Temperley-Lieb algebras associated to the root system D

Tammo tom Dieck

Abstract In this note we define and compute the Temperley-Lieb algebras associated to the Coxeter–Dynkin graphs of type D_n . The computation relates these algebras to those corresponding to the root systems of type A and B. We also show the connection to braid theory and to the Kauffman bracket and describe a related graphical calculus.

AMS classification: 57M15; 57M20; 20F36

Keywords: Temperley-Lieb algebras; Hecke algebras; Graphical calculus; Knot algebra; Root systems; Braid groups; Towers of algebras.

1. Hecke algebras and Temperley-Lieb algebras

This section collects some general results. Let S be a finite set. A *Coxeter matrix* is a symmetric mapping $m: S \times S \to \mathbb{N} \cup \{\infty\}$ such that m(s, s) = 1 and $m(s, t) \geq 2$ for $s \neq t$. A Coxeter matrix (S, m) is often specified by its *Coxeter graph* $\Gamma(S, m)$. It has S as its set of vertices and an edge with weight m(s, t) whenever $m(s, t) \geq 3$. Usually, the weight m(s, t) = 3 is omitted from the notation.

The standard Hecke algebra $H_q(S, m)$ associated to a Coxeter matrix (S, m) is the associative algebra with 1 over the commutative ring \mathcal{K} with generators $(x_s \mid s \in S)$ and relations

(1.1)
$$\begin{aligned} x_s^2 &= (q-1)x_s + q, \qquad q \in K^* \\ x_s x_t x_s \dots &= x_t x_s x_t \dots, \qquad m(s,t) \ge 2 \end{aligned}$$

(m(s,t) factors on each side, alternating). Here \mathcal{K}^* denotes the unit groups of \mathcal{K} .

Suppose *m* takes values in $\{1, 2, 3\}$. Then the *Temperley-Lieb algebra* $T_d(S, m)$ is the associative algebra with 1 over \mathcal{K} with generators $(e_s \mid s \in S)$ and relations

(1.2)
$$e_s^2 = de_s \qquad d \in \mathcal{K}^*$$
$$e_s e_t = e_t e_s \qquad m(s,t) = 2$$
$$e_s e_t e_s = e_s \qquad m(s,t) = 3$$

We shall obtain the Temperley-Lieb algebra as a quotient of a Hecke algebra. For this purpose we assume

(1.3)
$$p \in \mathcal{K}^*, \quad q = p^2, \quad d = p + p^{-1}.$$

(1.4) Proposition. Under the hypothesis (1.3) the assignment $x_s \mapsto pe_s - 1$ defines a surjective homomorphism $\varphi: H_q(S,m) \to T_d(S,m)$. The kernel of φ is the twosided ideal generated by the elements $x(s,t) = x_s x_t x_s + x_s x_t + x_t x_s + x_s + x_t + 1$; here (s,t) runs over the pairs (s,t) with m(s,t) = 3.

PROOF. (Compare [6, 2.11].) One verifies easily that φ respects the defining relations of the Hecke algebra. Certainly, φ is surjective. Let $I \subset H_q(S, m)$ denote the ideal generated by the x(s,t) for (s,t) with m(s,t) = 3. We define a homomorphism $\psi: T_d(S,m) \to H_q(S,m)/I$ by $\psi(e_s) = p^{-1}(x_s + 1)$. One verifies that this is compatible with (1.2) and that x(s,t) is contained in the kernel of φ . Hence φ induces $\varphi: H_q/I \to T_d$. By construction, φ and ψ are inverse homomorphisms. \Box

The preceding construction can, in particular, be applied to Coxeter matrices of ADE-type. The resulting algebras are then finite dimensional. The structure of TA_{n-1} associated to the linear graph A_{n-1} with *n* vertices is well known, see [6]; this is the classical Temperley-Lieb algebra. In the following sections 2 and 3 we study the algebras related to the graph D_n with *n* vertices $(n \ge 4)$. In section 4 we briefly discuss *D*-tangles and the associated Kauffman functor.

But first we present one general result: By way of example we show that $T_d(S,m)$ is non-zero. This is done by constructing a standard module which arises from the reflection representation of the Hecke algebra.

