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Abstract In this note we define and compute the Temperley-Lieb algebras asso-
ciated to the Coxeter–Dynkin graphs of type Dn. The computation relates these
algebras to those corresponding to the root systems of type A and B. We also
show the connection to braid theory and to the Kauffman bracket and describe
a related graphical calculus.
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1. Hecke algebras and Temperley-Lieb algebras

This section collects some general results. Let S be a finite set. A Coxeter matrix
is a symmetric mappingm: S×S → IN∪{∞} such thatm(s, s) = 1 andm(s, t) ≥
2 for s 6= t. A Coxeter matrix (S,m) is often specified by its Coxeter graph
Γ(S,m). It has S as its set of vertices and an edge with weight m(s, t) whenever
m(s, t) ≥ 3. Usually, the weight m(s, t) = 3 is omitted from the notation.

The standard Hecke algebra Hq(S,m) associated to a Coxeter matrix (S,m)
is the associative algebra with 1 over the commutative ring K with generators
(xs | s ∈ S) and relations

(1.1)
x2

s = (q − 1)xs + q, q ∈ K∗

xsxtxs . . . = xtxsxt . . . , m(s, t) ≥ 2

(m(s, t) factors on each side, alternating). Here K∗ denotes the unit groups of K.
Suppose m takes values in {1, 2, 3}. Then the Temperley-Lieb algebra Td(S,m)

is the associative algebra with 1 over K with generators (es | s ∈ S) and relations

(1.2)
e2s = des d ∈ K∗

eset = etes m(s, t) = 2
esetes = es m(s, t) = 3.

We shall obtain the Temperley-Lieb algebra as a quotient of a Hecke algebra.
For this purpose we assume
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(1.3) p ∈ K∗, q = p2, d = p+ p−1.

(1.4) Proposition. Under the hypothesis (1.3) the assignment xs 7→ pes − 1
defines a surjective homomorphism ϕ: Hq(S,m) → Td(S,m). The kernel of ϕ is
the twosided ideal generated by the elements x(s, t) = xsxtxs +xsxt +xtxs +xs +
xt + 1; here (s, t) runs over the pairs (s, t) with m(s, t) = 3.

Proof. (Compare [6, 2.11].) One verifies easily that ϕ respects the defining rela-
tions of the Hecke algebra. Certainly, ϕ is surjective. Let I ⊂ Hq(S,m) denote the
ideal generated by the x(s, t) for (s, t) with m(s, t) = 3. We define a homomor-
phism ψ: Td(S,m) → Hq(S,m)/I by ψ(es) = p−1(xs + 1). One verifies that this
is compatible with (1.2) and that x(s, t) is contained in the kernel of ϕ. Hence ϕ
induces ϕ: Hq/I → Td. By construction, ϕ and ψ are inverse homomorphisms.2

The preceding construction can, in particular, be applied to Coxeter matrices
of ADE-type. The resulting algebras are then finite dimensional. The structure
of TAn−1 associated to the linear graph An−1 with n vertices is well known, see
[6]; this is the classical Temperley-Lieb algebra. In the following sections 2 and 3
we study the algebras related to the graph Dn with n vertices (n ≥ 4). In section
4 we briefly discuss D-tangles and the associated Kauffman functor.

But first we present one general result: By way of example we show that
Td(S,m) is non-zero. This is done by constructing a standard module which
arises from the reflection representation of the Hecke algebra.

We work with a field K. Let V denote the free K-module with basis {vs | s ∈
S}. We define a symmetric bilinear form B on V by

B(vs, vs) = q + 1
B(vs, vt) = p m(s, t) = 3
B(vs, vt) = 0 m(s, t) = 2.

We define a linear map Xs: V → V by Xs(v) = qvs − B(vs, v)v. Then Xs(vs) =
−vs, and Xs(v) = v for v in the orthogonal complement of vs. We assume q+1 ∈
K∗. Then V is the orthogonal direct sum of Kvs and (Kvs)

⊥. On the latter,
Xs acts as multiplication by q. Hence Xs satisfies the quadratic equation X2

s =
(q − 1)Xs + q of the Hecke algebra.

The determinant ds,t of B on the submodule 〈 vs, vt 〉 generated by vs and vt

equals

ds,t =

{
(q + 1)2 m(s, t) = 2
q2 + q + 1 m(s, t) = 3.

