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Definition
Legs of a multiplicative unitary

Multiplicative unitary

Definition

An operator W ∈ U(H⊗H) is said to be multiplicative unitary on
the Hilbert space H if it satisfies the pentagon equation

W23W12 = W12W13W23.

Examples

Consider HG = L2(G , λ) for a locally compact group G with a
right Haar measure λ. Then, WG ∈ U(L2(G × G , λ× λ)) defined
by WGT (x , y) = T (xy , y) is a multiplicative unitary on HG .
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Definition
Legs of a multiplicative unitary

Observations

One can define two non-degenerate, normal, coassociative
∗-homomorphisms from B(H) to B(H⊗H):

∆(x) = W(x ⊗ I )W∗

∆̂(y) = Ad(Σ) ◦ (W∗(I ⊗ y)W).

for all x , y ∈ B(H) and Σ is the flip operator acting on H⊗H.
Consider the slices/legs of the multiplicative unitaries:

C = {(ω ⊗ id)W : ω ∈ B(H)∗}
‖.‖

Ĉ = {(id⊗ ω)W : ω ∈ B(H)∗}
‖.‖
.
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Definition
Legs of a multiplicative unitary

Special class of multiplicative unitaries

Manageability and modularity

Manageable multiplicative unitary. [Woronowicz, 1997]

Modular multiplicative unitary. [So ltan-Woronowicz, 2001]
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Definition
Legs of a multiplicative unitary

Nice legs of modular multiplicative unitaries

Theorem (So ltan, Woronowicz, 2001)

Let, W ∈ U(H⊗H) be a modular multiplicative unitary. Then,

C and Ĉ are C ∗-sub algebras in B(H) and W ∈ UM(Ĉ ⊗ C ).

there exists a unique ∆C ∈ Mor(C ,C ⊗ C ) such that

(idĈ ⊗∆)W = W12W13.
∆C is coassociative: (∆C ⊗ idC ) ◦∆C = (idC ⊗∆C ) ◦∆C .
∆(C )(1⊗ C ) and (C ⊗ 1)∆(C ) are linearly dense in C ⊗ C.

There exists an involutive normal antiautomorphism RC of C .
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Locally compact quantum groups

Definition [So ltan-Woronowicz, 2001]

The pair G = (C ,∆C ) is said to be a locally compact quantum
group if the C∗-algebra C and ∆C ∈ Mor(C ,C ⊗ C ) comes from a
modular multiplicative unitary W. We say W giving rise to the
quantum group G = (C ,∆C ).

Observation

The unitary operator Ŵ = Ad(Σ)(W∗) gives rise to the quantum
group Ĝ = (Ĉ ,∆Ĉ ) which is dual to G = (C ,∆C ).

Sutanu Roy (Göttingen) Homomorphisms of quantum groups



Multiplicative unitaries
Locally compact quantum groups

Hopf *-homomorphisms
Equivalent pictures of homomorphisms of quantum groups

Summary

Locally compact quantum groups

Definition [So ltan-Woronowicz, 2001]

The pair G = (C ,∆C ) is said to be a locally compact quantum
group if the C∗-algebra C and ∆C ∈ Mor(C ,C ⊗ C ) comes from a
modular multiplicative unitary W. We say W giving rise to the
quantum group G = (C ,∆C ).

Observation
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From groups to quantum groups

Given a locally compact group G :

G = (C0(G ),∆) is a locally compact quantum group
with ∆f (x , y) = f (xy).

Ĝ = (C∗r (G ), ∆̂) is the dual quantum group of G with
∆(λg ) = λg ⊗ λg for all g ∈ G .

Ĝu = (C ∗(G ), ∆̂u) is a C∗-bialgebra which is known as
quantum group C∗-algebra of G.
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Notations

Let, W be a modular multiplicative unitary giving rise to the
quantum group G = (C ,∆C ). We write:

W, when we consider it as an unitary operator action on the
Hilbert space H⊗H
W, when we consider it as in element of of UM(Ĉ ⊗ C ).

f : A→ B, when we consider f ∈ Mor(A,B) or
f : A→M(B) where A and B are C∗-algebras.
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Hopf ∗-homomorphism

Let us consider G = (C ,∆C ) and H = (A,∆) be two
C∗-bialgebras.