We work with a field \mathcal{K} . Let V denote the free \mathcal{K} -module with basis $\{v_s \mid s \in S\}$. We define a symmetric bilinear form B on V by

$$\begin{array}{l} B(v_s,v_s) = q+1 \\ B(v_s,v_t) = p \\ B(v_s,v_t) = 0 \end{array} \qquad \begin{array}{l} m(s,t) = 3 \\ m(s,t) = 2 \end{array}$$

We define a linear map $X_s: V \to V$ by $X_s(v) = qv_s - B(v_s, v)v$. Then $X_s(v_s) = -v_s$, and $X_s(v) = v$ for v in the orthogonal complement of v_s . We assume $q+1 \in \mathcal{K}^*$. Then V is the orthogonal direct sum of $\mathcal{K}v_s$ and $(\mathcal{K}v_s)^{\perp}$. On the latter, X_s acts as multiplication by q. Hence X_s satisfies the quadratic equation $X_s^2 = (q-1)X_s + q$ of the Hecke algebra.

The determinant $d_{s,t}$ of B on the submodule $\langle v_s, v_t \rangle$ generated by v_s and v_t equals

$$d_{s,t} = \begin{cases} (q+1)^2 & m(s,t) = 2\\ q^2 + q + 1 & m(s,t) = 3. \end{cases}$$

We therefore also assume $q^2 + q + 1 \in \mathcal{K}^*$. Then V is the orthogonal direct sum of $\langle v_s, v_t \rangle$ and $\langle v_s, v_t \rangle^{\perp}$. On the latter subspace, X_s and X_t act as multiplication by q. The action of X_s and X_t on $\langle v_s, v_t \rangle$ in the basis v_s, v_t is given by

$$X_s = \begin{pmatrix} -1 & p \\ 0 & q \end{pmatrix}, \quad X_t = \begin{pmatrix} q & 0 \\ p & -1 \end{pmatrix},$$

in the case m(s,t) = 3. A simple computation shows

$$X_s X_t X_s = X_t X_s X_t = \begin{pmatrix} 0 & -pq \\ -pq & 0 \end{pmatrix}.$$

Thus we have constructed the reflection representation V of $H_q(S, m)$.

The assignment $\omega: H_q(S,m) \to H_q(S,m), \quad x_s \mapsto -qx_s^{-1}$ is an involutive automorphism of the Hecke algebra. It transforms V into a new module $W = V^{\omega}$.

(1.5) **Proposition.** The module W factors over the homomorphism φ of (1.4).

PROOF. We set $Y_s = -qX_s^{-1}$. We have to show that the operator

$$Y_{s,t} = Y_s Y_t Y_s + Y_s Y_t + Y_t Y_s + Y_s + Y_t + 1$$

acts on V as the zero map. We compute that $Y_s + 1$ and $Y_t + 1$ act on $\langle v_s, v_t \rangle$ in the basis v_s, v_t through the matrices

$$Z_s = \begin{pmatrix} q+1 & -p \\ 0 & 0 \end{pmatrix}, \quad Z_t = \begin{pmatrix} 0 & 0 \\ -p & q+1 \end{pmatrix}.$$

This is used to verify on $\langle v_s, v_t \rangle$ the relation $Z_s Z_t Z_s = q Z_s$. A formal calculation, using the quadratic equation for Y_s , yields

$$(Y_s + 1)(Y_t + 1)(Y_s + 1) - q(Y_s + 1) = Y_{s,t}.$$

Therefore $Y_{s,t}$ acts as zero on $\langle v_s, v_t \rangle$. Since X_s is multiplication by q on $\langle v_s, v_t \rangle^{\perp}$, we see that $-qX_s^{-1} + 1$ is the zero map.

We give a more direct construction of a $T_d(S, m)$ -module which does not use the reflection representation of the Hecke algebra. Let $A = (a_{st})$ denote a symmetric $S \times S$ -matrix over \mathcal{K} . We consider the associative algebra T(A) over \mathcal{K} with generators $(Z_s \mid s \in S \text{ and relations})$

$$Z_s^2 = a_{ss}Z_s$$
$$Z_sZ_tZ_s = a_{st}a_{ts}Z_s.$$

Then a simple verification from the definitions gives:

(1.6) Proposition. Let V be the \mathcal{K} -module with basis $(v_s \mid s \in S)$. The operators $Z_s(v_t) = a_{st}v_s$ make V into a T(A)-module. (Hence each Z_s has rank at most one on V.)

