}^*\mathfrak{alg}$ be the functor that forgets the *A*-coaction.

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Homomorphism as a functor between coaction categories

Theorem [Meyer, R., Woronowicz, 2011]

There is a unique continuous coaction γ of (B, Δ_B) on C such that the following diagram commutes:

This construction is a functor $F : \mathfrak{C}^*\mathfrak{alg}(A) \to \mathfrak{C}^*\mathfrak{alg}(B)$ with $\mathfrak{For} \circ F = \mathfrak{For}$ as any A-equivariant morphisms $D \to D'$ are also B-equivariant for $D, D' \in \mathfrak{C}^*\mathfrak{alg}A$. Conversely, any such functor is of this form for some right quantum group homomorphism Δ_R .

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Homomorphism as a functor between coaction categories

Theorem [Meyer, R., Woronowicz, 2011]

There is a unique continuous coaction γ of (B, Δ_B) on C such that the following diagram commutes:

$$C \xrightarrow{\alpha} C \otimes A$$

$$\uparrow \downarrow id_C \otimes \Delta_F$$

$$C \otimes B \xrightarrow{\alpha \otimes id_B} C \otimes A \otimes B.$$

This construction is a functor $F : \mathfrak{C}^*\mathfrak{alg}(A) \to \mathfrak{C}^*\mathfrak{alg}(B)$ with $\mathfrak{For} \circ F = \mathfrak{For}$ as any A-equivariant morphisms $D \to D'$ are also B-equivariant for $D, D' \in \mathfrak{C}^*\mathfrak{alg}A$. Conversely, any such functor is of this form for some right quantum group homomorphism Δ_R .
Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Homomorphism as a functor between coaction categories

Theorem [Meyer, R., Woronowicz, 2011]

There is a unique continuous coaction γ of (B, Δ_B) on C such that the following diagram commutes:

This construction is a functor $F : \mathfrak{C}^*\mathfrak{alg}(A) \to \mathfrak{C}^*\mathfrak{alg}(B)$ with $\mathfrak{For} \circ F = \mathfrak{For}$ as any A-equivariant morphisms $D \to D'$ are also B-equivariant for $D, D' \in \mathfrak{C}^*\mathfrak{alg}A$. Conversely, any such functor is of this form for some right quantum group homomorphism Δ_R .

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

Assumptions

- (A, Δ_A) and (B, Δ_B) be locally compact quantum groups.
- $\alpha: C \to C \otimes A$ be a right quantum group homomorphism where (C, Δ_C) is a quantum group.
- $\beta: A \to A \otimes B$ be another right quantum group homomorphism.
- $F_{\alpha}: \mathfrak{C}^*\mathfrak{alg}(C) \to \mathfrak{C}^*\mathfrak{alg}(A)$ and $F_{\beta}: \mathfrak{C}^*\mathfrak{alg}(A) \to \mathfrak{C}^*\mathfrak{alg}(B)$ be the associated functors.

•
$$V^{C \to B} = V^{A \to B} * V^{C \to A}$$

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< ロ > < 同 > < 回 > < 回 >

Composition of right quantum group homomorphism

Proposition

There exists $\gamma: C \to C \otimes B$ which is the unique right quantum group homomorphism that makes the following diagram commute:

which satisfies $F_{\beta} \circ F_{\alpha} = F_{\gamma}$. Moreover, V^{C o B} is the bicharacter associated to γ

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< 口 > < 同 > < 三 > < 三

Composition of right quantum group homomorphism

Proposition

There exists $\gamma: C \to C \otimes B$ which is the unique right quantum group homomorphism that makes the following diagram commute:

which satisfies $F_{\beta} \circ F_{\alpha} = F_{\gamma}$. Moreover, $V^{C \to B}$ is the bicharacter associated to γ .

Bicharacters Universal bicharacter Right or left coactions as homomorphisms Morphism as a functor between coaction categories

< ロ > < 同 > < 三 > < 三 >

Composition of right quantum group homomorphism

Proposition

There exists $\gamma: C \to C \otimes B$ which is the unique right quantum group homomorphism that makes the following diagram commute:

which satisfies $F_{\beta} \circ F_{\alpha} = F_{\gamma}$. Moreover, $V^{C \to B}$ is the bicharacter associated to γ .

Outline

- Multiplicative unitaries
- 2 Locally compact quantum groups
- Hopf *-homomorphisms
- Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Universal bicharacter
 - Right or left coactions as homomorphisms
 - Morphism as a functor between coaction categories

æ

5 Summary

• Multiplicative unitaries are the fundamental objects.

Every modular/manageable multiplicative unitary
 W ∈ UM(Ĉ ⊗ C) admits a unique lift to X ∈ UM(Ĉ^u ⊗ C^u).
 Hence they are *basic* in sense of Ng and hence
 the *birepresentations* (bicharacters in our terminology) are
 indeed the correct notion of homomorphisms between
 quantum groups.

Summary

- Multiplicative unitaries are the fundamental objects.
- Every modular/manageable multiplicative unitary W ∈ UM(Ĉ ⊗ C) admits a unique lift to X ∈ UM(Ĉ^u ⊗ C^u). Hence they are *basic* in sense of Ng and hence the *birepresentations* (bicharacters in our terminology) are indeed the correct notion of homomorphisms between quantum groups.

A (1) < 3</p>

- Vaes introduced the notion of homomorphisms between quantum groups (von Neumann algebraic setting) as Hopf*-homomorphisms between universal C*-bialgebras which is equivalent to the bicharacters.
- Last but not least, bicharacters induces a functor between coaction categories via left/right quantum group homomorphism which is a new realization of homomorphisms between quantum groups.

A B > A B >

Summary

- Vaes introduced the notion of homomorphisms between quantum groups (von Neumann algebraic setting) as Hopf*-homomorphisms between universal C*-bialgebras which is equivalent to the bicharacters.
- Last but not least, bicharacters induces a functor between coaction categories via left/right quantum group homomorphism which is a new realization of homomorphisms between quantum groups.

More details.....

http://arxiv.org/abs/1011.4284/v2

Sutanu Roy (Göttingen) Homomorphisms of quantum groups

イロト イポト イヨト イヨト

э

Thank you for your attention!

<ロ> <同> <同> < 同> < 同>