
Bridges with pillars
A graphical calculus of knot algebra

Tammo tom Dieck

1. Introduction

This paper comprises a graphical calculus which is designed to deal with the
Coxeter-Dynkin series of type E and some generalizations.

A Coxeter matrix (S, m) consists of a finite set S and a symmetric mapping
m: S × S → IN ∪ {∞} with m(s, s) = 1 and m(s, t) ≥ 2 for s 6= t. A Coxeter
matrix (S, m) is often specified by its weighted Coxeter graph Γ(S, m). It has
S as its set of vertices and an edge with weight m(s, t) connecting s and t
whenever m(s, t) ≥ 3. Usually, the weight m(s, t) = 3 is omitted in the notation.
If m(S×S) ⊂ {1, 2, 3}, we define the associated Temperley-Lieb algebra Td(S, m)
as follows. Let K be a commutative ring and d ∈ K∗ an invertible parameter. Then
Td(S, m) is the associative algebra with 1 over K with generators (es | s ∈ S) and
relations

(1.1)
e2

s = des

eset = etes m(s, t) = 2
esetes = es m(s, t) = 3.

Recall that the Hecke algebra Hq(S, m) associated to the Coxeter matrix (S, m)
and an invertible parameter q ∈ K is the associative algebra with 1 over K

with generators (xs | s ∈ S) and relations x2
s = (q − 1)xs + q and braid rela-

tions xsxt . . . = xtxs . . . (m(s, t) factors xs, xt alternating on each side). Suppose
p ∈ K∗, q = p2, d = p + p−1. Then Td(S, m) = T (S, m). Then the assignment
xs 7→ pes − 1 yields a surjection Hq(S, m) → Td(S, m) (see [3]). The classical
Coxeter matrices (Coxeter graphs) of simple Lie groups yield finite dimensional
Hecke algebras. It turns out that there are additional graphs which yield finite
dimensional Temperley-Lieb algebras, e. g. those associated to the graphs En(k)
below.

In general, the algebras Td(S, m) are difficult to analyze, because of their
definition by generators and relations. The purpose of this paper is to describe a
graphical calculus which is adapted to Coxeter graphs of type E. We denote by
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En(k) the graph with n vertices of the following shape.

r r r r r
r

e1 e2 ek en−1

e0

. . . . . .

We also use the standard notation of Lie theory

En(1) = An, En(2) = Dn, En(3) = En.

Note that En(k) contains the linear subgraph An−1 with n− 1 vertices (e0 omit-
ted). Although the graphical calculus is designed for the finite dimensional alge-
bras TdEn(k), it has other uses as well.

The starting point for our calculus is the graphical notation of Kauffman [5,
p. 100] for the standard Temperley-Lieb algebra TdAn associated to the Coxeter
graph An. A basis element of TdAn−1 over K consists of n disjoint arcs in IR×[0, 1]
with endpoint set {1, . . . , n}× {0, 1}. We call such figures (n, n)-bridges. We use
the decomposition of IR × [0, 1] into planar domains produced by the arcs of a
bridge. This decomposition is used to incorporate additional information into
the figure: We single out certain regions by placing pillars. A K-basis of the
algebra TdEn(k) will then, hopefully, consist of certain such bridges with pillars.
For typographical reasons we use a bracket notation for bridges with pillars. The
reader is advised to decode this into ordinary planar figures. The advantage of
the graphical calculus is its semi-global nature, compared with generators and
relations. (This is similar to the difference between the global definition of the
symmetric group by permutations and its definition by generators and relations
from the Coxeter graph.) As an example of the use of the calculus we mention:
A geometrically defined filtration on the set of figures allows a splitting of the
resulting algebras into matrix components (in the generic semi-simple case), and
also allows a geometric construction of modules.

This paper presents the calculus and applies it to the basic example E6 =
E6(3). A typical result is:

Theorem A. The algebra TdE6(3) has rank 662. For generic parameters d in a
field the algebra is semi-simple and has simple modules M(0), M(1), M(2), and
M(3) of rank 1, 6, 20, and 15, respectively.

Since A5 ⊂ E6, we have an inclusion TdA5 ⊂ TdE6. We determine the decom-
position of the simple TdE6-modules when restricted to TdA5. Recall that the
algebra TdA5 has simple modules M0, M1, M2, and M3 of rank 1, 5, 9, and 5 (see
e. g. [4, 2.8] for the module theory of TdAn in general).
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Theorem B. The following isomorphisms hold for the restricted modules:

resM(0) ∼= M0

resM(1) ∼= M1 ⊕M0

resM(2) ∼= M2 ⊕ 2M1 ⊕M0

resM(3) ∼= M3 ⊕M2 ⊕M0.