The matrix $A = (a_{st})$ is called *indecomposable*, if there is no partition $S = S_1 \coprod S_2$ with $a_{uv} = 0$ for $u \in S_1, v \in S_2$.

(1.7) Proposition. Let \mathcal{K} be a field. Suppose A is indecomposable and $\det(A) \neq 0$. The the module V of the previous proposition is a simple T(A)-module.

PROOF. We have $Z_s(\sum_j a_j v_j = (\sum_j a_j a_{sj})v_s$. Suppose $v = \sum_j a_j v_j \neq 0$. Since $\det(A) \neq 0$, not all $Z_s v$ are zero. If $0 \neq M \subset V$ is a T(A)-submodule, then there exists $s \in S$ with $v_s \in M$. Suppose $v_t \notin M$. Since $Z_t v_s = a_{ts} v_t \in M$, we must have $a_{ts} = 0$. This contradicts the indecomposability of A. Hence all v_t are containes in M.

In the case of a Coxeter graph, we set $a_{ss} = d$, $a_{st} = 1$ for m(s,t) = 3, and $a_{st} = 0$ for m(s,t) = 2. Then V becomes a module over $T_d(S,m)$. Also, det(A) is a non-trivial monic polynomial in d, hence in general not zero.

2. The structure of TD_n

The algebra TD_n with parameter $d \in \mathcal{K}$ is associated to the graph D_n . In the following figure we have specified the names of the generators.

The algebra TD_n will be decomposed into an algebra which belongs to the linear graph A_{n-1} and another algebra which is related to the graph B_n . Here A_{n-1} is the linear Coxeter graph with n-1 vertices e_1, \ldots, e_{n-1} and $m(e_j, e_{j+1}) = 3$. We use the same notation for the generators of TD_n and TA_{n-1} . The following is easily verified.

(2.1) Proposition. The assignment $e_0 \mapsto e_1$ and $e_j \mapsto e_j$ $(j \ge 1)$ defines a surjective homomorphism $\alpha: TD_n \to TA_{n-1}$.

We remark that the automorphism of the graph D_n which interchanges e_0 and e_1 and fixes e_j for $j \ge 2$ induces an involution $\tau: TD_n \to TD_n$. We have $\alpha \tau = \alpha$.

(2.2) Proposition. The kernel of α is the twosided ideal I generated by the difference $e_0 - e_1$. The homomorphism $\alpha_1: TA_{n-1} \to TD_n$, $e_1 \mapsto e_j$ is right inverse to α . We therefore have a splitting of modules $TD_n = I \oplus TA_{n-1}$.

PROOF. The inclusion $I \subset \text{kernel } \alpha$ follows from the definitions. The relation $\alpha \alpha_1 = \text{id}$ is obvious. The composition $\alpha_1 \circ \alpha$ is easily seen to be the identity on generators. Hence $I = \text{kernel } \alpha$.

We now use the following algebra $T'D_n$ of Temperley-Lieb type: It has generators $\varepsilon_0, \ldots, \varepsilon_{n-1}$ and relations

(2.3)

$$\begin{array}{rcl}
\varepsilon_{j}^{2} &=& d\varepsilon_{j} & j \geq 1 \\
\varepsilon_{0}^{2} &=& 2\varepsilon_{0} \\
\varepsilon_{i}\varepsilon_{j} &=& \varepsilon_{j}\varepsilon_{i} & |i-j| \geq 2 \\
\varepsilon_{1}\varepsilon_{0}\varepsilon_{1} &=& d\varepsilon_{1} \\
\varepsilon_{i}\varepsilon_{j}\varepsilon_{i} &=& \varepsilon_{i} & |i-j| = 1; i, j \geq 1.
\end{array}$$

This is a variant of the algebra of B_n type which has been studied in [3],[4].

(2.4) **Proposition.** The assignment $\beta(e_0) = (\varepsilon_0 - 1)\varepsilon_1(\varepsilon_0 - 1)$ and $\beta(e_j) = \varepsilon_j$ for $j \ge 1$ defines a homomorphism $\beta: TD_n \to T'D_n$.

