Homomorphisms of quantum groups

Sutanu Roy
(joint work with R. Meyer and S.L.Woronowicz)

Mathematics Institute Georg-August-University Göttingen

11 August 2011

7-th International Conference Quantum Theory and Symmetries
Prague, Czech Republic

- Motivation
- 2 Locally compact quantum groups
- 3 Hopf *-homomorphisms
- 4 Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Right coactions as homomorphisms
 - Morphism as a functor between coaction categories
 - Universal bicharacter
- 5 Conclusions

- Motivation
- 2 Locally compact quantum groups
- 3 Hopf *-homomorphisms
- 4 Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Right coactions as homomorphisms
 - Morphism as a functor between coaction categories
 - Universal bicharacter
- 6 Conclusions

- Motivation
- 2 Locally compact quantum groups
- Mopf *-homomorphisms
- 4 Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Right coactions as homomorphisms
 - Morphism as a functor between coaction categories
 - Universal bicharacter
- 6 Conclusions

- Motivation
- 2 Locally compact quantum groups
- Mopf *-homomorphisms
- 4 Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Right coactions as homomorphisms
 - Morphism as a functor between coaction categories
 - Universal bicharacter
- Conclusions

- Motivation
- 2 Locally compact quantum groups
- Mopf *-homomorphisms
- 4 Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Right coactions as homomorphisms
 - Morphism as a functor between coaction categories
 - Universal bicharacter
- Conclusions

- Motivation
- 2 Locally compact quantum groups
- 3 Hopf *-homomorphisms
- Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Right coactions as homomorphisms
 - Morphism as a functor between coaction categories
 - Universal bicharacter
- 5 Conclusions

Theorem (Pontrjagin)

Every locally abelian compact group is canonically isomorphic to the dual of \hat{G} .

Duality is a contravariant functor

Let, $\varphi \colon G \to H$ be a continuous group homomorphism between locally compact abelian groups G and H.

Then $\hat{\varphi}(\chi) := \chi \circ \varphi$ is a continuous group homomorphism from \hat{H} to \hat{G} where $\chi \in \hat{H}$.

Theorem (Pontrjagin)

Every locally abelian compact group is canonically isomorphic to the dual of \hat{G} .

Duality is a contravariant functor

Let, $\varphi \colon G \to H$ be a continuous group homomorphism between locally compact abelian groups G and H.

Then $\hat{\varphi}(\chi) := \chi \circ \varphi$ is a continuous group homomorphism from \hat{H} to \hat{G} where $\chi \in \hat{H}$.

Generalized Pontrjagin duality theorem

Locally compact quantum groups are more general objects (including locally compact non-abelian groups) which follow the *Pontrjagin duality theorem* with a suitable notion of duality.

Expected

Category of locally compact groups is a subcategory of locally compact quantum groups and duality is a contravariant functor

Question

What is the notion of the homomorphism of locally compact quantum groups?

Generalized Pontrjagin duality theorem

Locally compact quantum groups are more general objects (including locally compact non-abelian groups) which follow the *Pontrjagin duality theorem* with a suitable notion of duality.

Expected

Category of locally compact groups is a subcategory of locally compact quantum groups and duality is a contravariant functor.

Question

What is the notion of the homomorphism of locally compact quantum groups?

Generalized Pontrjagin duality theorem

Locally compact quantum groups are more general objects (including locally compact non-abelian groups) which follow the *Pontrjagin duality theorem* with a suitable notion of duality.

Expected

Category of locally compact groups is a subcategory of locally compact quantum groups and duality is a contravariant functor.

Question

What is the notion of the homomorphism of locally compact quantum groups?

- Motivation
- 2 Locally compact quantum groups
- 3 Hopf *-homomorphisms
- Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Right coactions as homomorphisms
 - Morphism as a functor between coaction categories
 - Universal bicharacter
- 5 Conclusions

In different setting

- Hopf*-algebras (Algebraic setting).
- C*-algebras (Topological setting).
- Von Neumann algebras (Measure theoretic setting).

In different setting

- Hopf*-algebras (Algebraic setting).
- C*-algebras (Topological setting).
- Von Neumann algebras (Measure theoretic setting).

Definition

An operator $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ is said to be multiplicative unitary on the Hilbert space \mathcal{H} if it satisfies the pentagon equation

$$\mathbb{W}_{23}\mathbb{W}_{12} = \mathbb{W}_{12}\mathbb{W}_{13}\mathbb{W}_{23}.$$

Multiplicative unitary

Definition

An operator $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ is said to be multiplicative unitary on the Hilbert space \mathcal{H} if it satisfies the *pentagon equation*

$$\mathbb{W}_{23}\mathbb{W}_{12} = \mathbb{W}_{12}\mathbb{W}_{13}\mathbb{W}_{23}.$$

Examples

Consider $\mathcal{H}_G = L^2(G,\lambda)$ for a locally compact group G with a right Haar measure λ . Then, $\mathbb{W}_G \in \mathcal{U}(L^2(G \times G, \lambda \times \lambda))$ defined by $\mathbb{W}_G T(x,y) = T(xy,y)$ is a multiplicative unitary on \mathcal{H}_G .

Observations

One can define two non-degenerate, normal, coassociative *-homomorphisms from $\mathbb{B}(\mathcal{H})$ to $\mathbb{B}(\mathcal{H}\otimes\mathcal{H})$:

$$\Delta(x) = \mathbb{W}(x \otimes I)\mathbb{W}^*$$
$$\widehat{\Delta}(y) = \operatorname{Ad}(\Sigma) \circ (\mathbb{W}^*(I \otimes y)\mathbb{W}).$$

for all $x, y \in \mathbb{B}(\mathcal{H})$ and Σ is the flip operator acting on $\mathcal{H} \otimes \mathcal{H}$. Consider the slices/legs of the multiplicative unitaries:

$$C = \overline{\{(\omega \otimes id)\mathbb{W} : \omega \in \mathbb{B}(\mathcal{H})_*\}}^{\|.\|}$$
$$\widehat{C} = \overline{\{(id \otimes \omega)\mathbb{W} : \omega \in \mathbb{B}(\mathcal{H})_*\}}^{\|.\|}$$

Observations

One can define two non-degenerate, normal, coassociative *-homomorphisms from $\mathbb{B}(\mathcal{H})$ to $\mathbb{B}(\mathcal{H} \otimes \mathcal{H})$:

$$\Delta(x) = \mathbb{W}(x \otimes I)\mathbb{W}^*$$
$$\widehat{\Delta}(y) = \operatorname{Ad}(\Sigma) \circ (\mathbb{W}^*(I \otimes y)\mathbb{W}).$$

for all $x, y \in \mathbb{B}(\mathcal{H})$ and Σ is the flip operator acting on $\mathcal{H} \otimes \mathcal{H}$. Consider the slices/legs of the multiplicative unitaries:

$$C = \overline{\{(\omega \otimes id)\mathbb{W} : \omega \in \mathbb{B}(\mathcal{H})_*\}^{\|.\|}}$$
$$\widehat{C} = \overline{\{(id \otimes \omega)\mathbb{W} : \omega \in \mathbb{B}(\mathcal{H})_*\}^{\|.\|}}.$$

Special class of multiplicative unitaries

Manageability and modularity

- Manageable multiplicative unitary. [Woronowicz, 1997]
- Modular multiplicative unitary. [Soltan-Woronowicz, 2001]

Nice legs of modular multiplicative unitaries

Theorem (Soltan, Woronowicz, 2001)

Let, $\mathbb{W} \in \mathcal{U}(\mathcal{H} \otimes \mathcal{H})$ be a modular multiplicative unitary. Then,

- C and \widehat{C} are C^* -sub algebras in $\mathbb{B}(\mathcal{H})$ and $\mathbb{W} \in \mathcal{UM}(\widehat{C} \otimes C)$.
- there exists a unique $\Delta_C \in \mathsf{Mor}(C, C \otimes C)$ such that
 - $(id_{\widehat{C}} \otimes \Delta)W = W_{12}W_{13}$.
 - Δ_C is coassociative: $(\Delta_C \otimes id_C) \circ \Delta_C = (id_C \otimes \Delta_C) \circ \Delta_C$.
 - $\Delta(C)(1 \otimes C)$ and $(C \otimes 1)\Delta(C)$ are linearly dense in $C \otimes C$.