We mention (but do not prove in this paper) the module structure of TdE7(3):

Theorem C. The algebra TdE7(3) has in the generic case simple modules N(4),
N(3), N ′(3), N(2), N ′(2), N(1), and N(0) of rank 15, 35, 35, 27, 18, 7, and 1,
respectively. 2

In the statement of the next result we use the fact that the algebra TdA6 has
simple modules N0, N1, N2, N3 of rank 1, 6, 14, 14.

Theorem D. The restriction properties of these modules to A = TdA6 and
E = TdE6 are:

resEN(4) = M(3)

resAN(4) = N0 ⊕N3

resEN(3) = M(2)⊕M(3)

resAN(3) = N0 ⊕N1 ⊕N2 ⊕N3

resEN(2) = M(2)⊕M(1)⊕M(0)

resEN ′(2) = 3M(1)

resAN(2) = N2 ⊕ 2N1 ⊕N0

resAN ′(2) = 3N1

resEN(1) = M(1)⊕M(0)

resAN(1) = N1 ⊕N0.

The module N ′(3) has the same restriction properties as N(3). 2

In the next section we define the calculus and various related algebras. Section
3 presents some elementary examples. In section 4 and 5 we give a detailed
description of the algebra related to E6(3). We conclude by mentioning other
uses of the calculus.

2. Bridges with pillars

We remind the reader that an (n, n)-bridge consists of a system of n arcs in
IR × [0, 1] without crossings such that the set of its boundary points is Pn :=
{1, 2, . . . , n}×{0, 1}. We think of the arcs meeting IR×{0, 1} transversely. Two
bridges are equal if they connect the same points. An upper (lower) arc has
both of its boundary points in IR × 1 (IR × 0). The upper and lower arcs are
called horizontal, the others vertical. If a bridge b has k upper arcs, we call k its
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horizontal edge number and write HE(b) = k. The configuration which consists
of the upper arcs of an (n, n)-bridge b is called the upper n-bridge of b. An (n, n)-
bridge is determined by its upper and lower n-bridge. An upper n-bridge per se
of horizontal edge number k can be specified by a system of k admissible bracket
pairs with additional marks for the end points of the vertical arcs. Thus, the 9
upper 6-bridges b with HE(b) = 2 are in this notation:

(())||, ()()||, |(())|, |()()|, ||(()), ||()(), ()|()|, ()||(), |()|().

An (n, n)-bridge will, in a similar manner, be denoted by a pair of bracket systems
with a fraction stroke (compare the figure below for the notation of a pillar
bridge).

We need bridges with additional structure. The definition needs some prepa-
ration. The arcs of a bridge subdivide the strip IR× [0, 1] into domains. There are
one or two unbounded domains. An (n, n)-bridge yields n + 1 domains. The dis-
tance between two bridge domains is the minimal numbers of arcs which a path
from one domain to the other has to cross. The distance modulo two is a topo-
logical intersection number. The boundary curve of a domain consists of certain
intervals in IR× {0, 1} and some arcs of the bridge. The intervals are called the
feet of the domain. A domain is determined by its feet. An upper (lower) domain
has all its feet in IR× 1 (IR× 0). The remaining domains are called vertical.

Each domain D of a bridge has 4 separation numbers: SNL(D), SNR(D),
SNT (D), SNB(D). Here L, R, T,B stands for left, right, top, bottom. The left
separation number is the minimal number of arcs separating the domain from
the left unbounded one. The bottom separation number is the minimal number of
arcs separating the domain from IR× 0. Thus a vertical domain is characterized
by SNB = SNT = 0.

We fix a base number k ∈ {0, 1, 2, . . . , [n
2
]}. A bridge then has a basic domain

with foot ]∞, 0] × 1 in case k = 0 or [k, k + 1] × 1 in case k > 0. A domain is
called even (odd) if the distance to the basic domain is even (odd). This depends
only on k mod 2; but later k itself will play a role.

Now the basic notion of our calculus! An (n, n)-bridge with pillars and base
number k consists of an (n, n)-bridge together with a (possibly empty) subset of
its even domains. We specify graphically the chosen domains by placing a point
(a pillar) into the domain. For typographical reasons we use the bracket notation
introduced above. We add a • in order to specify a pillar domain. The following
figure explains the usage. It displays a (5, 5)-bridge with even base number and
two pillar domains; also the bracket notation for its upper and lower bridge is
given.
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((•)) • |

()|() .
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Observe that one may have a choice where to put certain • in the bracket nota-
tion, in this case we could also use ((•))|

()•|() . Let E∗(n, k) denote the set of (n, n)-
bridges with pillars and base number k. Later we have to use a certain subset:
A pillar bridge is called reduced if the distance of any two pillar domains is at
least 4. Let E(n, k) denote the set of reduced bridges in E∗(n, k). We note that
the distance between any two pillar domains is even.