PROOF. For $j \ge 1$, the e_j and ε_j satisfy the same relations; we consider the remaining ones. We use $(\varepsilon_0 - 1)^2 = 1$, $\varepsilon_1(\varepsilon_0 - 1)\varepsilon_1 = 0$, and verify easily $\beta(e_0^2) = d\beta(e_0)$ and $\beta(e_0e_2e_0) = \beta(e_2e_0e_2)$. Moreover $\beta(e_0e_1) = 0 = \beta(e_1e_0)$.

The proof of the previous proposition shows that the twosided ideal J generated by e_0e_1 is contained in the kernel of β . The image of β will turn out to be half of $T'D_n$, and J is equal to the kernel of β . In order to prove these statements we introduce the crossed product of $TD_n/J =: \mathcal{A}$ with the algebra $\mathcal{K}[\tau]/(\tau^2 - 1)$ where τ acts via the previously defined involution τ on \mathcal{A} . Formally, this crossed product \mathcal{B} is defined as the free \mathcal{A} -module with basis 1, τ and multiplication

$$(a+b\tau)\cdot(c+d\tau) := (ac+bd^{\tau}) + (bc^{\tau}+ad)\tau,$$

where x^{τ} denotes the action of τ on x. Note that the ideal J is τ -stable.

(2.5) Proposition. The assignment $\varepsilon_j \mapsto \varepsilon_j \ (j \ge 1)$ and $\varepsilon_0 \mapsto 1 + \tau$ defines an isomorphism $\beta_1: T'D_n \to \mathcal{B}$. The image of β corresponds to the subalgebra \mathcal{A} . The kernel of β is equal to J.

PROOF. The relation $\varepsilon_0^2 = 2\varepsilon_0$ corresponds to $(1 + \tau)^2 = 1 + 2\tau + 1 = 2(1 + \tau)$. The element $\varepsilon_1\varepsilon_0\varepsilon_1$ is mapped to $e_1 \cdot (1 + \tau) \cdot e_1 = (e_1 + e_1\tau) \cdot e_1 = e_1^2 + e_1e_0\tau$ and this equals de_1 modulo J. We see that β_1 is well-defined and surjective. The inverse homomorphism is given by β and $\tau \mapsto \varepsilon_0 - 1$.

The algebras $T'D_n$ and TA_{n-1} have augmentation homomorphisms to \mathcal{K} which map the generators ε_j and e_j to zero. Let $T''D_n$ denote the image of β . We have a sequence

(2.6)
$$0 \to TD_n \xrightarrow{\alpha,\beta} TA_{n-1} \oplus T''D_n \to \mathcal{K} \to 0;$$

the map to \mathcal{K} is the difference of the augmentations. The structure of TD_n will be obtained from the next result.

(2.7) Theorem. The sequence (2.6) is exact.

PROOF. We show that α maps the kernel J of β isomorphically onto the kernel of the augmentation. For this purpose we recall a basis of TA_{n-1} , see [6]. We set

$$e(i,j) = e_i e_{i-1} \dots e_j, \quad i \ge j.$$

Then a basis of TA_{n-1} is given by the products

$$(2.8) (i_1, j_1) \cdot \ldots \cdot e(i_p, j_p)$$

with

$$1 \le i_1 < \ldots < i_p \le n-1, \qquad 1 \le j_1 < \ldots < j_p \le n-1$$

 $j_s \le i_s, \qquad \qquad 0 \le p \le n-1.$

We exhibit a basis of J which is mapped onto this basis. We use the notation

$$\bar{e}(i,j) = e_i e_{i-1} \dots e_1 e_0 e_2 \dots e_j, \quad j \ge 2.$$

This element is mapped under α to de(i, j). Recall that $d \in \mathcal{K}^*$ is a unit.

We show that J is spanned by the elements of the form (2.8) where $e(i_1, j_1)$ is replaced by $\bar{e}(i_1, j_1)$; this finishes the proof of (2.7).

We consider words in the symbols e_0, \ldots, e_{n-1} . An elementary reduction of a word is one of the following replacements: $e_j e_j$ by de_j , $e_i e_j e_i$ by e_i , $e_i e_j$ by $e_j e_i$. Note that the length of the word is not increased. A coefficient of the form d^r may appear. A word is in *reduced form*, if it cannot be shortened by an elementary reduction. The words (2.8) are reduced. Certainly, J is generated by reduced words.