We therefore also assume q2 + q + 1 ∈ K∗. Then V is the orthogonal direct sum
of 〈 vs, vt 〉 and 〈 vs, vt 〉⊥. On the latter subspace, Xs and Xt act as multiplication
by q. The action of Xs and Xt on 〈 vs, vt 〉 in the basis vs, vt is given by

Xs =

(
−1 p

0 q

)
, Xt =

(
q 0
p −1

)
,
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in the case m(s, t) = 3. A simple computation shows

XsXtXs = XtXsXt =

(
0 −pq

−pq 0

)
.

Thus we have constructed the reflection representation V of Hq(S,m).
The assignment ω: Hq(S,m) → Hq(S,m), xs 7→ −qx−1

s is an involutive
automorphism of the Hecke algebra. It transforms V into a new module W = V ω.

(1.5) Proposition. The module W factors over the homomorphism ϕ of (1.4).

Proof. We set Ys = −qX−1
s . We have to show that the operator

Ys,t = YsYtYs + YsYt + YtYs + Ys + Yt + 1

acts on V as the zero map. We compute that Ys + 1 and Yt + 1 act on 〈 vs, vt 〉 in
the basis vs, vt through the matrices

Zs =

(
q + 1 −p

0 0

)
, Zt =

(
0 0

−p q + 1

)
.

This is used to verify on 〈 vs, vt 〉 the relation ZsZtZs = qZs. A formal calculation,
using the quadratic equation for Ys, yields

(Ys + 1)(Yt + 1)(Ys + 1)− q(Ys + 1) = Ys,t.

Therefore Ys,t acts as zero on 〈 vs, vt 〉. SinceXs is multiplication by q on 〈 vs, vt 〉⊥,
we see that −qX−1

s + 1 is the zero map. 2

We give a more direct construction of a Td(S,m)-module which does not use
the reflection representation of the Hecke algebra. Let A = (ast) denote a sym-
metric S × S-matrix over K. We consider the associative algebra T (A) over K
with generators (Zs | s ∈ S and relations

Z2
s = assZs

ZsZtZs = astatsZs.

Then a simple verification from the definitions gives:

(1.6) Proposition. Let V be the K-module with basis (vs | s ∈ S. The operators
Zs(vt) = astvs make V into a T (A)-module. (Hence each Zs has rank at most
one on V .) 2

The matrix A = (ast) is called indecomposable, if there is no partition S =
S1
∐
S2 with auv = 0 for u ∈ S1, v ∈ S2.

(1.7) Proposition. Let K be a field. Suppose A is indecomposable and
det(A) 6= 0. The the module V of the previous proposition is a simple T (A)-
module.



4 T. tom Dieck

Proof. We have Zs(
∑

j ajvj = (
∑

j ajasj)vs. Suppose v =
∑

j ajvj 6= 0. Since
det(A) 6= 0, not all Zsv are zero. If 0 6= M ⊂ V is a T (A)-submodule, then
there exists s ∈ S with vs ∈ M . Suppose vt /∈ M . Since Ztvs = atsvt ∈ M , we
must have ats = 0. This contradicts the indecomposability of A. Hence all vt are
containes in M . 2

In the case of a Coxeter graph, we set ass = d, ast = 1 for m(s, t) = 3, and
ast = 0 for m(s, t) = 2. Then V becomes a module over Td(S,m). Also, det(A)
is a non-trivial monic polynomial in d, hence in general not zero.

2. The structure of TDn

The algebra TDn with parameter d ∈ K is associated to the graph Dn. In the
following figure we have specified the names of the generators.
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The algebra TDn will be decomposed into an algebra which belongs to the linear
graph An−1 and another algebra which is related to the graph Bn. Here An−1 is
the linear Coxeter graph with n−1 vertices e1, . . . , en−1 and m(ej, ej+1) = 3. We
use the same notation for the generators of TDn and TAn−1. The following is
easily verified.

(2.1) Proposition. The assignment e0 7→ e1 and ej 7→ ej (j ≥ 1) defines a
surjective homomorphism α: TDn → TAn−1. 2

We remark that the automorphism of the graph Dn which interchanges e0 and
e1 and fixes ej for j ≥ 2 induces an involution τ : TDn → TDn. We have ατ = α.