We recall the graphical definition of the Temperley-Lieb algebra Tn = TdAn−1

associated to the Coxeter graph An−1 (see [5, p. 100]), since we have to use it
in the definition of our algebras. Let K be a commutative ring and d ∈ K a
parameter. Additively, Tn is the free K-module on the set of (n, n)-bridges. The
multiplication is K-bilinear. Thus it remains to define the product of two bridges
S and T . Let T ◦ S denote the figure which is obtained by placing the T -strip
above the S-strip and squeezing the result affinely into IR × [0, 1]. In general,
the figure T ◦ S is not a bridge, there may be circles in the interior of the strip.
Suppose there exist k(T, S) circles. Let T ∧ S denote the bridge obtained by
removing the circles. Then the product is defined by

(2.1) T · S = dk(T,S)T ∧ S.

We now use pillar bridges to define other algebras in an analogous manner. The
next section collects a few elementary examples which illustrate the following
definitions.

The algebra TE∗(n, k). It is additively the free K-module on E∗(n, k). The
multiplication is again K-bilinear. Its definition uses two further parameters c, f ∈
K. Thus TE∗(n, k) depends on c, d, f . In order to define the product of two pillar
bridges we consider the underlying ordinary bridges and form T ◦ S as before.
Then we look at the position of the pillars. The deviation from a pillar bridge
can have several reasons. We correct the deviation by the processes (2.2) and
(2.3) below.

(2.2) Multiple pillars. Suppose a domain of T ◦ S contains a > 1 pillars.
We remove a − 1 pillars from the domain and multiply the result by ca−1. Let
T ◦1S denote the resulting figure with pillars. Suppose a(T, S) pillars are removed
altogether by this process. ♥

(2.3) Pillar circles. Consider the circles of T ◦1 S. If such a circle can be
connected with a pillar in its interior without crossing of other circles (pillar
circle), we remove circle and pillar and multiply the result by f . The other
circles are treated with the parameter d as above. Suppose altogether there exist
b(T, S) pillar circles and k(T, S) ordinary ones. ♥

The above two processes yield a bridge T · S with pillars and base number k.
The underlying ordinary bridge is T ∧ S. The product of T and S is defined by

ca(T,S)f b(T,S)dk(T,S)T · S.
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The reader should draw a figure and verify the following product

() • |(())()
|(•())(•())

· ()()|(•())
((•)) • ()|()

= c3fd2 () • |(())()
((•))()|()

.

In this paper, the algebras TE∗(n, k) are technical tools. But they have some
independent interest. For instance, TE∗(n, 1) is related to the Temperley-Lieb
algebra associated to the root system Bn, see [1].

The algebra TE(n, k). It is additively the free K-module on E(n, k). In order
to define the multiplication, we begin as for E∗(n, k). But there is now another
reason why the result may be wrong: If two pillar domains have distance 2. We
correct by the next process.

(2.4) Reduction. If two pillar domains have distance 2, we modify as in the
following figure (• = pillar).

��s
��s

⇒ �pppppppp
ppppppp �s ��

Thus, the two pillar domains are connected by a corridor, and there results a
single new pillar domain. One has to show that reduction is well defined. Before
doing this, we have to restrict the possible parameters, namely we set in TE(n, k)

c = d, f = 1.

The following example demonstrates why this is necessary. It also shows what
reduction has to do with the defining relations (1.1) of a Temperley-Lieb algebra.

(2.5) Example. We use the notation

����
= e1, s = e0.

Then by (2.4) e0e1e0 = e0 and by (2.3) e1e0e1 = fe1. We use this to compute
(e0e1e0)e1 = e0(e1e0e1) in two ways and see that f = 1 is necessary. The require-
ment c = d is unimportant and can always be achieved by a suitable parameter
transformation (in an extension ring). ♥

Reduction can be defined globally as follows. It is easy to see that the domains
of a bridge are 2-cells. Let D be a pillarless domain of a bridge which has at least
2 adjacent pillar domains P1, . . . , Pk. The intersection of the closures D ∩ P j is
an interval Ij. Choose a point x ∈ D and connect it by an arc wj in D to Ij.
For i 6= j the arcs wi and wj should only intersect in x, so that w =

⋃
wj is a
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star-like contractible complex. Let W be a closed regular neighbourhood of w
in D such that P j ∩W ⊂ Ij. Then the interior of W ∪ P 1 ∪ . . . ∪ P k is a new
pillar domain. We apply this process successively to all domains of type D as
above. The result is the reduced pillar bridge. The same result is obtained by a
succession of moves (2.4) in any order.