We claim that J is generated by reduced words of the form ae_0e_1b in which a and b do not involve e_0 and e_1 .

We know already that J is the ideal generated by words ce_0e_1d . If d contains e_1 , say, then the word contains a string of the form e_1xe_1 in which x involves only e_j , $j \ge 2$. A word of this type is never reduced; this follows easily by using (2.8) for x. This shows the claim.

We next consider normal forms of reduced words in J by induction on n. Suppose a reduced word contains two factors e_{n-1} , say a string $e_{n-1}ye_{n-1}$ with y not involving e_{n-1} and of shortest length. Then, by induction, this string must equal $\bar{e}(n-1, n-1)$. If a word contains $z = \bar{e}(n-1, n-1)$, it is not reduced, unless it is equal to z. Therefore z is the only reduced word in J with two appearances of e_{n-1} . Next, consider reduced words which have the form $w = xe_{n-1}y$. By interchanging elements, if necessary, we assume that y has minimal length. Then y necessarily has the form e(n-2, j) or $\bar{e}(n-2, j)$. Since x does not contain e_{n-1} , we can apply the induction hypothesis to x. Since w is reduced, it is easily seen that w has the form (2.8) with $e(i_1, j_1)$ replaced by $\bar{e}(i_1, j_1)$.

We assume known the structure of TA_{n-1} in the generic case (q not a root of unity) [6]. It remains to study the algebra $T''D_n$. This is the subject of the next section.

We conclude this section with some remarks concerning the algebra of the graph D_n : braid groups and Hecke algebras.

Each Coxeter matrix (S, m) has associated to it a braid group Z(S, m) with generators $(x_s \mid s \in S)$ and relations $x_s x_t x_s \ldots = x_t x_s x_t \ldots$ with m(s, t) factors on each side. For the graph D_n we define another braid group $Z'D_n$ with generators $\kappa_0, \ldots, \kappa_{n-1}$ and relations

(2.9)
$$\kappa_{i}\kappa_{j}\kappa_{i} = \kappa_{j}\kappa_{i}\kappa_{j} \qquad |i-j| = 1; i, j \ge 1$$
$$\kappa_{0}\kappa_{1}\kappa_{0}\kappa_{1} = \kappa_{1}\kappa_{0}\kappa_{1}\kappa_{0}$$
$$\kappa_{i}\kappa_{j} = \kappa_{j}\kappa_{i} \qquad |i-j| \ge 2$$
$$\kappa_{0}^{2} = 1.$$

This is a quotient of the group ZB_n for which the last relation is not present.

(2.10) Proposition. The group $Z'D_n$ is the semidirect product of ZD_n with $\mathbb{Z}/2$. The generator τ of $\mathbb{Z}/2$ acts on ZD_n by the automorphism induced by the graph automorphism.

PROOF. Let G denote the semi-direct product. We define inverse homomorphisms $f: G \to Z'D_n$ and $g: Z'D_n \to G$ by

$$f: \tau, x_0, x_1, \dots, x_{n-1} \mapsto \kappa_0, \kappa_1 \kappa_0 \kappa_1, \kappa_1, \dots, \kappa_{n-1}$$
$$g: \kappa_0, \kappa_1, \dots, \kappa_{n-1} \mapsto \tau, x_1, \dots, x_{n-1}.$$

We remark that conjugation by κ_0 corresponds to τ .

We define the Hecke algebra $H'D_n$ as the associative algebra with 1 generated by $\kappa_0, \ldots, \kappa_{n-1}$ with braid relations as above and quadratic relations $\kappa_0^2 = 1$ and $\kappa_j^2 = (q-1)\kappa_j + q$ for $j \ge 1$. This is a Hecke algebra of B_n -type where the parameter Q belonging to κ_0 has been specialized to 1. We have an embedding $\tilde{\alpha}$: $HD_n \to H'D_n, x_0 \mapsto \kappa_0 \kappa_1 \kappa_0, x_j \mapsto \kappa_j$ for $j \ge 1$. As in the case of the Temperley-Lieb algebras we see:

(2.11) Proposition. The algebra $H'D_n$ is the crossed product of HD_n with $\mathcal{K}[\tau]/(\tau^2-1)$.