Locally compact quantum groups

Definition [Soltan-Woronowicz, 2001]

The pair $\mathbb{G}=(C,\Delta_C)$ is said to be a locally compact quantum group if the C*-algebra C and $\Delta_C\in \text{Mor}(C,C\otimes C)$ comes from a modular multiplicative unitary \mathbb{W} . We say \mathbb{W} giving rise to the quantum group $\mathbb{G}=(C,\Delta_C)$.

Observation

The unitary operator $\widehat{\mathbb{W}}=\operatorname{Ad}(\Sigma)(\mathbb{W}^*)$ gives rise to the quantum group $\widehat{\mathbb{G}}=(\widehat{C},\Delta_{\widehat{C}})$ which is dual to $\mathbb{G}=(C,\Delta_{\widehat{C}})$.

Definition [Soltan-Woronowicz, 2001]

The pair $\mathbb{G} = (C, \Delta_C)$ is said to be a locally compact quantum group if the C*-algebra C and $\Delta_C \in Mor(C, C \otimes C)$ comes from a modular multiplicative unitary W. We say W giving rise to the quantum group $\mathbb{G} = (C, \Delta_C)$.

Observation

The unitary operator $\widehat{\mathbb{W}} = \mathsf{Ad}(\Sigma)(\mathbb{W}^*)$ gives rise to the quantum group $\widehat{\mathbb{G}} = (\widehat{C}, \Delta_{\widehat{C}})$ which is dual to $\mathbb{G} = (C, \Delta_{C})$.

From groups to quantum groups

Given a locally compact group G:

- $\mathbb{G} = (C_0(G), \Delta)$ is a locally compact quantum group with $\Delta f(x, y) = f(xy)$.
- $\widehat{\mathbb{G}} = (\mathsf{C}^*_\mathsf{r}(G), \hat{\Delta})$ is the dual quantum group of \mathbb{G} with $\Delta(\lambda_g) = \lambda_g \otimes \lambda_g$ for all $g \in G$.
- $\widehat{\mathbb{G}}^{\mathrm{u}} = (C^*(G), \hat{\Delta}^{\mathrm{u}})$ is a C^* -bialgebra which is known as quantum group C^* -algebra of \mathbb{G} .

From groups to quantum groups

Given a locally compact group G:

- $\mathbb{G} = (C_0(G), \Delta)$ is a locally compact quantum group with $\Delta f(x, y) = f(xy)$.
- $\widehat{\mathbb{G}} = (\mathsf{C}^*_\mathsf{r}(G), \hat{\Delta})$ is the dual quantum group of \mathbb{G} with $\Delta(\lambda_g) = \lambda_g \otimes \lambda_g$ for all $g \in G$.
- $\widehat{\mathbb{G}}^{\mathrm{u}} = (C^*(G), \widehat{\Delta}^{\mathrm{u}})$ is a C*-bialgebra which is known as quantum group C*-algebra of \mathbb{G} .

From groups to quantum groups

Given a locally compact group G:

- $\mathbb{G} = (C_0(G), \Delta)$ is a locally compact quantum group with $\Delta f(x, y) = f(xy)$.
- $\widehat{\mathbb{G}} = (\mathsf{C}^*_\mathsf{r}(G), \hat{\Delta})$ is the dual quantum group of \mathbb{G} with $\Delta(\lambda_g) = \lambda_g \otimes \lambda_g$ for all $g \in G$.
- $\widehat{\mathbb{G}}^{u} = (C^{*}(G), \hat{\Delta}^{u})$ is a C*-bialgebra which is known as quantum group C*-algebra of \mathbb{G} .

Notations

Let, \mathbb{W} be a modular multiplicative unitary giving rise to the quantum group $\mathbb{G} = (C, \Delta_C)$. We write:

- \bullet W, when we consider it as an unitary operator acting on the Hilbert space $\mathcal{H} \otimes \mathcal{H}$
- W, when we consider it as in element of of $\mathcal{UM}(\hat{C}\otimes C)$.
- $f: A \to B$, when we consider $f \in Mor(A, B)$ or $f: A \to \mathcal{M}(B)$ where A and B are C*-algebras.
- $\sigma: A \otimes B \to B \otimes A$ the flip homomorphism for two C*-algebras A and B.

- Motivation
- 2 Locally compact quantum groups
- 3 Hopf *-homomorphisms
- Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Right coactions as homomorphisms
 - Morphism as a functor between coaction categories
 - Universal bicharacter
- 5 Conclusions

Hopf *-homomorphism

Let us consider $\mathbb{G}=(C,\Delta_C)$ and $\mathbb{H}=(A,\Delta)$ be two C*-bialgebras.

Definition

A Hopf*-homomorphism between them is a morphism $f: C \to A$ that intertwines the comultiplications, that is, the following diagram commutes:

$$\begin{array}{c|c}
C & \xrightarrow{f} & A \\
 & \downarrow^{\Delta_A} \\
C \otimes C & \xrightarrow{f \otimes f} & A \otimes A.
\end{array}$$

Let G and H are two locally compact groups.

- Consider a Hopf * homomorphism from $f: C_0(H) \to C_0(G)$.
- f induces tirvial group homomorphism $\phi \colon G \to H$.
- ϕ induces a Hopf *-homomorphism $\hat{f}: C^*_r(G) \to C^*_r(H)$ if and only if kernel of ϕ is amenable.

Let G and H are two locally compact groups.

- Consider a Hopf * homomorphism from $f: C_0(H) \to C_0(G)$.
- f induces tirvial group homomorphism $\phi \colon G \to H$.
- ϕ induces a Hopf *-homomorphism $\hat{f}: C_r^*(G) \to C_r^*(H)$ if and only if kernel of ϕ is amenable.

Let G and H are two locally compact groups.

- Consider a Hopf * homomorphism from $f: C_0(H) \to C_0(G)$.
- f induces tirvial group homomorphism $\phi \colon G \to H$.
- ϕ induces a Hopf *-homomorphism $\hat{f}: C_r^*(G) \to C_r^*(H)$ if and only if kernel of ϕ is amenable.

Let G and H are two locally compact groups.

- Consider a Hopf * homomorphism from $f: C_0(H) \to C_0(G)$.
- f induces tirvial group homomorphism $\phi \colon G \to H$.
- ϕ induces a Hopf *-homomorphism $\hat{f}: C_r^*(G) \to C_r^*(H)$ if and only if kernel of ϕ is amenable.

Drawback of Hopf *-homomorphisms (example)

Let $G = \mathbb{F}_2$ (non-amenable) and $H = \{e\}$.

- Consider a Hopf * homomorphism from $f: \mathbb{C} \to C_0(\mathbb{F}_2)$.
- f induces a continuous group homomorphism $\phi \colon \mathbb{F}_2 \to \mathbb{C}$.
- ϕ induces trivial Hopf *-homomorphism $\hat{f}: \mathsf{C}^*_\mathsf{r}(\mathbb{F}_2) \to \mathbb{C}$ as $\mathsf{C}^*_\mathsf{r}(\mathbb{F}_2)$ is simple.
- ϕ induces a Hopf *-morphism $\hat{f}^{\mathsf{u}} \colon C^*(\mathbb{F}_2) \to \mathbb{C}$.