The reader should draw a figure and follow the prescription above in the
following example. The (12,12)-bridge

•|(•())| • ((•)(•))
|(•)|((•((•))))

has 4 domains D1, D2, D3, D4 of the type D just considered, adjacent to 4,3,2,2
pillar domains, respectively. The reduction process yields

•()()()()()()
()()()()()()

.

The algebra TEn,k. It is here where the actual value of k matters. We consider
the subalgebra TEn,k of TE(n, k) which is generated by ordinary bridges (i. e.
bridges without pillars) and a single further bridge e0 with only vertical arcs
and with a single pillar between the kth and k + 1st arc. Additively, TEn,k is
the free K-module with basis a certain subset En,k of E(n, k). This definition is
taylored to give the following result. The algebra TdEn(k) has been defined in
the introduction.

(2.6) Theorem. There is a canonical surjective homomorphism of algebras
γn,k: TdEn(k) → TEn,k.

Proof. We have to specify the image of the generators ej. They will be denoted
with the same symbol. For j ≥ 1 we use the ordinary bridge with HE = 1, which
connects j and j + 1 on top and on the bottom. The image of e0 is the vertical
bridge with a pillar between the kth and k + 1st string. (Example (2.5) displays
the case n = 2, k = 1.) One has to verify that γn,k respects the relations (1.1).
This is easy. As far as e0 is involved, (2.3) and (2.4) are relevant. 2

We show in section 5 that γ6,3 is an isomorphism. It is conjectured that γn,k

is always an isomorphism. It is known that γn,1 and γn,2 are isomorphisms. For
the latter see [3].

The algebra TE∗
n,k. For completeness we define TE∗

n,k to be the subalgebra of
TE∗(n, k) generated by ordinary bridges and the bridge e0 with only vertical
arcs and a pillar at position k. Additively, it is the free K-module with basis a
certain subset E∗

n,k of E∗(n, k).

3. Examples

We present some examples of (n, n)-bridges with basic number k for small values
of n and k.
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(3.1) n = 2, k = 1. The pillar bridges are:

||
||

| • |
||

()
()

(•)
()

()
(•)

(•)
(•) .

1 e0 e1 e0e1 e1e0 e0e1e0

The right most element is not reduced. The algebra TE∗(2, 1) is generated by e0

and e1 with relations

e2
0 = ce0, e2

1 = de1, e1e0e1 = fe1.

This is an algebra of type TB2; it was studied in [1, 2, 3]. In the reduced case
TE(2, 1) we have the same generators but the relations are now

e2
0 = de0, e2

1 = de1, e1e0e1 = e1, e0e1e0 = e0.

This is the algebra TdA2. In this case we have equalities TE∗(2, 1) = TE∗
2,1 and

TE(2, 1) = TE2,1.

(3.2) n = 2, k = 0. The pillar bridges are:

||
||

•||
||

||•
||

()
()

•()
()

•||•
|| .

1 e0 f0 e1 e0e1 e0f0

They form a basis of TE∗(2, 0). The algebra TE(2, 0) = TE2,0 has the basis
1, e0, e1, e0e1 = e1e0 and is isomorphic to TdA1 ⊗ TdA1.

(3.3) n = 3, k = 1. The algebra TE3,1 has the following basis.

|||
|||

()|
()|

|()
|()

()|
|()

|()
()|

1 e1 e2 e1e2 e2e1

| • ||
|||

(•)|
()|

( )|
(•)|

(•)|
|()

()|
| • ()

e0 e0e1 e1e0 e0e1e2 e1e2e0

| • ()
()|

|()
(•)|

| • ( )
|()

()|•
()|

e0e2e1 e2e1e0 e0e2 = e2e0 e1e0e2e1

This are 14 elements. The generators e0, e1, e2 satisfy the relations of TdA3, hence
TA3

∼= TE3,1.
The unreduced algebra TE∗(3, 1) has the additional elements

| • ||•
|||

(•)|
(•)|

| • ()
(•)|

(•)|
| • ()

e0e1e0 e0e2e1e0 e0e1e2e0

(•)|•
()|

()|•
(•)|

(•)|•
(•)| .

e0e1e0e2e1 e1e0e2e1e0 e0e1e0e2e1e0
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The first element only appears in TE∗(3, 1). Hence there are six further elements
in TE∗

3,1. The generators e0, e1, e2 satisfy the relations

e2
0 = ce0, e2

1 = de1, e2 = de2, e1e0e1 = fe1, e0e2 = e2e0.