(2.2) Proposition. The kernel of α is the twosided ideal I generated by the
difference e0 − e1. The homomorphism α1: TAn−1 → TDn, e1 7→ ej is right
inverse to α. We therefore have a splitting of modules TDn = I ⊕ TAn−1.

Proof. The inclusion I ⊂ kernelα follows from the definitions. The relation
αα1 = id is obvious. The composition α1 ◦ α is easily seen to be be the identity
on generators. Hence I = kernelα. 2

We now use the following algebra T ′Dn of Temperley-Lieb type: It has gener-
ators ε0, . . . , εn−1 and relations



T. tom Dieck 2. The structure of TDn 5

(2.3)

ε2
j = dεj j ≥ 1
ε2
0 = 2ε0

εiεj = εjεi |i− j| ≥ 2
ε1ε0ε1 = dε1

εiεjεi = εi |i− j| = 1; i, j ≥ 1.

This is a variant of the algebra of Bn type which has been studied in [3],[4].

(2.4) Proposition. The assignment β(e0) = (ε0 − 1)ε1(ε0 − 1) and β(ej) = εj

for j ≥ 1 defines a homomorphism β: TDn → T ′Dn.

Proof. For j ≥ 1, the ej and εj satisfy the same relations; we consider the
remaining ones. We use (ε0− 1)2 = 1, ε1(ε0− 1)ε1 = 0, and verify easily β(e20) =
dβ(e0) and β(e0e2e0) = β(e2e0e2). Moreover β(e0e1) = 0 = β(e1e0). 2

The proof of the previous proposition shows that the twosided ideal J gener-
ated by e0e1 is contained in the kernel of β. The image of β will turn out to be
half of T ′Dn, and J is equal to the kernel of β. In order to prove these statements
we introduce the crossed product of TDn/J =: A with the algebra K[τ ]/(τ 2− 1)
where τ acts via the previously defined involution τ on A. Formally, this crossed
product B is defined as the free A-module with basis 1, τ and multiplication

(a+ bτ) · (c+ dτ) := (ac+ bdτ ) + (bcτ + ad)τ,

where xτ denotes the action of τ on x. Note that the ideal J is τ -stable.

(2.5) Proposition. The assignment εj 7→ εj (j ≥ 1) and ε0 7→ 1 + τ defines
an isomorphism β1: T

′Dn → B. The image of β corresponds to the subalgebra A.
The kernel of β is equal to J .

Proof. The relation ε2
0 = 2ε0 corresponds to (1 + τ)2 = 1 + 2τ + 1 = 2(1 + τ).

The element ε1ε0ε1 is mapped to e1 · (1 + τ) · e1 = (e1 + e1τ) · e1 = e21 + e1e0τ
and this equals de1 modulo J . We see that β1 is well-defined and surjective. The
inverse homomorphism is given by β and τ 7→ ε0 − 1. 2

The algebras T ′Dn and TAn−1 have augmentation homomorphisms toK which
map the generators εj and ej to zero. Let T ′′Dn denote the image of β. We have
a sequence

(2.6) 0 → TDn
α,β−→ TAn−1 ⊕ T ′′Dn → K → 0;

the map to K is the difference of the augmentations. The structure of TDn will
be obtained from the next result.

(2.7) Theorem. The sequence (2.6) is exact.
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Proof. We show that α maps the kernel J of β isomorphically onto the kernel
of the augmentation. For this purpose we recall a basis of TAn−1, see [6]. We set

e(i, j) = eiei−1 . . . ej, i ≥ j.

Then a basis of TAn−1 is given by the products

(2.8) (i1, j1) · . . . · e(ip, jp)

with
1 ≤ i1 < . . . < ip ≤ n− 1, 1 ≤ j1 < . . . < jp ≤ n− 1

js ≤ is, 0 ≤ p ≤ n− 1.

We exhibit a basis of J which is mapped onto this basis. We use the notation

ē(i, j) = eiei−1 . . . e1e0e2 . . . ej, j ≥ 2.

This element is mapped under α to de(i, j). Recall that d ∈ K∗ is a unit.

We show that J is spanned by the elements of the form (2.8) where e(i1, j1)
is replaced by ē(i1, j1); this finishes the proof of (2.7).