There is a connection between Hecke algebras and Temperley-Lieb algebras as follows.

(2.12) **Proposition.** The algebra $T'D_n$ is a quotient of $H'D_n$ under the homomorphism $\varphi': \kappa_0 \mapsto \varepsilon_0 - 1, \ \kappa_j \mapsto p\varepsilon_j - 1 \ (j \ge 1)$. Moreover $\alpha \circ \varphi = \varphi' \circ \tilde{\alpha}$. \Box

3. The reduced Temperley-Lieb algebra

This section presents the structure of $T'D_n$ and $T''D_n$ for generic parameters (p not a root of unity). The algebra $T'D_n$ is of the type B_n but not exactly the same. Therefore we have to extend some of results in [3] to the present situation.

There exists idempotent elements f_k and g_k in $T'D_n$ with the following properties:

$$\begin{aligned} f_0 &= 1 - \frac{1}{2}\varepsilon_0 \\ f_k &= f_{k-1} + \frac{p^{k-1} + p^{-k+1}}{p^k + p^{-k}} f_{k-1} v e_k f_{k-1}, & 1 \le k \le n-1 \\ g_0 &= \frac{1}{2}\varepsilon_0 \\ g_k &= g_{k-1} + \frac{p^{k-1} + p^{-k+1}}{p^k + p^{-k}} g_{k-1} \varepsilon_k g_{k-1}, & 1 \le k \le n-1 \\ \varepsilon_j f_k &= f_k \varepsilon_j &= \varepsilon_j g_k = g_k \varepsilon_j = 0, & 1 \le j \le k \\ \varepsilon_0 g_k &= g_k \varepsilon_0, & 0 \le k \le n-1 \\ g_k f_k &= f_k g_k = 0, & 0 \le k \le n-1 \\ \eta(f_k) &= 1 - \frac{1}{2}\varepsilon_0, \, \eta(g_k) = \frac{1}{2}\varepsilon_0. \end{aligned}$$

The map η is the augmentation which sends e_j , $j \ge 1$, to zero.

The proof for these assertions is as for [3], Satz 5.2, by induction on k. With the help of the central orthogonal idempotents f_{n-1} and g_{n-1} it is shown as in [3], Satz (7.1), that the Bratteli diagram of the inclusion $T'D_{n-1} \subset T'D_n$ is the same as for the inclusion $TB_{n-1} \subset TB_n$. In particular, $T'D_n$ has n+1 simple modules $M_0(n), M_1(n), \ldots, M_n(n)$ with $M_j(n) = N_j$ of dimension $\binom{n}{j}$.

The simple modules of $T''D_n$ are determined via restriction from $T'D_n$.

- (3.1) **Theorem.** The algebra $T''D_n$ has the following irreducible modules:
 - (1) Suppose n = 2k + 1. The restrictions $\operatorname{res} M_j$ for $j \leq k$. Moreover $\operatorname{res} M_j \cong \operatorname{res} M_{n-j}$.
 - (2) Suppose n = 2k. The restrictions $\operatorname{res} M_j$, j < k. In this case $\operatorname{res} M_j \cong \operatorname{res} M_{n-j}$. The module $\operatorname{res} M_k$ is the direct sum of two simple $T''D_n$ -module of the same dimension.

The proof of (3.1) is by induction on n. One uses the structure of the Brattelidiagram for $T'D_{n-1} \subset T'D_n$ and the following general fact about the crossed product construction of $T'D_n$ from $T''D_n$.

Let \mathcal{A} be a semi-simple algebra with an involutive automorphism τ over the field \mathcal{K} of characteristic zero and let \mathcal{B} denote the crossed product algebra as described in section 2. If U is an \mathcal{A} -module, let U^{τ} denote the same vector space with the \mathcal{A} -action twisted by τ . The map $a + b\tau \mapsto a - b\tau$ is an automorphism of \mathcal{B} . If V is a \mathcal{B} -module, then \overline{V} is obtained from V by twisting with this automorphism (conjugate module). A simple \mathcal{A} -module U is called of type I (resp. type II) if $U \cong U^{\tau}$ (resp. $U \ncong U^{\tau}$). A simple \mathcal{B} -module V is called of type I (resp. type II) if $V \ncong \overline{V}$ (resp. $V \cong \overline{V}$). If U is an \mathcal{A} -module, we call $\mathcal{B} \otimes_{\mathcal{A}} U$ the induced \mathcal{B} -module ind U. These notations are used in the statement of the following result.