This are relations for an algebra TB3 which was studied in [3].

(3.4) n = 4, k = 2. We display the reduced elements in the following manner.
There are 14 pillarless (4, 4)-bridges. For each bridge we draw the possible pillars,
but assemble all possibilities in a single figure. This yields all bridges with one
pillar. Under the figure we write the number of the corresponding basis elements.

|| • ||
||||

() • ||•
( )||

•|(•)|•
|(•)|

•|| • ( )
||()

2 3 5 3

() • ||•
|(•)|

•|(•)|•
( )||

•|(•)|•
||()

•|| • ( )
|(•)|

4 4 4 4

() • ||•
||()

•|| • ()
()||

() • ()
()()

((•))
() • ()

3 3 2 3

() • ()
((•))

((•))•
((•))

3 4 + 1

There exists a single reduced element with 2 pillars. This accounts for the +1 in
the last row. Altogether we obtain 48 elements.
The generators

‖ • ‖
‖‖

= e0,
()‖
()‖

= e1,
|()|
|()|

= e2,
‖()
‖()

= e3

satisfy the relations of the Temperley-Lieb-Algebra TdD4. The algebra TdD4 has
rank

rank TA3 +
1

2
rank TB4 − 1 = 14 + 35− 1 = 48,

as was shown in [3]. One checks that the displayed bridges are contained in TE4,2.
Hence TE4,2

∼= TdD4.

4. The algebra TE6,3

As an application of the calculus we study the algebra TE6,3 and its module struc-
ture. Unfortunately, a lot of case by case checking is involved. It is also assumed
that the reader knows how to deal graphically with the ordinary Temperley-
Lieb algebra and its module theory. This will not be reviewed here. The algebra
TE6,3 is generated by the ordinary (6, 6)-bridges and the vertical pillar bridge
||| • ||| = e0. We use the following tools.

(4.1) Invariants of bridges.
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(1) The horizontal edge number HE. In our case it is contained in {0, 1, 2, 3}.
(2) The number V P (b) of vertical pillar domains of a bridge b. Recall that

a domain is called vertical if it has boundary points in both IR × 0 and
IR× 1. The element e0 is vertical.

(3) The filtration of a bridge b is defined to be F (b) = HE(b) + V P (b). We
see in a moment that 0 ≤ F (b) ≤ 3.

(4) The separation numbers SNT, SNB, SNL, SNR of a domain. We shall
see that 0 ≤ SNB + SNT ≤ 3 and SNL, SNR ∈ {1, 3} holds. ♥

We state properties of these invariants.

(4.2) The separation numbers mod 2 are topological invariants. Under multi-
plication SNR and SNL cannot increase. Since e0 has left and right separation
number 3, we see that SNL, SNR ∈ {1, 3}. ♥

(4.3) For each domain of a bridge either SNT = 0 or SNB = 0. A separation
of a domain from IR× 0 is achieved by an upper horizontal arc. Therefore SNT
equals at most the maximal possible HE. In our case SNT can assume the values
0, 1, 2, 3. ♥

(4.4) The HE cannot decrease under multiplication. If a vertical pillar domain
exists, then it is separated from left and right infinity by one or three vertical arcs.
Hence there exist 6, 4, 2, or 0 vertical arcs. These cases lead to the distribution
of pillars as displayed in the following table.

Pillar HE F

||| • ||| 0 1

| • ||| 1 2

||| • | 1 2

| • | 2 3

The reduction condition says that further pillars are impossible. ♥

In table 1 we display in bracket notation the possible configurations of pillar
domains and vertical arcs. The configurations have to be filled up with ordinary
horizontal arcs. Under each symbol we have specified the number of fillings. Each
such number is the product of the upper and lower fillings. They are obtained
from well known combinatorics of bridges. Certain cases in the table appear
twice, namely if interchange of top and bottom yields different configurations.
This accounts for the 2 in front of a symbol. As an example, consider the left
most entry in the first row. There are 5 6-bridges with 3 horizontal arcs; they
are the possible “denominators”. There are 9 possibilities to fill these 5 bridges
with a pillar such that SNL = 1; they are the possible “numerators”. The
next entry in this line has 9 denominators and 5 numerators. The last one has
5 denominators. The right most column in the table gives the total number of
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cases in the corresponding row. We have to add the 132 ordinary bridges without
pillars. Altogether we obtain

132 + 190 + 107 + 110 + 44 + 68 + 12 + 30 = 703.