We consider words in the symbols e0, . . . , en−1. An elementary reduction of a
word is one of the following replacements: ejej by dej, eiejei by ei, eiej by ejei.
Note that the length of the word is not increased. A coefficient of the form dr may
appear. A word is in reduced form, if it cannot be shortened by an elementary
reduction. The words (2.8) are reduced. Certainly, J is generated by reduced
words.

We claim that J is generated by reduced words of the form ae0e1b in which a
and b do not involve e0 and e1.

We know already that J is the ideal generated by words ce0e1d. If d contains
e1, say, then the word contains a string of the form e1xe1 in which x involves
only ej, j ≥ 2. A word of this type is never reduced; this follows easily by using
(2.8) for x. This shows the claim.

We next consider normal forms of reduced words in J by induction on n.
Suppose a reduced word contains two factors en−1, say a string en−1yen−1 with
y not involving en−1 and of shortest length. Then, by induction, this string must
equal ē(n−1, n−1). If a word contains z = ē(n−1, n−1), it is not reduced, unless
it is equal to z. Therefore z is the only reduced word in J with two appearances
of en−1. Next, consider reduced words which have the form w = xen−1y. By
interchanging elements, if necessary, we assume that y has minimal length. Then
y necessarily has the form e(n − 2, j) or ē(n − 2, j). Since x does not contain
en−1, we can apply the induction hypothesis to x. Since w is reduced, it is easily
seen that w has the form (2.8) with e(i1, j1) replaced by ē(i1, j1). 2

We assume known the structure of TAn−1 in the generic case (q not a root of
unity) [6]. It remains to study the algebra T ′′Dn. This is the subject of the next
section.
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We conclude this section with some remarks concerning the algebra of the
graph Dn: braid groups and Hecke algebras.

Each Coxeter matrix (S,m) has associated to it a braid group Z(S,m) with
generators (xs | s ∈ S) and relations xsxtxs . . . = xtxsxt . . . with m(s, t) fac-
tors on each side. For the graph Dn we define another braid group Z ′Dn with
generators κ0, . . . , κn−1 and relations

(2.9)

κiκjκi = κjκiκj |i− j| = 1; i, j ≥ 1
κ0κ1κ0κ1 = κ1κ0κ1κ0

κiκj = κjκi |i− j| ≥ 2
κ2

0 = 1.

This is a quotient of the group ZBn for which the last relation is not present.

(2.10) Proposition. The group Z ′Dn is the semidirect product of ZDn with
ZZ/2. The generator τ of ZZ/2 acts on ZDn by the automorphism induced by the
graph automorphism.

Proof. Let G denote the semi-direct product. We define inverse homomor-
phisms f : G→ Z ′Dn and g: Z ′Dn → G by

f : τ, x0, x1, . . . , xn−1 7→ κ0, κ1κ0κ1, κ1, . . . , κn−1

g: κ0, κ1, . . . , κn−1 7→ τ, x1, . . . , xn−1.

2

We remark that conjugation by κ0 corresponds to τ .

We define the Hecke algebra H ′Dn as the associative algebra with 1 generated
by κ0, . . . , κn−1 with braid relations as above and quadratic relations κ2

0 = 1 and
κ2

j = (q − 1)κj + q for j ≥ 1. This is a Hecke algebra of Bn-type where the
parameter Q belonging to κ0 has been specialized to 1. We have an embedding
α̃: HDn → H ′Dn, x0 7→ κ0κ1κ0, xj 7→ κj for j ≥ 1. As in the case of the
Temperley-Lieb algebras we see:

(2.11) Proposition. The algebra H ′Dn is the crossed product of HDn with
K[τ ]/(τ 2 − 1). 2

There is a connection between Hecke algebras and Temperley-Lieb algebras
as follows.

(2.12) Proposition. The algebra T ′Dn is a quotient of H ′Dn under the homo-
morphism ϕ′: κ0 7→ ε0 − 1, κj 7→ pεj − 1 (j ≥ 1). Moreover α ◦ ϕ = ϕ′ ◦ α̃. 2
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3. The reduced Temperley-Lieb algebra

This section presents the structure of T ′Dn and T ′′Dn for generic parameters (p
not a root of unity). The algebra T ′Dn is of the type Bn but not exactly the
same. Therefore we have to extend some of results in [3] to the present situation.