Definition

A Hopf ∗-homomorphism between them is a morphism f : C → A
that intertwines the comultiplications, that is, the following
diagram commutes:

C

∆C

��

f // A

∆A

��
C ⊗ C

f⊗f
// A⊗ A.

Sutanu Roy (Göttingen) Homomorphisms of quantum groups



Multiplicative unitaries
Locally compact quantum groups

Hopf *-homomorphisms
Equivalent pictures of homomorphisms of quantum groups

Summary

Drawback of Hopf ∗-homomorphisms

Let G and H are two locally compact groups.

Consider a Hopf ∗ homomorphism from f : C0(H)→ C0(G ).

f induces a continuous group homomorphism φ : G → H.

φ induces a Hopf ∗-homomorphism f̂ : C∗r (G )→ C∗r (H) if and
only if kernel of φ is amenable.

Conclusion

Hopf ∗-homomorphisms are not compatible with the duality.
But, φ induces a Hopf ∗ morphism f̂ u : C ∗(G )→ C ∗(H).
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Bicharacters
Universal bicharacter
Right or left coactions as homomorphisms
Morphism as a functor between coaction categories

Bicharacters

Let, G = (C ,∆C ) and H = (A,∆A) are two quantum groups.

Definition

A unitary V ∈ UM(Ĉ ⊗ A) is called a bicharacter from C to A if

(∆Ĉ ⊗ idA)V = V23V13 in UM(Ĉ ⊗ Ĉ ⊗ A),

(idĈ ⊗∆A)V = V12V13 in UM(Ĉ ⊗ A⊗ A).
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Bicharacters

Lemma

A unitary V ∈ U(HC ⊗HA) comes from a bicharacter
V ∈ UM(Ĉ ⊗ A) (which is necessarily unique) if and only if

V23WC
12 = WC

12V13V23 in U(HC ⊗HC ⊗HA),

WA
23V12 = V12V13WA

23 in U(HC ⊗HA ⊗HA).
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An important theorem

Theorem [Woronowicz, 2010]

Let H be a Hilbert space and let W ∈ B(H⊗H) be a modular
multiplicative unitary. If a, b ∈ B(H) satisfy W(a⊗ 1) = (1⊗ b)W,
then a = b = λ1 for some λ ∈ C. More generally, if
a, b ∈M(K(H)⊗ D) for some C∗-algebra D satisfy
W12a13 = b23W12, then a = b ∈ C · 1H ⊗M(D).
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An important theorem

Corollary

Let (C ,∆C ) be a quantum group. If c ∈M(C ), then
∆C (c) ∈M(C ⊗ 1) or ∆C (c) ∈M(1⊗ C ) if and only if c ∈ C · 1.
More generally, if D is a C∗-algebra and c ∈M(C ⊗ D), then
(∆C ⊗ idD)(c) ∈M(C ⊗ 1⊗ D) or
(∆C ⊗ idD)(c) ∈M(1⊗ C ⊗ D) if and only if c ∈ C · 1⊗M(D).
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Properties of bicharacters I

Consider G = (C ,∆C ), H = (A,∆A) and I = (B,∆B) are
quantum groups.

Given a bicharacter V ∈ UM(Ĉ ⊗ A) we have:

(RĈ ⊗ RA)V = V .

V̂ = σ(V ∗) ∈ UM(A⊗ Ĉ ) is the dual bicharacter.
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Properties of bicharacters II

Given two bicharacters VC→A ∈ UM(Ĉ ⊗ A) and
VA→B ∈ UM(Â⊗ B), there exists unique
bicharacter VC→B ∈ UM(Ĉ ⊗ B) satisfying

VC→B
13 = (VC→A

12 )∗VA→B
23 VC→A

12 (VA→B
23 )∗.

We denote VC→B = VA→B ∗ VC→A as composition of VC→A

and VA→B .

Identity bicharacter:

VC→A = VC→A ∗WC and VC→A = WA ∗ VC→A.
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Properties of bicharacters III

Composition of bicharacters is associative:

(VB→D ∗ VA→B) ∗ VC→A = VB→D ∗ (VA→B ∗ VC→A).

where VB→D ∈ UM(B̂ ⊗ D) where J = (D,∆D) is a
quantum group.