(3.2) Proposition.

- (1) Suppose V is a simple \mathcal{B} -module of type I. Then resV = U is simple of type I and ind $U \cong V \oplus \overline{V}$.
- (2) Suppose V is a simple \mathcal{B} -module of type II. Then res $V \cong U \oplus U^{\tau}$ and $V \cong \operatorname{ind} U \cong \operatorname{ind} U^{\tau}$. Moreover, U, U^{τ} of type II.
- (3) Suppose U is a simple \mathcal{A} -module of type I. Then ind $U \cong V \oplus \overline{V}$. Moreover, res $V \cong \text{res}\overline{V} \cong U$.
- (4) Suppose U is a simple \mathcal{A} -module of type II. Then ind U = V is a simple \mathcal{B} -module of type II and res $V \cong U \oplus U^{\tau}$.

PROOF. The proof of this proposition is by an adaption of the argument in [2], Ch. VI for the proof of Theorem (7.3). \Box

Proof of (3.1). By (3.2) it suffices to determine the modules $\overline{M}_j(n)$. Let res_{n-1} denote the restriction via $T'D_{n-1} \subset T'D_n$. From the Bratteli diagram we know

(3.3)
$$\operatorname{res}_{n-1}M_j(n) = M_{j-1}(n-1) \oplus M_j(n), \quad 1 \le j \le n-1 \\ \operatorname{res}_{n-1}M_0(n) = M_0(n-1), \operatorname{res}_{n-1}M_n(n) = M_{n-1}(n-1).$$

The isomorphism type of a simple $T'D_n$ -module M is therefore determined by $\operatorname{res}_{n-1}M$. We show by induction on n that $\overline{M}_j(n) = M_{n-j}(n)$. Since restriction is compatible with conjugation, the induction step follows from (3.3). The induction starts with the irreducible representations of the group $\mathbb{Z}/2$ generated by τ . \Box

4. Braids and tangles of type D

The permutations σ of $[\pm n] = \{-n, \ldots, -1, 1, \ldots, n\}$ with the property $\sigma(-i) = -\sigma(i)$ form the Weyl group WB_n of the root system B_n . The subgroup of even permutations in WB_n is the Weyl group WD_n of the root system D_n . The reflection representation of WD_n on \mathbb{C}^n is given as follows: The subgroup S_n acts by permutation of coordinates and $(\mathbb{Z}/2)^{n-1}$ by sign changes $(z_j) \mapsto (\pm z_j)$ with an even number of minus signs. The reflection hyperplanes are given by $z_i = z_j$ and $z_i = -z_j$ for all pairs (i, j) with $i \neq j$. Let X be the complement of the reflection hyperplanes and X/W the orbit space of the free $W = WD_n$ action. Brieskorn [1] has shown that the fundamental group $\pi_1(X/W)$ is the braid group ZD_n .

We translate this result and obtain a description of ZD_n by planar braid pictures.

A loop [w] in X/W with base point $(1, \ldots, n)$ can be lifted to X with $(1, \ldots, n)$ as starting point. Let $w: [0, 1] \to X$, $t \mapsto (w_j(t))$ be the resulting path from $(1, \ldots, n)$ to $(\pm \sigma(1), \ldots, \pm \sigma(n))$. Here $\sigma \in S_n$, and the number of minus signs is even. We consider the braid in $\mathbb{C} \times [0, 1]$ with 2n strings given by

 $t \mapsto \{-w_n(t), \dots, -w_1(t), w_1(t), \dots, w_n(t)\} \times \{t\}.$

The braid is symmetric with respect to the symmetry $\mathbb{C} \to \mathbb{C}$, $z \mapsto -z$. the strings are $\zeta_{\pm j}$: $t \mapsto (\pm w_j(t), t)$. Since w maps into X, the strings have the

following property: The string pairs (ζ_j, ζ_{-j}) and (ζ_k, ζ_{-k}) never meet for $j \neq k$; an intersection would correspond to a point $w_j(t) = \pm w_k(t)$ on a reflection hyperplane. A value $w_j(t) = 0$ is not excluded, though. In this case, the strings ζ_j and ζ_{-j} intersect. Therefore we are not dealing with a braid in the usual sense. Of course, we can always choose representing paths w such that no intersection of ζ_j with ζ_{-j} occurs.