But not all cases are possible in TE6(3)! For one, the right separation numbers
have to be at most 3. This eliminates the right most cases in the first two rows,
hence 11 cases.

Moreover, the cases in the last row are impossible. This has the following rea-
son. We have to investigate which figures are generated by ordinary bridges and
e0. The cases in question have to use e0 at least twice. (Recall: Left multiplication
is placed graphically on top of the figure.) From a lower pillar domain we can
obtain at most a vertical one by multiplication. In the first case (left in the last
row of the table) we have, in the course of the multiplication with generators, to
multiply a bridge with an upper pillar domain with e0. But then the reduction
condition is not satisfied, and therefore a second pillar domain does not occur.

Therefore a second pillar domain can only appear, if the upper foot

r r r r r rp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p
has distance at least 4 from the already existing pillar domain. This can only be
a lower pillar domain. In cases 2 and 3 of the last row the HE can be at most 1.
Hence a fourfold separation is impossible. What we have seen until now is

(4.5) The algebra TE6,3 has rank at most 662. 2

In order to show that the rank is exactly 662 one could try to check that all
remaining figures are actually possible. This is a matter of patience, if one does
not use further structural investigations. But it turns out that the module and
ideal structure of TE6,3 gives better insight. We will show in the remaining part
of this section:

(4.6) Theorem. The algebra TE6,3 is semi-simple for generic parameters d in
a field K and has in that case simple modules of rang 1, 6, 20, and 15.

We point out 662 = 12 + 62 + 202 + 152. Note that the ranks are binomial
coefficients

(
6
n

)
. In the non generic case we too have modules of the specified

rank, since the modules are constructed with help of the graphical calculus. We
assume from now on that the parameter d ∈ K is invertible. We also assume
known a geometric treatment of the module theory for the ordinary Temperley-
Lieb algebra TdA5.

Again we use bracket notation for the upper pillar bridges. A bullet indicates
the pillar domain. The standard bridges with horizontal edge number 0,1, 2, 3
are denoted β0, β1, β2, β3; the upper and lower bridges of these pillarless bridges
are, by definition, ||| |||, ||()||, |(())|, ((())). The simple modules will be the left
ideals generated by the βj modulo bridges of higher filtration. This uses:
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(4.7) Lemma. Multiplication cannot decrease the filtration.

Proof. A vertical pillar domain can only be removed by multiplication with an
ordinary bridge if its vertical boundary points become connected. But then the
HE increases.

If multiplication by e0 decreases the HE, then this happens through a reduc-
tion process which produces a vertical pillar domain. 2

(4.8) Theorem. The element β3 generates a left ideal M(3) of rank 15 and a
twosided ideal L(3) of rank 152. The ideal L(3) is the direct sum of 15 left ideals
isomorphic to M(3). The upper bridges of a basis of M(3) are displayed in the
following table.

((())) ()(()) (())() ()()() (()())

(((•))) ()(•()) (()•)() ()(•)() (() • ())

(•(())) (•)(()) (())(•) (•)()() ()()(•)

Proof. The first row contains the upper bridges of the pillarless elements of
M(3). The second row contains the elements which are obtained from the first
row by left multiplication with e0. The third row contains the elements

e3z, e4e3x, e2e3y, e3x, e3y,

where x, y, and z are the second, third, and fifth element of the second row. Fur-
ther elements are impossible; this is seen by considering reduction and separation
number.

By (4.7), the bridges with maximal filtration 3 generate a twosided ideal which
contains M(3).

We reflect the basis bridges of M(3) in IR× 1
2

(interchange of top and bottom).
The left ideals generated by these reflected elements are isomorphic to M(3). An
isomorphism is obtained by right multiplication with a suitable element: If b is
a basis element, then there exists a bridge c such that bc = λβ3 with invertible
λ ∈ K; moreover β3b = µβ3 with invertible µ ∈ K. The sum of these left ideals
contains L(3). The sum is direct, since the basis sets of the ideals are pairwise
disjoint. The element β3 generates L(3), since it generates the above left ideals.2

(4.9) Theorem. Let M(2) denote the left ideal generated by β2 modulo the
submodule generated by bridges of higher filtration. The module M(2) has rank 20
and is generated by bridges with lower bridge |(())| and filtration 2. The twosided
ideal generated by β2 modulo L(3) is an algebra of rank 202 and is the direct sum
of 20 ideals isomorphic to M(2).