Good news from Hopf *-homomorphisms

Observation

- Hopf*-homomorphism is not compatible with duality.
- A Hopf*-homomorphism $f: C \to A$ for the quantum groups $\mathbb{G} = (C, \Delta_C)$ and $\mathbb{H} = (A, \Delta)$ gives $V := (\mathrm{id}_{\hat{C}} \otimes f) \mathbb{W}^C \in \mathcal{UM}(\hat{C} \otimes A)$ such that

$$(\Delta_{\hat{C}} \otimes id_A)V = V_{23}V_{13}$$
 in $\mathcal{UM}(\hat{C} \otimes \hat{C} \otimes A)$,
 $(id_{\hat{C}} \otimes \Delta_A)V = V_{12}V_{13}$ in $\mathcal{UM}(\hat{C} \otimes A \otimes A)$.

• Moreover $\hat{V} := \sigma(V^*) \in \mathcal{UM}(A \otimes \hat{C}) \cong \mathcal{UM}(\hat{A} \otimes \hat{C})$ is the dual of V

Good news from Hopf *-homomorphisms

Observation

- Hopf*-homomorphism is not compatible with duality.
- A Hopf*-homomorphism $f: C \to A$ for the quantum groups $\mathbb{G} = (C, \Delta_C)$ and $\mathbb{H} = (A, \Delta)$ gives $V := (\mathrm{id}_{\hat{C}} \otimes f) W^C \in \mathcal{UM}(\hat{C} \otimes A)$ such that

$$(\Delta_{\hat{\mathcal{C}}} \otimes \operatorname{id}_{\mathcal{A}})V = V_{23}V_{13}$$
 in $\mathcal{UM}(\hat{\mathcal{C}} \otimes \hat{\mathcal{C}} \otimes \mathcal{A})$,
 $(\operatorname{id}_{\hat{\mathcal{C}}} \otimes \Delta_{\mathcal{A}})V = V_{12}V_{13}$ in $\mathcal{UM}(\hat{\mathcal{C}} \otimes \mathcal{A} \otimes \mathcal{A})$.

• Moreover $\hat{V} := \sigma(V^*) \in \mathcal{UM}(A \otimes \hat{C}) \cong \mathcal{UM}(\hat{A} \otimes \hat{C})$ is the dual of V.

Good news from Hopf *-homomorphisms

Observation

- Hopf*-homomorphism is not compatible with duality.
- A Hopf*-homomorphism $f: C \to A$ for the quantum groups $\mathbb{G} = (C, \Delta_C)$ and $\mathbb{H} = (A, \Delta)$ gives $V := (\mathrm{id}_{\hat{C}} \otimes f) W^C \in \mathcal{UM}(\hat{C} \otimes A)$ such that

$$(\Delta_{\hat{\mathcal{C}}} \otimes \operatorname{id}_{\mathcal{A}})V = V_{23}V_{13}$$
 in $\mathcal{UM}(\hat{\mathcal{C}} \otimes \hat{\mathcal{C}} \otimes \mathcal{A})$,
 $(\operatorname{id}_{\hat{\mathcal{C}}} \otimes \Delta_{\mathcal{A}})V = V_{12}V_{13}$ in $\mathcal{UM}(\hat{\mathcal{C}} \otimes \mathcal{A} \otimes \mathcal{A})$.

• Moreover $\hat{V} := \sigma(V^*) \in \mathcal{UM}(A \otimes \hat{C}) \cong \mathcal{UM}(\hat{A} \otimes \hat{C})$ is the dual of V.

Outline

- Motivation
- 2 Locally compact quantum groups
- 3 Hopf *-homomorphisms
- 4 Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Right coactions as homomorphisms
 - Morphism as a functor between coaction categories
 - Universal bicharacter
- 5 Conclusions

Outline

- Motivation
- 2 Locally compact quantum groups
- 3 Hopf *-homomorphisms
- 4 Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Right coactions as homomorphisms
 - Morphism as a functor between coaction categories
 - Universal bicharacter
- 5 Conclusions

Let, $\mathbb{G}=(C,\Delta_C)$ and $\mathbb{H}=(A,\Delta_A)$ are two quantum groups.

Definition

A unitary $V \in \mathcal{UM}(\hat{C} \otimes A)$ is called a *bicharacter from C to A* if

$$(\Delta_{\hat{\mathcal{C}}} \otimes \operatorname{id}_{\mathcal{A}})V = V_{23}V_{13} \quad \text{in } \mathcal{UM}(\hat{\mathcal{C}} \otimes \hat{\mathcal{C}} \otimes \mathcal{A}),$$

$$(\mathrm{id}_{\hat{C}}\otimes\Delta_A)V=V_{12}V_{13}\qquad \text{in }\mathcal{UM}(\hat{C}\otimes A\otimes A).$$

Comparison with group homomorphism

Consider the quantum groups $\widehat{\mathbb{G}}=(\mathsf{C}^*_\mathsf{r}(G),\hat{\Delta}_G)$ and $\widehat{\mathbb{H}}=(\mathsf{C}^*_\mathsf{r}(H),\hat{\Delta}_H)$ for two locally compact groups G and H and $\varphi\colon G\to H$ be a continuous group homomorphism.

Then $V_{\varphi}(g) := \lambda_{\varphi(g)} \in C_b(G; C_r^*(H)) \cong \mathcal{UM}(C_0(G) \otimes C_r^*(H))$ is a bicharacter, that is, a quantum group homomorphism from $C_r^*(G)$ to $C_r^*(H)$.

Lemma

Let G and H be locally compact groups. Then every bicharacter from $C_r^*(G)$ to $C_r^*(H)$ is induced by a unique continuous group homomorphism $\varphi\colon G\to H$ as above.

Comparison with group homomorphism

Consider the quantum groups $\widehat{\mathbb{G}}=(\mathsf{C}^*_\mathsf{r}(G),\hat{\Delta}_G)$ and $\widehat{\mathbb{H}}=(\mathsf{C}^*_\mathsf{r}(H),\hat{\Delta}_H)$ for two locally compact groups G and H and $\varphi\colon G\to H$ be a continuous group homomorphism. Then $V_\varphi(g):=\lambda_{\varphi(g)}\in C_b(G;\mathsf{C}^*_\mathsf{r}(H))\cong\mathcal{UM}(\mathsf{C}_0(G)\otimes\mathsf{C}^*_\mathsf{r}(H))$ is a bicharacter, that is, a quantum group homomorphism from $\mathsf{C}^*_\mathsf{r}(G)$ to $\mathsf{C}^*_\mathsf{r}(H)$.

Lemma

Let G and H be locally compact groups. Then every bicharacter from $C_r^*(G)$ to $C_r^*(H)$ is induced by a unique continuous group homomorphism $\varphi\colon G\to H$ as above.

Right coactions as homomorphisms Morphism as a functor between coaction categories Universal bicharacter

Comparison with group homomorphism

Consider the quantum groups $\widehat{\mathbb{G}}=(\mathsf{C}^*_\mathsf{r}(G),\hat{\Delta}_G)$ and $\widehat{\mathbb{H}}=(\mathsf{C}^*_\mathsf{r}(H),\hat{\Delta}_H)$ for two locally compact groups G and H and $\varphi\colon G\to H$ be a continuous group homomorphism. Then $V_\varphi(g):=\lambda_{\varphi(g)}\in C_b(G;\mathsf{C}^*_\mathsf{r}(H))\cong\mathcal{UM}(\mathsf{C}_0(G)\otimes\mathsf{C}^*_\mathsf{r}(H))$ is a bicharacter, that is, a quantum group homomorphism from $\mathsf{C}^*_\mathsf{r}(G)$ to $\mathsf{C}^*_\mathsf{r}(H)$.

Lemma

Let G and H be locally compact groups. Then every bicharacter from $C_r^*(G)$ to $C_r^*(H)$ is induced by a unique continuous group homomorphism $\varphi\colon G\to H$ as above.