There exists idempotent elements fk and gk in T ′Dn with the following prop-
erties:

f0 = 1− 1
2
ε0

fk = fk−1 + pk−1+p−k+1

pk+p−k fk−1vekfk−1, 1 ≤ k ≤ n− 1

g0 = 1
2
ε0

gk = gk−1 + pk−1+p−k+1

pk+p−k gk−1εkgk−1, 1 ≤ k ≤ n− 1

εjfk = fkεj = εjgk = gkεj = 0, 1 ≤ j ≤ k
ε0gk = gkε0, 0 ≤ k ≤ n− 1
gkfk = fkgk = 0, 0 ≤ k ≤ n− 1
η(fk) = 1− 1

2
ε0, η(gk) = 1

2
ε0.

The map η is the augmentation which sends ej, j ≥ 1, to zero.
The proof for these assertions is as for [3], Satz 5.2, by induction on k. With

the help of the central orthogonal idempotents fn−1 and gn−1 it is shown as in
[3], Satz (7.1), that the Bratteli diagram of the inclusion T ′Dn−1 ⊂ T ′Dn is the
same as for the inclusion TBn−1 ⊂ TBn. In particular, T ′Dn has n + 1 simple

modules M0(n),M1(n), . . . ,Mn(n) with Mj(n) = Nj of dimension
(

n
j

)
.

The simple modules of T ′′Dn are determined via restriction from T ′Dn.

(3.1) Theorem. The algebra T ′′Dn has the following irreducible modules:
(1) Suppose n = 2k+1. The restrictions resMj for j ≤ k. Moreover resMj

∼=
resMn−j.

(2) Suppose n = 2k. The restrictions resMj, j < k. In this case resMj
∼=

resMn−j. The module resMk is the direct sum of two simple T ′′Dn-module
of the same dimension.

The proof of (3.1) is by induction on n. One uses the structure of the Bratteli-
diagram for T ′Dn−1 ⊂ T ′Dn and the following general fact about the crossed
product construction of T ′Dn from T ′′Dn.

Let A be a semi-simple algebra with an involutive automorphism τ over the
field K of characteristic zero and let B denote the crossed product algebra as
described in section 2. If U is an A-module, let U τ denote the same vector space
with the A-action twisted by τ . The map a + bτ 7→ a − bτ is an automorphism
of B. If V is a B-module, then V is obtained from V by twisting with this
automorphism (conjugate module). A simple A-module U is called of type I
(resp. type II) if U ∼= U τ (resp. U 6∼= U τ ). A simple B-module V is called of type
I (resp. type II) if V 6∼= V (resp. V ∼= V ). If U is an A-module, we call B ⊗A U
the induced B-module indU . These notations are used in the statement of the
following result.

(3.2) Proposition.
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(1) Suppose V is a simple B-module of type I. Then resV = U is simple of
type I and indU ∼= V ⊕ V .

(2) Suppose V is a simple B-module of type II. Then resV ∼= U ⊕ U τ and
V ∼= indU ∼= indU τ . Moreover, U,U τ of type II.

(3) Suppose U is a simple A-module of type I. Then indU ∼= V ⊕V . Moreover,
resV ∼= resV ∼= U .

(4) Suppose U is a simple A-module of type II. Then indU = V is a simple
B-module of type II and resV ∼= U ⊕ U τ .

Proof. The proof of this proposition is by an adaption of the argument in [2],
Ch. VI for the proof of Theorem (7.3). 2

Proof of (3.1). By (3.2) it suffices to determine the modules M j(n). Let resn−1

denote the restriction via T ′Dn−1 ⊂ T ′Dn. From the Bratteli diagram we know

(3.3)
resn−1Mj(n) = Mj−1(n− 1)⊕Mj(n), 1 ≤ j ≤ n− 1
resn−1M0(n) = M0(n− 1), resn−1Mn(n) = Mn−1(n− 1).