Proof. By definition, the module M(2) is generated by the bridges as stated
in the theorem. One has to check that there 20 of them. The possible pillar
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bridges without vertical pillar domain are in condensed notation displayed in the
following table.

|((•))| |()()| |()|(•) (•)|()| (•)||(•)

||(•)(•) (•)(•)|| (•())|| ||(()•)

Condensed notation means: all possible occurances of pillars are assembled in the
same figure. It remains to verify that they are generated by the 9 ordinary bridges
among them and e0. Left multiplication of ordinary bridges with e0 produces

|((•))|, ||(•)(), ()(•)||, (()•)||, ||(•()).

Finally, we multiply the last two with e3, e4, and e5.
We now finish the proof as for (4.8). 2

Finally, we use a similar procedure for β0 and β1. The first one yields the trivial
module M(0), the second one the 6-dimensional module M(1). We mention in
passing that M(1) is obtainable from the 6-dimensional reflection representation
of the Hecke algebra (see [3]).

This finishes the discussion of the module theory. We do not discuss in detail
conditions for semi-simplicity. By (2.6) and the homomorphism ϕ of the intro-
duction, TEn,k is a quotient of the Hecke algebra HqEn(k), provided q = p2,
d = p + p−1. Thus TEn,k is certainly semi-simple when this holds for the Hecke
algebra. The simplicity of the modules M(j) follows from the next theorem if one
assumes known the theory of TdAn-modules. The argument for M(3) is as follows
(notation as in (4.10)). Suppose M(3) has a decomposition A⊕B into submod-
ules. Then resA or resB contains the uniquely determined submodule M3, say
β3 ∈ A. But β3 generates M(3). The other modules are handled similarly. 2

We have the subalgebra TdA5 ⊂ TE6,3 generated by the ordinary bridges. From
the structure theory of Temperley-Lieb algebras we know (see e. g. [4, 2.8]): The
algebra TdA5 has in the generic case simple modules M0, M1, M2, and M3 of rank
1, 5, 9, and 5, respectively. We denote the restriction of a TE6,3-module M to
TA5 simply by resM .

(4.10) Theorem. The following isomorphisms hold:

resM(0) ∼= M0

resM(1) ∼= M1 ⊕M0

resM(2) ∼= M2 ⊕ 2M1 ⊕M0

resM(3) ∼= M3 ⊕M2 ⊕M0.

Proof. The case M(0) is trivial. We start with M(3) and consider the bridges
of filtration 3 described above. The ordinary bridges yield a submodule M3 of
rank 5. We study M(3)/M3 and consider in it the element

z =
()(•)()
()()()

.
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If we multiply this element from the right by e0 we obtain β2. Multiplication from
the left with ordinary bridges yields all ordinary upper (2, 2)-bridges, and there
are 9. Therefore z generates in M(3)/M3 a 9-dimensional module isomorphic to
M2. Its quotient module has a basis (((•))).

We treat M(2) in a similar manner. We have the submodule M2 of ordinary
bridges. The remaining 11 basis elements are displayed in the following table.

||(•)() ||()(•) ||(()•) ()||(•) |()|(•)

()(•)|| (•)()|| (•())|| (•)||() (•)|()|

|((•))|

We claim that the rows yield modules M1, M1, M0, respectively. If we use the
lower bridge ||()() in the first row and multiply with e0 from the right we obtain
the upper bridges with HE = 1. Similarly for the second row by using the lower
bridge ()()||.

The case M(1) finally is clear, since we have the submodule of ordinary bridges
M1. 2
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2
(•)

2
(•)||
|| 2

(•)||||
|||| 190

45 45 5

| • |
||

| • |||
||||

| • |||||
|||||| 107

81 25 1

2
(((•)))

2
||(•)
|| 2

||(•)||
|| || 110

5 45 5

2
|((•))
|

||| • |
||||

||| • |||
||| ||| 44

9 25 1

2
(((•)))

(•) 2
|((•))|
(•)|| 2

||(•)
(•)|| 68

9 5 25

(((•)))
(((•))) 2

||(•)
|((•))|

|((•))|
|((•))| 12

1 5 1

2
(•)||(•)
|| 2

(•)||| • |
|||| 2

||(•)||
(•)|| 30

9 5 1

Table 1
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5. Comparison with the algebra TdE6(3)

The algebra TdE6(3) is the Temperley-Lieb algebra associated to the Coxeter
graph E6(3) defined by generators and relations, see the introduction. By con-
struction, we have a surjective homomorphism TdE6(3) → TE6,3, see (2.6). We
already know the rank of TE6,3. In order to show that the homomorphism is
injective we derive a normal form for words in e0, . . . , e5 and verify that there
are 662 normal forms. We have different cases according to the appearances of
e0 in the words.