Right coactions as homomorphisms Morphism as a functor between coaction categories Universal bicharacter

Bicharacters

Lemma

A unitary $\mathbb{V} \in \mathcal{U}(\mathcal{H}_C \otimes \mathcal{H}_A)$ comes from a bicharacter $V \in \mathcal{UM}(\hat{C} \otimes A)$ (which is necessarily unique) if and only if

$$\mathbb{V}_{23}\mathbb{W}_{12}^{\textit{C}} = \mathbb{W}_{12}^{\textit{C}}\mathbb{V}_{13}\mathbb{V}_{23} \qquad \text{in } \mathcal{U}(\mathcal{H}_{\textit{C}} \otimes \mathcal{H}_{\textit{C}} \otimes \mathcal{H}_{\textit{A}}),$$

$$\mathbb{W}_{23}^{A}\mathbb{V}_{12}=\mathbb{V}_{12}\mathbb{V}_{13}\mathbb{W}_{23}^{A}\qquad\text{in }\mathcal{U}(\mathcal{H}_{\textit{C}}\otimes\mathcal{H}_{\textit{A}}\otimes\mathcal{H}_{\textit{A}}).$$

tight coactions as homomorphisms Morphism as a functor between coaction categories Universal bicharacter

An important theorem

Theorem [Woronowicz, 2010]

Let \mathcal{H} be a Hilbert space and let $\mathbb{W} \in \mathbb{B}(\mathcal{H} \otimes \mathcal{H})$ be a modular multiplicative unitary. If $a,b \in \mathbb{B}(\mathcal{H})$ satisfy $\mathbb{W}(a \otimes 1) = (1 \otimes b)\mathbb{W}$, then $a = b = \lambda 1$ for some $\lambda \in \mathbb{C}$. More generally, if $a,b \in \mathcal{M}(\mathbb{K}(\mathcal{H}) \otimes D)$ for some C*-algebra D satisfy $\mathbb{W}_{12}a_{13} = b_{23}\mathbb{W}_{12}$, then $a = b \in \mathbb{C} \cdot 1_{\mathcal{H}} \otimes \mathcal{M}(D)$.

Right coactions as homomorphisms Morphism as a functor between coaction categories Universal bicharacter

An important theorem

Corollary

Let (C, Δ_C) be a quantum group. If $c \in \mathcal{M}(C)$, then $\Delta_C(c) \in \mathcal{M}(C \otimes 1)$ or $\Delta_C(c) \in \mathcal{M}(1 \otimes C)$ if and only if $c \in \mathbb{C} \cdot 1$. More generally, if D is a C*-algebra and $c \in \mathcal{M}(C \otimes D)$, then $(\Delta_C \otimes \mathrm{id}_D)(c) \in \mathcal{M}(C \otimes 1 \otimes D)$ or $(\Delta_C \otimes \mathrm{id}_D)(c) \in \mathcal{M}(1 \otimes C \otimes D)$ if and only if $c \in \mathbb{C} \cdot 1 \otimes \mathcal{M}(D)$.

Right coactions as homomorphisms Morphism as a functor between coaction categories Universal bicharacter

Properties of bicharacters I

Consider $\mathbb{G}=(C,\Delta_C)$, $\mathbb{H}=(A,\Delta_A)$ and $\mathbb{I}=(B,\Delta_B)$ are quantum groups.

- $\hat{V} = \sigma(V^*) \in \mathcal{UM}(A \otimes \hat{C})$ is the dual bicharacter for a given bicharacter $V \in \mathcal{UM}(\hat{C} \otimes A)$
- Given two bicharacters $V^{C \to A} \in \mathcal{UM}(\hat{C} \otimes A)$ and $V^{A \to B} \in \mathcal{UM}(\hat{A} \otimes B)$, there exists unique bicharacter $V^{C \to B} \in \mathcal{UM}(\hat{C} \otimes B)$ satisfying

$$\mathbb{V}_{13}^{C \to B} = (\mathbb{V}_{12}^{C \to A})^* \mathbb{V}_{23}^{A \to B} \mathbb{V}_{12}^{C \to A} (\mathbb{V}_{23}^{A \to B})^*.$$

We denote $V^{C \to B} = V^{A \to B} * V^{C \to A}$ as composition of $V^{C \to A}$ and $V^{A \to B}$.

• Identity bicharacter:

$$V^{C \to A} = V^{C \to A} * W^C$$
 and $V^{C \to A} = W^A * V^{C \to A}$.

Right coactions as homomorphisms Morphism as a functor between coaction categories Universal bicharacter

Properties of bicharacters I

Consider $\mathbb{G}=(C,\Delta_C)$, $\mathbb{H}=(A,\Delta_A)$ and $\mathbb{I}=(B,\Delta_B)$ are quantum groups.

- $\hat{V} = \sigma(V^*) \in \mathcal{UM}(A \otimes \hat{C})$ is the dual bicharacter for a given bicharacter $V \in \mathcal{UM}(\hat{C} \otimes A)$
- Given two bicharacters $V^{C \to A} \in \mathcal{UM}(\hat{C} \otimes A)$ and $V^{A \to B} \in \mathcal{UM}(\hat{A} \otimes B)$, there exists unique bicharacter $V^{C \to B} \in \mathcal{UM}(\hat{C} \otimes B)$ satisfying

$$\mathbb{V}_{13}^{C \to B} = (\mathbb{V}_{12}^{C \to A})^* \mathbb{V}_{23}^{A \to B} \mathbb{V}_{12}^{C \to A} (\mathbb{V}_{23}^{A \to B})^*.$$

We denote $V^{C \to B} = V^{A \to B} * V^{C \to A}$ as composition of $V^{C \to A}$ and $V^{A \to B}$.

• Identity bicharacter:

$$V^{C \to A} = V^{C \to A} * W^C$$
 and $V^{C \to A} = W^A * V^{C \to A}$.

Properties of bicharacters I

Consider $\mathbb{G}=(C,\Delta_C)$, $\mathbb{H}=(A,\Delta_A)$ and $\mathbb{I}=(B,\Delta_B)$ are quantum groups.

- $\hat{V} = \sigma(V^*) \in \mathcal{UM}(A \otimes \hat{C})$ is the dual bicharacter for a given bicharacter $V \in \mathcal{UM}(\hat{C} \otimes A)$
- Given two bicharacters $V^{C \to A} \in \mathcal{UM}(\hat{C} \otimes A)$ and $V^{A \to B} \in \mathcal{UM}(\hat{A} \otimes B)$, there exists unique bicharacter $V^{C \to B} \in \mathcal{UM}(\hat{C} \otimes B)$ satisfying

$$\mathbb{V}_{13}^{C \to B} = (\mathbb{V}_{12}^{C \to A})^* \mathbb{V}_{23}^{A \to B} \mathbb{V}_{12}^{C \to A} (\mathbb{V}_{23}^{A \to B})^*.$$

We denote $V^{C \to B} = V^{A \to B} * V^{C \to A}$ as composition of $V^{C \to A}$ and $V^{A \to B}$.

Identity bicharacter:

$$V^{C \to A} = V^{C \to A} * W^C$$
 and $V^{C \to A} = W^A * V^{C \to A}$.

Properties of bicharacters I

Consider $\mathbb{G}=(C,\Delta_C)$, $\mathbb{H}=(A,\Delta_A)$ and $\mathbb{I}=(B,\Delta_B)$ are quantum groups.

- $\hat{V} = \sigma(V^*) \in \mathcal{UM}(A \otimes \hat{C})$ is the dual bicharacter for a given bicharacter $V \in \mathcal{UM}(\hat{C} \otimes A)$
- Given two bicharacters $V^{C \to A} \in \mathcal{UM}(\hat{C} \otimes A)$ and $V^{A \to B} \in \mathcal{UM}(\hat{A} \otimes B)$, there exists unique bicharacter $V^{C \to B} \in \mathcal{UM}(\hat{C} \otimes B)$ satisfying

$$\mathbb{V}_{13}^{C \to B} = (\mathbb{V}_{12}^{C \to A})^* \mathbb{V}_{23}^{A \to B} \mathbb{V}_{12}^{C \to A} (\mathbb{V}_{23}^{A \to B})^*.$$

We denote $V^{C \to B} = V^{A \to B} * V^{C \to A}$ as composition of $V^{C \to A}$ and $V^{A \to B}$.