Compatibility with duality:

V̂C→B
13 = V̂A→B

12

∗
V̂C→A

23 V̂A→B
12 V̂C→A

23

∗
.
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Category of locally compact quantum groups

Proposition [Ng, 1997; Meyer, R., Woronowicz, 2011]

The composition of bicharacters is associative, and the
multiplicative unitary WC is an identity on C . Thus bicharacters
with the above composition and locally compact quantum groups
are the arrows and objects of a category. Duality is a contravariant
functor acting on this category.
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Corepresentation and universal bialgebra of a quantum
group

Definition

A corepresentation of (Ĉ ,∆Ĉ ) on a C*-algebra D is a unitary

multiplier V ∈ UM(Ĉ ⊗ D) that satisfies
(∆Ĉ ⊗ idD)(V ) = V23V13.

Remark

Similarly corepresentation of (C ,∆C ) on a C*-algebra D is a
unitary multiplier V ∈ UM(D ⊗ C ) that satisfies
(idD ⊗∆C )(V ) = V12V13.
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Universal quantum group C ∗-algebra

Proposition[So ltan, Woronowicz, 2007]

There exists a maximal corepresentation Ṽ ∈ UM(Ĉu ⊗ C ) of
(C ,∆C ) on a C*-algebra Ĉu such that for any
corepresentation U ∈ UM(D ⊗ C ) there exists a unique
φ̂ ∈ Mor(Ĉu,D) such that (φ̂⊗ idC )Ṽ = U.

There exists a unique ∆Ĉu ∈ Mor(Ĉu, Ĉu ⊗ Ĉu) such that:

(∆Ĉ u ⊗ idC )Ṽ = Ṽ23Ṽ13

∆Ĉ u (Ĉ u)(1⊗ Ĉ u) and (Ĉ u ⊗ 1)∆Ĉ u are linearly dense in

(Ĉ u ⊗ Ĉ u).

Sutanu Roy (Göttingen) Homomorphisms of quantum groups



Multiplicative unitaries
Locally compact quantum groups

Hopf *-homomorphisms
Equivalent pictures of homomorphisms of quantum groups

Summary

Bicharacters
Universal bicharacter
Right or left coactions as homomorphisms
Morphism as a functor between coaction categories

Universal quantum group C ∗-algebra

Proposition[So ltan, Woronowicz, 2007]

There exists a maximal corepresentation Ṽ ∈ UM(Ĉu ⊗ C ) of
(C ,∆C ) on a C*-algebra Ĉu such that for any
corepresentation U ∈ UM(D ⊗ C ) there exists a unique
φ̂ ∈ Mor(Ĉu,D) such that (φ̂⊗ idC )Ṽ = U.

There exists a unique ∆Ĉu ∈ Mor(Ĉu, Ĉu ⊗ Ĉu) such that:

(∆Ĉ u ⊗ idC )Ṽ = Ṽ23Ṽ13

∆Ĉ u (Ĉ u)(1⊗ Ĉ u) and (Ĉ u ⊗ 1)∆Ĉ u are linearly dense in

(Ĉ u ⊗ Ĉ u).
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Universal C ∗-bialgebras associated to a quantum group

Universal qunatum groups C∗-algebra

(Ĉu,∆Ĉu) is known as quantum group C∗-algebra or the universal
dual of (C ,∆) .

Corollary

There exists a maximal corepresentation V ∈ U(Ĉ ⊗ Cu) of
(Ĉ ,∆Ĉ ) and C∗-bialgebra (Cu,∆Cu).
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Reducing morphisms

There exists two Hopf ∗-homomorphisms Λ ∈ Mor(Cu,C ) and
Λ̂ ∈ Mor(Ĉu, Ĉ ) such that

Cu

∆Cu

��

Λ // C

∆C

��
Cu ⊗ Cu

Λ⊗Λ
// C ⊗ C .

Ĉu

∆Ĉu

��

Λ̂ // Ĉ

∆Ĉ
��

Ĉu ⊗ Ĉu
Λ̂⊗Λ̂

// Ĉ ⊗ Ĉ .
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Preparation results for lifting of bicharacter

Results

Let (A,∆A) be a C*-bialgebra. Bicharacters in UM(Ĉ ⊗ A)
correspond bijectively to Hopf ∗-homomorphisms
from (Cu,∆Cu) to (A,∆A).