The isomorphism type of a simple T ′Dn-module M is therefore determined by
resn−1M . We show by induction on n that M j(n) = Mn−j(n). Since restriction is
compatible with conjugation, the induction step follows from (3.3). The induction
starts with the irreducible representations of the group ZZ/2 generated by τ . 2

4. Braids and tangles of type D

The permutations σ of [±n] = {−n, . . . ,−1, 1, . . . , n} with the property σ(−i) =
−σ(i) form the Weyl group WBn of the root system Bn. The subgroup of even
permutations in WBn is the Weyl group WDn of the root system Dn. The
reflection representation of WDn on Cn is given as follows: The subgroup Sn

acts by permutation of coordinates and (ZZ/2)n−1 by sign changes (zj) 7→ (±zj)
with an even number of minus signs. The reflection hyperplanes are given by
zi = zj and zi = −zj for all pairs (i, j) with i 6= j. Let X be the complement
of the reflection hyperplanes and X/W the orbit space of the free W = WDn

action. Brieskorn [1] has shown that the fundamental group π1(X/W ) is the
braid group ZDn.

We translate this result and obtain a description of ZDn by planar braid
pictures.

A loop [w] inX/W with base point (1, . . . , n) can be lifted toX with (1, . . . , n)
as starting point. Let w: [0, 1] → X, t 7→ (wj(t)) be the resulting path from
(1, . . . , n) to (±σ(1), . . . ,±σ(n)). Here σ ∈ Sn, and the number of minus signs is
even. We consider the braid in C× [0, 1] with 2n strings given by

t 7→ {−wn(t), . . . ,−w1(t), w1(t), . . . , wn(t)} × {t}.

The braid is symmetric with respect to the symmetry C → C, z 7→ −z. the
strings are ζ±j: t 7→ (±wj(t), t). Since w maps into X, the strings have the
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following property: The string pairs (ζj, ζ−j) and (ζk, ζ−k) never meet for j 6= k;
an intersection would correspond to a point wj(t) = ±wk(t) on a reflection
hyperplane. A value wj(t) = 0 is not excluded, though. In this case, the strings
ζj and ζ−j intersect. Therefore we are not dealing with a braid in the usual sense.
Of course, we can always choose representing paths w such that no intersection
of ζj with ζ−j occurs.

As usual, we consider planar generic projections of braids in the strip IR×[0, 1]
from [±n]× 0 to [±n]× 1 which are symmetric with respect to the axis 0× [0, 1].
The transverse intersections on the axis are ordinary crossings, and the other
crossings are over- and undercrossings which appear in symmetric pairs.

In the geometric picture, the extended braid group Z ′Dn has generators
κ0, . . . , κn−1 with κ0 given by

�
�

�

@
@

@
κ0· · · · · ·

1−1 2 n

and κj (j ≥ 1) given by the symmetrized crossing of the j-th and 1 + j-th string
(see the next figure for κ1). The braid group ZDn has generators xj = κj (j ≥ 1)
and x0 = κ0κ1κ0 represented by
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The relation κ2
0 = 1 corresponds to a standard Reidemeister move of type II.

It would also be possible to use over- and under-crossing on the axis, but then
allow for an interchange of over-crossing and under-crossing on the axis.

Elements in the subgroup ZDn have in their geometric picture an even number
of crossings on the axis.

The geometric braid groups Z ′Dn and ZDn are included in tangle categories
S ′D and SD (in the sense of [8], [9]). The category S ′D has objects [±n], n ∈
IN0. The morphisms from [±m] to [±n] are tangle pictures in IR × [0, 1] from
[±m]× 0 to [±n]× 1 which are symmetric with respect to the axis 0× [0, 1]. The
crossings on the axis are ordinary crossings. Composition is defined by placing
one tangle above the other and shrinking of [0, 2] to [0, 1]. The subcategory SD
of S ′D consists of tangles with an even number of points on the axis. There
are similar categories S0D and S ′0D of oriented tangles. Also, one may consider
banded (framed) tangles by not allowing Reidemeister type I moves. The D-
tangle categories are analogous to the B-tangle categories [4], except for the
special treatment of the crossings on the axis. The categories are tensor module
categories over the appropriate categories of ordinary tangles. Ordinary tangles
are included by symmetrizing.
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There is a Kauffman functor from S ′D to the category T ′D of bridges. In this
context one chooses a parameter A with p = −A2. The Kauffman functor re-
solves a symmetrized ordinary crossing as usual in the definition of the Kauffman
bracket [7]. A crossing on the axis is treated as in the following figure.

�
�

�

@
@

@ � �
 	
7→ −

There is also a forgetful functor to A-tangles which maps

�
�

�

@
@

@ 7→

and takes the ZZ/2-quotient of the resulting tangle. These two functors correspond
to the splitting of the algebra TDn in section 2.
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