Identity bicharacter:

$$\mathsf{V}^{C\to A} = \mathsf{V}^{C\to A} * \mathsf{W}^C \text{ and } \mathsf{V}^{C\to A} = \mathsf{W}^A * \mathsf{V}^{C\to A}.$$

Right coactions as homomorphisms Morphism as a functor between coaction categories Universal bicharacter

Properties of bicharacters II

• Composition of bicharacters is associative:

$$(\mathsf{V}^{B\to D} * \mathsf{V}^{A\to B}) * \mathsf{V}^{C\to A} = \mathsf{V}^{B\to D} * (\mathsf{V}^{A\to B} * \mathsf{V}^{C\to A}).$$

where $V^{B\to D}\in \mathcal{UM}(\hat{B}\otimes D)$ where $\mathbb{J}=(D,\Delta_D)$ is a quantum group.

Compatibility with duality:

$$\widehat{\mathbb{V}_{13}^{C \to B}} = \widehat{\mathbb{V}_{12}^{A \to B}}^* \widehat{\mathbb{V}_{23}^{C \to A}} \widehat{\mathbb{V}_{12}^{A \to B}} \widehat{\mathbb{V}_{23}^{C \to A}}^*$$

or equivalently
$$\widehat{\mathsf{V}^{C o B}} = \widehat{\mathsf{V}^{C o A}} * \widehat{\mathsf{V}^{A o B}}$$

Properties of bicharacters II

• Composition of bicharacters is associative:

$$(\mathsf{V}^{B\to D} * \mathsf{V}^{A\to B}) * \mathsf{V}^{C\to A} = \mathsf{V}^{B\to D} * (\mathsf{V}^{A\to B} * \mathsf{V}^{C\to A}).$$

where $V^{B\to D}\in \mathcal{UM}(\hat{B}\otimes D)$ where $\mathbb{J}=(D,\Delta_D)$ is a quantum group.

Compatibility with duality:

$$\widehat{\mathbb{V}_{13}^{C \to B}} = \widehat{\mathbb{V}_{12}^{A \to B}}^* \widehat{\mathbb{V}_{23}^{C \to A}} \widehat{\mathbb{V}_{12}^{A \to B}} \widehat{\mathbb{V}_{23}^{C \to A}}^*$$

or equivalently
$$\widehat{V^{C \to B}} = \widehat{V^{C \to A}} * \widehat{V^{A \to B}}$$

Bicharacters Right coactions as homomorphisms Morphism as a functor between coaction categories

Category of locally compact quantum groups

Proposition [Ng, 1997; Meyer, R., Woronowicz, 2011]

The composition of bicharacters is associative, and the multiplicative unitary W^C is an identity on C. Thus bicharacters with the above composition and locally compact quantum groups are the arrows and objects of a category. Duality is a contravariant functor acting on this category.

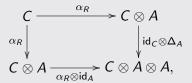
Outline

- Motivation
- 2 Locally compact quantum groups
- 3 Hopf *-homomorphisms
- 4 Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Right coactions as homomorphisms
 - Morphism as a functor between coaction categories
 - Universal bicharacter
- 5 Conclusions

Right coactions

Definition

A right coaction of (A, Δ_A) on a C*-algebra C is a morphism $\alpha_R \colon C \to C \otimes A$ for which following diagram commutes:



Right quantum group homomorphisms

Definition

A right quantum group homomorphism from (C, Δ_C) to (A, Δ_A) is a morphism $\Delta_R \colon C \to C \otimes A$ for which following two diagram commute:

$$C \xrightarrow{\Delta_R} C \otimes A$$

$$\Delta_R \downarrow \qquad \qquad \downarrow_{\mathrm{id}_C \otimes \Delta_A}$$

$$C \otimes A \xrightarrow{\Delta_R \otimes \mathrm{id}_A} C \otimes A \otimes A.$$

$$C \xrightarrow{\Delta_R} C \otimes A$$

$$\Delta_C \downarrow \qquad \qquad \downarrow \Delta_C \otimes id_A$$

$$C \otimes C \xrightarrow{id_C \otimes \Delta_R} C \otimes C \otimes A,$$

Right quantum group homomorphisms and bicharacters

Theorem [Meyer, R., Woronowicz, 2011]

For any right quantum group homomorphism $\Delta_R \colon C \to C \otimes A$, there is a unique unitary $V \in \mathcal{UM}(\hat{C} \otimes A)$ with

$$(\mathrm{id}_{\hat{C}}\otimes\Delta_R)(\mathsf{W})=\mathsf{W}_{12}\mathit{V}_{13}.$$

This unitary is a bicharacter from C to A.

Conversely, let V be a bicharacter from C to A, and let $\mathbb{V} \in \mathcal{U}(\mathcal{H}_C \otimes \mathcal{H}_A)$ be the corresponding concrete bicharacter. Then

$$\Delta_R(x) := \mathbb{V}(x \otimes 1)\mathbb{V}^*$$
 for all $x \in C$

defines a right quantum group homomorphism from *C* to *A*. These two maps between bicharacters and right quantum group homomorphisms are inverse to each other.

Right quantum group homomorphisms and bicharacters

Theorem [Meyer, R., Woronowicz, 2011]

For any right quantum group homomorphism $\Delta_R \colon C \to C \otimes A$, there is a unique unitary $V \in \mathcal{UM}(\hat{C} \otimes A)$ with

$$(\mathrm{id}_{\hat{C}}\otimes\Delta_R)(\mathsf{W})=\mathsf{W}_{12}V_{13}.$$

This unitary is a bicharacter from C to A. Conversely, let V be a bicharacter from C to A, and let $\mathbb{V} \in \mathcal{U}(\mathcal{H}_C \otimes \mathcal{H}_A)$ be the corresponding concrete bicharacter. Then

$$\Delta_R(x) := \mathbb{V}(x \otimes 1)\mathbb{V}^*$$
 for all $x \in C$

defines a right quantum group homomorphism from *C* to *A*. These two maps between bicharacters and right quantum group homomorphisms are inverse to each other.

Outline

- Motivation
- 2 Locally compact quantum groups
- 3 Hopf *-homomorphisms
- 4 Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Right coactions as homomorphisms
 - Morphism as a functor between coaction categories
 - Universal bicharacter
- 5 Conclusions

Coaction category

Lemma

Right group homomorphisms are injective and satisfies

$$\Delta_R(C)(1 \otimes A)$$
 is linearly dense in $C \otimes A$

Equivalently right quantum group homomorphisms are injective and continuous as coactions.

- Let $\mathfrak{C}^*\mathfrak{alg}(A)$ or $\mathfrak{C}^*\mathfrak{alg}(A, \Delta_A)$ denote the category of \mathbb{C}^* -algebras with a continuous, injective A-coaction.
- A-equivariant morphisms as arrows in $\mathfrak{C}^*\mathfrak{alg}(A)$.

Coaction category

Lemma

Right group homomorphisms are injective and satisfies

$$\Delta_R(C)(1 \otimes A)$$
 is linearly dense in $C \otimes A$

Equivalently right quantum group homomorphisms are injective and continuous as coactions.

- Let $\mathfrak{C}^*\mathfrak{alg}(A)$ or $\mathfrak{C}^*\mathfrak{alg}(A, \Delta_A)$ denote the category of \mathbb{C}^* -algebras with a continuous, injective A-coaction.
- A-equivariant morphisms as arrows in $\mathfrak{C}^*\mathfrak{alg}(A)$.

Coaction category

Lemma

Right group homomorphisms are injective and satisfies

$$\Delta_R(C)(1 \otimes A)$$
 is linearly dense in $C \otimes A$

Equivalently right quantum group homomorphisms are injective and continuous as coactions.