There is a unique bicharacter X ∈ UM(Ĉu ⊗ Cu) such that

V23Ṽ12 = Ṽ12X13V23 in UM(Ĉu ⊗K(HC )⊗ Cu).

Moreover, X is universal in the following sense:
(idĈu ⊗ Λ)X = Ṽ, (Λ̂⊗ idCu)X = V and (Λ̂⊗ Λ)X = W.

A bicharacter in UM(Ĉ ⊗ A) lifts uniquely to a bicharacter in
UM(Ĉu ⊗ Au) and hence to bicharacters in UM(Ĉ ⊗ Au)
and UM(Ĉu ⊗ A).
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Category of universal objects

Theorem [Ng, 1997; Meyer, R., Woronowicz, 2011]

There is an isomorphism between the categories of locally compact
quantum groups with bicharacters from C to A and with Hopf
∗-homomorphisms Cu → Au as morphisms C → A, respectively.
The bicharacter associated to a Hopf ∗-homomorphism
ϕ : Cu → Au is (ΛĈ ⊗ ΛAϕ)(XC ) ∈ UM(Ĉ ⊗ A).
Furthermore, the duality on the level of bicharacters corresponds to
the duality ϕ 7→ ϕ̂ on Hopf ∗-homomorphisms, where ϕ̂ : Âu → Ĉu

is the unique Hopf ∗-homomorphism with
(ϕ̂⊗ idAu)(XA) = (idĈu ⊗ ϕ)(XC ).
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is the unique Hopf ∗-homomorphism with
(ϕ̂⊗ idAu)(XA) = (idĈu ⊗ ϕ)(XC ).
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Right/Left coactions

Definition

A right or left coaction of (A,∆A) on a C∗-algebra C is a
morphism αR : C → C ⊗ A or αL : C → A⊗ C for which following
diagram in the left or the right hand side commutes:

C
αR //

αR

��

C ⊗ A

idC⊗∆A

��
C ⊗ A

αR⊗idA

// C ⊗ A⊗ A,

C
αL //

αL

��

A⊗ C

∆A⊗idC

��
A⊗ C

idA⊗αL

// A⊗ A⊗ C .
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Right quantum group homomorphisms

Definition

A right quantum group homomorphism from (C ,∆C ) to (A,∆A) is
a morphism ∆R : C → C ⊗ A for which following two diagram
commute:

C
∆R //

∆R

��

C ⊗ A

idC⊗∆A

��
C ⊗ A

∆R⊗idA

// C ⊗ A⊗ A.

C
∆R //

∆C

��

C ⊗ A

∆C⊗idA

��
C ⊗ C

idC⊗∆R

// C ⊗ C ⊗ A,
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Left quantum group homomorphisms

Definition

A left quantum group homomorphism from (C ,∆C ) to (A,∆A) is
a morphism ∆L : C → A⊗ C for which following two diagram
commute:

C
∆L //

∆L

��

A⊗ C

∆A⊗idC

��
A⊗ C

idA⊗∆L

// A⊗ A⊗ C .

C
∆L //

∆C

��

A⊗ C

idA⊗∆C

��
C ⊗ C

∆L⊗idC

// A⊗ C ⊗ C ,
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Right quantum group homomorphisms and bicharacters

Theorem [Meyer, R., Woronowicz, 2011]

For any right quantum group homomorphism ∆R : C → C ⊗ A,
there is a unique unitary V ∈ UM(Ĉ ⊗ A) with

(idĈ ⊗∆R)(W) = W12V13.

This unitary is a bicharacter.
Conversely, let V be a bicharacter from C to A, and let
V ∈ U(HC ⊗HA) be the corresponding concrete bicharacter. Then

∆R(x) := V(x ⊗ 1)V∗ for all x ∈ C

defines a right quantum group homomorphism from C to A.
These two maps between bicharacters and right quantum group
homomorphisms are inverse to each other.
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Left quantum group homomorphisms and bicharacters

Theorem [Meyer, R., Woronowicz, 2011]

For any left quantum group homomorphism ∆L : C → A⊗ C ,
there is a unique unitary V ∈ UM(Ĉ ⊗ A) with

(idĈ ⊗∆L)(W) = V12W13.