As usual, we consider planar generic projections of braids in the strip $\mathbb{R} \times [0, 1]$ from $[\pm n] \times 0$ to $[\pm n] \times 1$ which are symmetric with respect to the axis $0 \times [0, 1]$. The transverse intersections on the axis are ordinary crossings, and the other crossings are over- and undercrossings which appear in symmetric pairs.

In the geometric picture, the extended braid group $Z'D_n$ has generators $\kappa_0, \ldots, \kappa_{n-1}$ with κ_0 given by

and κ_j $(j \ge 1)$ given by the symmetrized crossing of the *j*-th and 1 + j-th string (see the next figure for κ_1). The braid group ZD_n has generators $x_j = \kappa_j$ $(j \ge 1)$ and $x_0 = \kappa_0 \kappa_1 \kappa_0$ represented by

The relation $\kappa_0^2 = 1$ corresponds to a standard Reidemeister move of type II. It would also be possible to use over- and under-crossing on the axis, but then allow for an interchange of over-crossing and under-crossing on the axis.

Elements in the subgroup ZD_n have in their geometric picture an even number of crossings on the axis.

The geometric braid groups $Z'D_n$ and ZD_n are included in tangle categories S'D and SD (in the sense of [8], [9]). The category S'D has objects $[\pm n]$, $n \in \mathbb{N}_0$. The morphisms from $[\pm m]$ to $[\pm n]$ are tangle pictures in $\mathbb{R} \times [0, 1]$ from $[\pm m] \times 0$ to $[\pm n] \times 1$ which are symmetric with respect to the axis $0 \times [0, 1]$. The crossings on the axis are ordinary crossings. Composition is defined by placing one tangle above the other and shrinking of [0, 2] to [0, 1]. The subcategory SD of S'D consists of tangles with an even number of points on the axis. There are similar categories S_0D and S'_0D of oriented tangles. Also, one may consider banded (framed) tangles by not allowing Reidemeister type I moves. The D-tangle categories are analogous to the B-tangle categories are tensor module categories over the appropriate categories of ordinary tangles. Ordinary tangles are included by symmetrizing.

There is a Kauffman functor from S'D to the category T'D of bridges. In this context one chooses a parameter A with $p = -A^2$. The Kauffman functor resolves a symmetrized ordinary crossing as usual in the definition of the Kauffman bracket [7]. A crossing on the axis is treated as in the following figure.

There is also a forgetful functor to A-tangles which maps

and takes the $\mathbb{Z}/2$ -quotient of the resulting tangle. These two functors correspond to the splitting of the algebra TD_n in section 2.

References

- Brieskorn, E.: Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe. Invent. Math. 12, 57 – 61 (1971).
- Bröcker, Th., and T. tom Dieck: Representations of compact Lie groups. New York – Heidelberg, Springer 1985.
- tom Dieck, T.: Symmetrische Brücken und Knotentheorie zu den Dynkin-Diagrammen vom Typ B. J. reine angew. Math. 451, 71 – 88 (1994).
- tom Dieck, T.: Knotentheorien und Wurzelsysteme. Teil II. Mathematica Gottingensis 44 (1993).
- 5. tom Dieck, T.: Knot theories and root systems Part III. Mathematica Gottingensis 22 (1994).
- Goodman, F. M., de la Harpe, P., and V. F. R. Jones: Coxeter graphs and towers of algebras. New York – Heidelberg, Springer 1989.
- Kauffman, L. H.: State models and the Jones polynomial. Topology 26, 395 - 407 (1987).
- 8. Reshetikhin, N., and V. G. Tuarev: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127, 1 26 (1990).
- Turaev, V. G.: Operator invariants of tangles and *R*-matrices. USSR Izvestia 35, 411 – 444 (1990).