- Let $\mathfrak{C}^*\mathfrak{alg}(A)$ or $\mathfrak{C}^*\mathfrak{alg}(A, \Delta_A)$ denote the category of \mathbb{C}^* -algebras with a continuous, injective A-coaction.
- A-equivariant morphisms as arrows in $\mathfrak{C}^*\mathfrak{alg}(A)$.

Assumptions

- (A, Δ_A) and (B, Δ_B) be locally compact quantum groups.
- $\alpha \colon C \to C \otimes A$ be a continuous right coaction of (A, Δ_A) on a C*-algebra C.
- $\Delta_R : A \to A \otimes B$ be a right quantum group homomorphism.
- For: $\mathfrak{C}^*\mathfrak{alg}(A) \to \mathfrak{C}^*\mathfrak{alg}$ be the functor that forgets the A-coaction.

Homomorphism as a functor between coaction categories

Theorem [Meyer, R., Woronowicz, 2011]

There is a unique continuous coaction γ of (B, Δ_B) on C such that the following diagram commutes:

$$\begin{array}{ccc}
C & \xrightarrow{\alpha} & C \otimes A \\
\uparrow & & \downarrow \operatorname{id}_{C} \otimes \Delta_{R} \\
C \otimes B & \xrightarrow{\alpha \otimes \operatorname{id}_{B}} & C \otimes A \otimes B.
\end{array}$$

This construction is a functor $F: \mathfrak{C}^*\mathfrak{alg}(A) \to \mathfrak{C}^*\mathfrak{alg}(B)$ with $\mathfrak{For} \circ F = \mathfrak{For}$ as any A-equivariant morphisms $D \to D'$ are also B-equivariant for $D, D' \in \mathfrak{C}^*\mathfrak{alg}A$. Conversely, any such functor is of this form for some right quantum group homomorphism Δ_R .

Homomorphism as a functor between coaction categories

Theorem [Meyer, R., Woronowicz, 2011]

There is a unique continuous coaction γ of (B, Δ_B) on C such that the following diagram commutes:

$$\begin{array}{c|c}
C & \xrightarrow{\alpha} & C \otimes A \\
\uparrow \downarrow & & \downarrow \operatorname{id}_{C} \otimes \Delta_{R} \\
C \otimes B & \xrightarrow{\alpha \otimes \operatorname{id}_{B}} & C \otimes A \otimes B.
\end{array}$$

This construction is a functor $F: \mathfrak{C}^*\mathfrak{alg}(A) \to \mathfrak{C}^*\mathfrak{alg}(B)$ with $\mathfrak{For} \circ F = \mathfrak{For}$ as any A-equivariant morphisms $D \to D'$ are also B-equivariant for $D, D' \in \mathfrak{C}^*\mathfrak{alg}A$. Conversely, any such functor is of this form for some right quantum group homomorphism Δ_R .

Homomorphism as a functor between coaction categories

Theorem [Meyer, R., Woronowicz, 2011]

There is a unique continuous coaction γ of (B, Δ_B) on C such that the following diagram commutes:

$$\begin{array}{c|c}
C & \xrightarrow{\alpha} & C \otimes A \\
\uparrow \downarrow & & \downarrow \operatorname{id}_{C} \otimes \Delta_{R} \\
C \otimes B & \xrightarrow{\alpha \otimes \operatorname{id}_{B}} & C \otimes A \otimes B.
\end{array}$$

This construction is a functor $F: \mathfrak{C}^*\mathfrak{alg}(A) \to \mathfrak{C}^*\mathfrak{alg}(B)$ with $\mathfrak{For} \circ F = \mathfrak{For}$ as any A-equivariant morphisms $D \to D'$ are also B-equivariant for $D, D' \in \mathfrak{C}^*\mathfrak{alg}A$. Conversely, any such functor is of this form for some right quantum group homomorphism Δ_R .

Assumptions

- (A, Δ_A) and (B, Δ_B) be locally compact quantum groups.
- $\alpha \colon C \to C \otimes A$ be a right quantum group homomorphism where (C, Δ_C) is a quantum group.
- $\beta: A \to A \otimes B$ be another right quantum group homomorphism.
- F_{α} : $\mathfrak{C}^*\mathfrak{alg}(C) \to \mathfrak{C}^*\mathfrak{alg}(A)$ and F_{β} : $\mathfrak{C}^*\mathfrak{alg}(A) \to \mathfrak{C}^*\mathfrak{alg}(B)$ be the associated functors.
- $\bullet \ \mathsf{V}^{\mathsf{C} \to \mathsf{B}} = \mathsf{V}^{\mathsf{A} \to \mathsf{B}} * \mathsf{V}^{\mathsf{C} \to \mathsf{A}}.$

Composition of right quantum group homomorphism

Proposition

There exists $\gamma \colon C \to C \otimes B$ which is the unique right quantum group homomorphism that makes the following diagram commute:

$$\begin{array}{ccc}
C & \xrightarrow{\alpha} & C \otimes A \\
\uparrow & & & \downarrow \operatorname{id}_{C} \otimes \beta \\
C \otimes B & \xrightarrow{\alpha \otimes \operatorname{id}_{B}} & C \otimes A \otimes B.
\end{array}$$

which satisfies $F_{\beta} \circ F_{\alpha} = F_{\gamma}$. Moreover, $V^{C \to B}$ is the bicharacter associated to γ .

Composition of right quantum group homomorphism

Proposition

There exists $\gamma \colon C \to C \otimes B$ which is the unique right quantum group homomorphism that makes the following diagram commute:

$$\begin{array}{ccc}
C & \xrightarrow{\alpha} & C \otimes A \\
\uparrow & & \downarrow \operatorname{id}_{C} \otimes \beta \\
C \otimes B & \xrightarrow{\alpha \otimes \operatorname{id}_{B}} & C \otimes A \otimes B.
\end{array}$$

which satisfies $F_{\beta} \circ F_{\alpha} = F_{\gamma}$.

Moreover, $V^{C \to B}$ is the bicharacter associated to γ .

Composition of right quantum group homomorphism

Proposition

There exists $\gamma \colon C \to C \otimes B$ which is the unique right quantum group homomorphism that makes the following diagram commute:

$$C \xrightarrow{\alpha} C \otimes A$$

$$\uparrow \downarrow \downarrow id_C \otimes \beta$$

$$C \otimes B \xrightarrow{\alpha \otimes id_B} C \otimes A \otimes B.$$

which satisfies $F_{\beta} \circ F_{\alpha} = F_{\gamma}$. Moreover, $V^{C \to B}$ is the bicharacter associated to γ .

Outline

- Motivation
- 2 Locally compact quantum groups
- 3 Hopf *-homomorphisms
- 4 Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Right coactions as homomorphisms
 - Morphism as a functor between coaction categories
 - Universal bicharacter
- 5 Conclusions

Universal C^* -biablebras associated to a quantum group

There exists two universal C*-bialgebras $(\hat{C}^u, \Delta_{\hat{C}^u})$ and (C^u, Δ^u) corresponding to every locally compact quantum group (C, Δ_C) .

Reducing morphism

There exists two Hopf *-homomorphisms $\Lambda \in Mor(C^u, C)$ and $\hat{\Lambda} \in Mor(\hat{C}^u, \hat{C})$ such that

$$C^{u} \xrightarrow{\Lambda} C$$

$$\Delta_{C^{u}} \downarrow \qquad \qquad \downarrow \Delta_{C}$$

$$C^{u} \otimes C^{u} \xrightarrow{\Lambda \otimes \Lambda} C \otimes C.$$

$$\begin{array}{cccc} \hat{C}^u & \xrightarrow{\hat{\Lambda}} & \hat{C} \\ & & & & \downarrow^{\Delta_{\hat{C}^u}} \\ \hat{C}^u \otimes \hat{C}^u & \xrightarrow{\hat{\Lambda} \otimes \hat{\Lambda}} & \hat{C} \otimes \hat{C}. \end{array}$$

Universal C^* -biablebras associated to a quantum group

There exists two universal C*-bialgebras $(\hat{C}^u, \Delta_{\hat{C}^u})$ and (C^u, Δ^u) corresponding to every locally compact quantum group (C, Δ_C) .