This unitary is a bicharacter.
Conversely, let V be a bicharacter from C to A, let
V ∈ U(HC ⊗HA) be the corresponding concrete bicharacter. Then

∆L(x) := (RA ⊗ RC )(V̂∗(1⊗ RC (x))V̂) for all x ∈ C

is a left quantum group homomorphism from C to A.
These two maps between bicharacters and left quantum group
homomorphisms are bijective and inverse to each other.
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Commutation relation between left and right
homomorphisms

Lemma

Let ∆L : C → A⊗ C and ∆R : C → C ⊗ B be a left and a right
quantum group homomorphism. Then the following diagram
commutes:

C
∆L //

∆R

��

A⊗ C

idA⊗∆R

��
C ⊗ B

∆L⊗idB

// A⊗ C ⊗ B.
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Commutation relation between left and right
homomorphisms

Lemma

∆L and ∆R are associated to the same bicharacter
V ∈ UM(Ĉ ⊗ A) if and only if the following diagram commutes:

C
∆C //

∆C

��

C ⊗ C

idC⊗∆L

��
C ⊗ C

∆R⊗idC

// C ⊗ A⊗ C .
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Coaction category

Lemma

Right or left quantum group homomorphisms are injective and
satisfies

∆R(C )(1⊗ A) is linearly dense in C ⊗ A

∆L(C )(A⊗ 1) is linearly dense in A⊗ C

Equivalently right and left quantum group homomorphisms are
injective and continuous as coactions.

Let C∗alg(A) or C∗alg(A,∆A) denote the category of
C∗-algebras with a continuous, injective A-coaction.

A-equivariant morphisms as arrows in C∗alg(A).
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Assumptions

(A,∆A) and (B,∆B) be locally compact quantum groups.

α : C → C ⊗ A be a continuous right coaction of (A,∆A) on
a C∗-algebra C .

∆R : A→ A⊗ B be a right quantum group homomorphism.

For : C∗alg(A)→ C∗alg be the functor that forgets the
A-coaction.
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Homomorphism as a functor between coaction categories

Theorem [Meyer, R., Woronowicz, 2011]

There is a unique continuous coaction γ of (B,∆B) on C such
that the following diagram commutes:

C
α //

γ

��

C ⊗ A

idC⊗∆R

��
C ⊗ B

α⊗idB

// C ⊗ A⊗ B.

This construction is a functor F : C∗alg(A)→ C∗alg(B) with
For ◦ F = For as any A-equivariant morphisms D → D ′ are also
B-equivariant for D,D ′ ∈ C∗algA. Conversely, any such functor is
of this form for some right quantum group homomorphism ∆R .
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B-equivariant for D,D ′ ∈ C∗algA. Conversely, any such functor is
of this form for some right quantum group homomorphism ∆R .
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Assumptions

(A,∆A) and (B,∆B) be locally compact quantum groups.

α : C → C ⊗ A be a right quantum group homomorphism
where (C ,∆C ) is a quantum group.

β : A→ A⊗ B be another right quantum group
homomorphism.

Fα : C∗alg(C )→ C∗alg(A) and Fβ : C∗alg(A)→ C∗alg(B) be
the associated functors.

VC→B = VA→B ∗ VC→A.
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Composition of right quantum group homomorphism

Proposition

There exists γ : C → C ⊗ B which is the unique right quantum
group homomorphism that makes the following diagram commute:

C
α //

γ

��

C ⊗ A

idC⊗β
��

C ⊗ B
α⊗idB

// C ⊗ A⊗ B.

which satisfies Fβ ◦ Fα = Fγ .
Moreover, VC→B is the bicharacter associated to γ.
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Multiplicative unitaries are the fundamental objects.

Every modular/manageable multiplicative unitary
W ∈ UM(Ĉ ⊗C ) admits a unique lift to X ∈ UM(Ĉu⊗Cu).
Hence they are basic in sense of Ng and hence
the birepresentations (bicharacters in our terminology) are
indeed the correct notion of homomorphisms between
quantum groups.
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Vaes introduced the notion of homomorphisms between
quantum groups (von Neumann algebraic setting) as
Hopf∗-homomorphisms between universal C∗-bialgebras which
is equivalent to the bicharacters.

Last but not least, bicharacters induces a functor between
coaction categories via left/right quantum group
homomorphism which is a new realization of homomorphisms
between quantum groups.
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More details.....

http://arxiv.org/abs/1011.4284/v2
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Thank you for your attention!
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