Reducing morphism

There exists two Hopf *-homomorphisms $\Lambda \in Mor(C^u, C)$ and $\hat{\Lambda} \in Mor(\hat{C}^u, \hat{C})$ such that

$$C^{u} \xrightarrow{\Lambda} C$$

$$\Delta_{C^{u}} \downarrow \qquad \qquad \downarrow \Delta_{C}$$

$$C^{u} \otimes C^{u} \xrightarrow{\Lambda \otimes \Lambda} C \otimes C.$$

$$\begin{array}{c|c}
\hat{C}^{u} & \xrightarrow{\hat{\Lambda}} & \hat{C} \\
 & & \downarrow^{\Delta_{\hat{C}^{u}}} & \downarrow^{\Delta_{\hat{C}}} \\
\hat{C}^{u} \otimes \hat{C}^{u} & \xrightarrow{\hat{\Lambda} \otimes \hat{\Lambda}} & \hat{C} \otimes \hat{C}
\end{array}$$

Corepresentation of a quantum group

Definition

A corepresentation of $(\hat{C}, \Delta_{\hat{C}})$ on a C*-algebra D is a unitary multiplier $V \in \mathcal{UM}(\hat{C} \otimes D)$ that satisfies $(\Delta_{\hat{C}} \otimes \mathrm{id}_D)(V) = V_{23}V_{13}$.

Remark

Similarly corepresentation of (C, Δ_C) on a C*-algebra D is a unitary multiplier $V \in \mathcal{UM}(D \otimes C)$ that satisfies $(\mathrm{id}_D \otimes \Delta_C)(V) = V_{12}V_{13}$.

Corepresentation of a quantum group

Definition

A corepresentation of $(\hat{C}, \Delta_{\hat{C}})$ on a C*-algebra D is a unitary multiplier $V \in \mathcal{UM}(\hat{C} \otimes D)$ that satisfies $(\Delta_{\hat{C}} \otimes \mathrm{id}_D)(V) = V_{23}V_{13}$.

Remark

Similarly corepresentation of (C, Δ_C) on a C*-algebra D is a unitary multiplier $V \in \mathcal{UM}(D \otimes C)$ that satisfies $(\mathrm{id}_D \otimes \Delta_C)(V) = V_{12}V_{13}$.

Maximal corepresentations

Maximal corepresentation of (C, Δ_C)

- There exists a maximal corepresentation $\tilde{\mathcal{V}} \in \mathcal{UM}(\hat{C}^u \otimes C)$ of (C, Δ_C) on the C*-algebra \hat{C}^u such that for any corepresentation $U \in \mathcal{UM}(D \otimes C)$ there exists a unique $\hat{\phi} \in \mathsf{Mor}(\hat{C}^u, D)$ such that $(\hat{\phi} \otimes \mathsf{id}_C)\tilde{\mathcal{V}} = U$
- $\bullet \ (\Delta_{\hat{\mathcal{C}}^u} \otimes \mathsf{id}_{\mathcal{C}}) \tilde{\mathcal{V}} = \tilde{\mathcal{V}}_{23} \tilde{\mathcal{V}}_{13}.$

Maximal corepresentation of $(\hat{C}, \Delta_{\hat{C}})$

There exists a maximal corepresentation $\mathcal{V} \in \mathcal{U}(\hat{C} \otimes C^u)$ of $(\hat{C}, \Delta_{\hat{C}})$ on the C*-algebra C^u such that

$$(\mathsf{id}_{\hat{\mathcal{C}}} \otimes \Delta^{\mathsf{u}})\mathcal{V} = \mathcal{V}_{12}\mathcal{V}_{13}$$

Maximal corepresentations

Maximal corepresentation of (C, Δ_C)

- There exists a maximal corepresentation $\tilde{\mathcal{V}} \in \mathcal{UM}(\hat{C}^u \otimes C)$ of (C, Δ_C) on the C*-algebra \hat{C}^u such that for any corepresentation $U \in \mathcal{UM}(D \otimes C)$ there exists a unique $\hat{\phi} \in \operatorname{Mor}(\hat{C}^u, D)$ such that $(\hat{\phi} \otimes \operatorname{id}_C)\tilde{\mathcal{V}} = U$
- $\bullet \ (\Delta_{\hat{\mathcal{C}}^u} \otimes \mathsf{id}_{\mathcal{C}}) \tilde{\mathcal{V}} = \tilde{\mathcal{V}}_{23} \tilde{\mathcal{V}}_{13}.$

Maximal corepresentation of $(\hat{C}, \Delta_{\hat{C}})$

There exists a maximal corepresentation $\mathcal{V} \in \mathcal{U}(\hat{C} \otimes C^u)$ of $(\hat{C}, \Delta_{\hat{C}})$ on the C*-algebra C^u such that

$$(\mathsf{id}_{\hat{C}} \otimes \Delta^u) \mathcal{V} = \mathcal{V}_{12} \mathcal{V}_{13}$$

Results

- Let (A, Δ_A) be a C*-bialgebra. Bicharacters in $\mathcal{UM}(\hat{C} \otimes A)$ correspond bijectively to Hopf *-homomorphisms from (C^u, Δ_{C^u}) to (A, Δ_A) .
- ullet There is a unique bicharacter $\mathcal{X} \in \mathcal{UM}(\hat{\mathcal{C}}^u \otimes \mathcal{C}^u)$ such that

$$\mathcal{V}_{23}\tilde{\mathcal{V}}_{12} = \tilde{\mathcal{V}}_{12}\mathcal{X}_{13}\mathcal{V}_{23}$$
 in $\mathcal{UM}(\hat{C}^u \otimes \mathbb{K}(\mathcal{H}_C) \otimes C^u)$.

Moreover, \mathcal{X} is universal in the following sense: $(\mathrm{id}_{\hat{C}^u} \otimes \Lambda) \mathcal{X} = \tilde{\mathcal{V}}, (\hat{\Lambda} \otimes \mathrm{id}_{C^u}) \mathcal{X} = \mathcal{V} \text{ and } (\hat{\Lambda} \otimes \Lambda) \mathcal{X} = W.$

• A bicharacter in $\mathcal{UM}(\hat{C} \otimes A)$ lifts uniquely to a bicharacter in $\mathcal{UM}(\hat{C}^u \otimes A^u)$ and hence to bicharacters in $\mathcal{UM}(\hat{C} \otimes A^u)$ and $\mathcal{UM}(\hat{C}^u \otimes A)$.

Results

- Let (A, Δ_A) be a C*-bialgebra. Bicharacters in $\mathcal{UM}(\hat{C} \otimes A)$ correspond bijectively to Hopf *-homomorphisms from (C^u, Δ_{C^u}) to (A, Δ_A) .
- There is a unique bicharacter $\mathcal{X} \in \mathcal{UM}(\hat{C}^u \otimes C^u)$ such that

$$\mathcal{V}_{23}\tilde{\mathcal{V}}_{12} = \tilde{\mathcal{V}}_{12} \mathcal{X}_{13} \mathcal{V}_{23} \qquad \text{in } \mathcal{UM}(\hat{C}^u \otimes \mathbb{K}(\mathcal{H}_C) \otimes C^u).$$

Moreover, \mathcal{X} is universal in the following sense: $(\mathrm{id}_{\hat{C}^u} \otimes \Lambda) \mathcal{X} = \tilde{\mathcal{V}}, (\hat{\Lambda} \otimes \mathrm{id}_{C^u}) \mathcal{X} = \mathcal{V} \text{ and } (\hat{\Lambda} \otimes \Lambda) \mathcal{X} = W.$

• A bicharacter in $\mathcal{UM}(\hat{C} \otimes A)$ lifts uniquely to a bicharacter in $\mathcal{UM}(\hat{C}^u \otimes A^u)$ and hence to bicharacters in $\mathcal{UM}(\hat{C} \otimes A^u)$ and $\mathcal{UM}(\hat{C}^u \otimes A)$.

Results

- Let (A, Δ_A) be a C*-bialgebra. Bicharacters in $\mathcal{UM}(\hat{C} \otimes A)$ correspond bijectively to Hopf *-homomorphisms from (C^u, Δ_{C^u}) to (A, Δ_A) .
- There is a unique bicharacter $\mathcal{X} \in \mathcal{UM}(\hat{C}^u \otimes C^u)$ such that

$$\mathcal{V}_{23}\tilde{\mathcal{V}}_{12} = \tilde{\mathcal{V}}_{12}\mathcal{X}_{13}\mathcal{V}_{23} \qquad \text{in } \mathcal{UM}(\hat{C}^u \otimes \mathbb{K}(\mathcal{H}_C) \otimes C^u).$$

Moreover, \mathcal{X} is universal in the following sense: $(\mathrm{id}_{\hat{C}^u} \otimes \Lambda) \mathcal{X} = \tilde{\mathcal{V}}, (\hat{\Lambda} \otimes \mathrm{id}_{C^u}) \mathcal{X} = \mathcal{V} \text{ and } (\hat{\Lambda} \otimes \Lambda) \mathcal{X} = W.$

• A bicharacter in $\mathcal{UM}(\hat{C} \otimes A)$ lifts uniquely to a bicharacter in $\mathcal{UM}(\hat{C}^u \otimes A^u)$ and hence to bicharacters in $\mathcal{UM}(\hat{C} \otimes A^u)$ and $\mathcal{UM}(\hat{C}^u \otimes A)$.

Results

- Let (A, Δ_A) be a C*-bialgebra. Bicharacters in $\mathcal{UM}(\hat{C} \otimes A)$ correspond bijectively to Hopf *-homomorphisms from (C^u, Δ_{C^u}) to (A, Δ_A) .
- \bullet There is a unique bicharacter ${\cal X}\in {\cal UM}(\hat{C}^u\otimes C^u)$ such that

$$\mathcal{V}_{23}\tilde{\mathcal{V}}_{12} = \tilde{\mathcal{V}}_{12}\mathcal{X}_{13}\mathcal{V}_{23} \quad \text{in } \mathcal{UM}(\hat{C}^u \otimes \mathbb{K}(\mathcal{H}_C) \otimes C^u).$$

Moreover, \mathcal{X} is universal in the following sense: $(\mathrm{id}_{\hat{C}^u} \otimes \Lambda) \mathcal{X} = \tilde{\mathcal{V}}, (\hat{\Lambda} \otimes \mathrm{id}_{C^u}) \mathcal{X} = \mathcal{V} \text{ and } (\hat{\Lambda} \otimes \Lambda) \mathcal{X} = W.$

• A bicharacter in $\mathcal{UM}(\hat{C}\otimes A)$ lifts uniquely to a bicharacter in $\mathcal{UM}(\hat{C}^u\otimes A^u)$ and hence to bicharacters in $\mathcal{UM}(\hat{C}\otimes A^u)$ and $\mathcal{UM}(\hat{C}^u\otimes A)$.

Category of universal objects

Theorem [Ng, 1997; Meyer, R., Woronowicz, 2011]

There is an isomorphism between the categories of locally compact quantum groups with bicharacters from C to A and with Hopf *-homomorphisms $C^u \to A^u$ as morphisms $C \to A$, respectively. The bicharacter associated to a Hopf *-homomorphism $\varphi \colon C^u \to A^u$ is $(\Lambda_{\hat{C}} \otimes \Lambda_A \varphi)(\mathcal{X}^C) \in \mathcal{UM}(\hat{C} \otimes A)$.

Furthermore, the duality on the level of bicharacters corresponds to the duality $\varphi \mapsto \hat{\varphi}$ on Hopf *-homomorphisms, where $\hat{\varphi} \colon \hat{A}^{\mathsf{u}} \to \hat{C}^{\mathsf{u}}$ is the unique Hopf *-homomorphism with

$$(\hat{arphi}\otimes\mathsf{id}_{\mathcal{A}^\mathsf{u}})(\mathcal{X}^{oldsymbol{A}})=(\mathsf{id}_{\widehat{\mathcal{C}}^\mathsf{u}}\otimesarphi)(\mathcal{X}^{oldsymbol{C}}).$$

Category of universal objects

Theorem [Ng, 1997; Meyer, R., Woronowicz, 2011]

There is an isomorphism between the categories of locally compact quantum groups with bicharacters from C to A and with Hopf *-homomorphisms $C^u \to A^u$ as morphisms $C \to A$, respectively. The bicharacter associated to a Hopf *-homomorphism

$$\varphi \colon C^{\mathsf{u}} \to A^{\mathsf{u}} \text{ is } (\Lambda_{\hat{C}} \otimes \Lambda_{A} \varphi)(\mathcal{X}^{\mathsf{C}}) \in \mathcal{UM}(\hat{C} \otimes A).$$

Furthermore, the duality on the level of bicharacters corresponds to the duality $\varphi\mapsto\hat{\varphi}$ on Hopf *-homomorphisms, where $\hat{\varphi}\colon\hat{A}^{\mathrm{u}}\to\hat{\mathcal{C}}^{\mathrm{u}}$ is the unique Hopf *-homomorphism with

$$(\hat{\varphi} \otimes id_{A^{\mathsf{u}}})(\mathcal{X}^{\mathsf{A}}) = (id_{\hat{C}^{\mathsf{u}}} \otimes \varphi)(\mathcal{X}^{\mathsf{C}}).$$

Outline

- Motivation
- 2 Locally compact quantum groups
- 3 Hopf *-homomorphisms
- Equivalent pictures of homomorphisms of quantum groups
 - Bicharacters
 - Right coactions as homomorphisms
 - Morphism as a functor between coaction categories
 - Universal bicharacter
- Conclusions

- Multiplicative unitaries are the fundamental objects.
- Every modular/manageable multiplicative unitary $W \in \mathcal{UM}(\hat{C} \otimes C)$ admits a unique lift to $\mathcal{X} \in \mathcal{UM}(\hat{C}^u \otimes C^u)$. Hence they are *basic* in sense of Ng and hence the *birepresentations* (bicharacters in our terminology) are indeed the correct notion of homomorphisms between quantum groups.

- Multiplicative unitaries are the fundamental objects.
- Every modular/manageable multiplicative unitary $W \in \mathcal{UM}(\hat{C} \otimes C)$ admits a unique lift to $\mathcal{X} \in \mathcal{UM}(\hat{C}^u \otimes C^u)$. Hence they are *basic* in sense of Ng and hence the *birepresentations* (bicharacters in our terminology) are indeed the correct notion of homomorphisms between quantum groups.

- Vaes introduced the notion of homomorphisms between quantum groups (von Neumann algebraic setting) as Hopf*-homomorphisms between universal C*-bialgebras which is equivalent to the bicharacters.
- Last but not least, bicharacters induces a functor between coaction categories via left/right quantum group homomorphism which is a new realization of homomorphisms of quantum groups.

- Vaes introduced the notion of homomorphisms between quantum groups (von Neumann algebraic setting) as Hopf*-homomorphisms between universal C*-bialgebras which is equivalent to the bicharacters.
- Last but not least, bicharacters induces a functor between coaction categories via left/right quantum group homomorphism which is a new realization of homomorphisms of quantum groups.

For more details.....

http://arxiv.org/abs/1011.4284/v2

Thank you for your attention!