(5.1) We have the subalgebra TdA5 of rank 132 generated by e1, . . . , e5.

(5.2) We determine the normal form of monomials of the form αe0β with
α, β ∈ TdA5. Monomial means: an arbitrary word in the symbols ej, possibly
with a further coefficient from K. We only consider monomials which cannot be
shortened by the defining relations and which have α of minimal length in its
equivalence class modulo relations. The minimality of α means:

(1) α = 1 or

(2) α contains e3 and finishes on the right with e3. Left to α there are no
generators commuting with e3, i. e. no e1 and e5.

We use the fact that TdA5 can be described by bridges. Thus, we talk about
bridges instead of words or monomials. Bridges with α satisfying these conditions
have lower bridges ||()||, |(())|, ((())). The number of α′s with these lower bridges
is 5, 9, 5, respectively. They are displayed in table 2. The second column in this
table gives the word in the generators, with 243 as shorthand for e2e4e3. The third
column gives the number of possible β′s. We explain this in a moment. Elements
α which are related by the reflection ej ↔ e6−j yield the same number. We now
go through the cases of table 2 and derive an upper bound for the possible β’s.
In the following discussion we eliminate those β’s which obviously lead to words
which can be shortened.

α = e3. The β which begin with e3 lead to words which can be shortened by
the relation e3e0e3 = e3. The β’s which begin with e3 have an upper bridge which
contains ||()||. These are in bijection with the 42 upper 10-bridges. There remain
132− 42 = 90 cases.

α = e4e3. No beginning with ||()|| or |||()|. These are disjoint cases. Hence
there remain 132− 2 · 42 = 48.

α = e5e4e3. No beginning with ||()||, |||()| or ||||(). The first and third case
have as intersection the bridges which begin with ||()(). These are 14 in number.
There remain 132− 3 · 42 + 14 = 20.

α = e2e5e4e3. No beginning with |()|||, ||()||, |||()| or ||||(). The first and third
case have intersection |()()|; the second and fourth case have intersection ||()();
the first and fourth case have intersection |()()|(). There are no further intersec-
tions. There remain 132− 4 · 42 + 3 · 14 = 6.
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The remaining α′s contain all symbols e1, . . . , e5 and therefore β has to be 1.
The sum of all these cases is 440.

(5.3) Monomials which contain two e0: αe0βe0γ. In order that βe0γ be minimal
with minimal β, the element β has, by (5.2), to terminate with β = ||()||, |(())|,
or ((())). Hence β has to be one of the bridges β2 and β3 of section 2. In the
second case α = γ = 1.

In the first case therefore, by (5.2), either α = 1 and 20 cases for γ, or γ = 1
and 20 cases for α, minus the intersection case α = γ = 1. Altogether we obtain
40 cases.

If α 6= 1 and γ 6= 1, then γ has to begin with e1, e5 and α has to end with e1, e5;
and these cases have to be different. Hence we obtain altogether 2N2 possibilities,
where N is the number of γ which begin with e1 but not with e2, e3, e4 and which
have no presentation beginning with e5. These are the five bridges which begin
with ()|||. Thus we obtain 50 further cases.

Altogether we now have the upper bound 132+440+40+50 = 662 on normal
forms of words. Since e0 can occur at most twice, there are no further cases. We
already have the surjection TdE6(3) → TE6,3 onto an algebra of rank 662. Thus
we found normal forms of words.
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Upper bridge Word Number of β

||()|| 3 90
|||()|| 43 48
|()||| 23 48
|| ||() 543 20
()|||| 123 20

|()()| 243 20
|()|() 2543 6
()|()| 1243 6
|(())| 3243 20
||()() 32543 6
()()|| 13243 6
()||() 12543 1
||(()) 432543 6
(())|| 213243 6

()()() 132543 1
()(()) 1432543 1
(())() 2132543 1
(()()) 21432543 1
((())) 321432543 1

Table 2
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6. Concluding remarks

As one might guess from the shape of the Coxeter graphs, the following iso-
morphisms hold TEn,1

∼= TAn and TEn,2
∼= TDn. The structure of TDn was

determined in [3]. The calculus of the present paper adds a geometric interpre-
tation to the algebra of [3]. In [1] we defined and studied the Temperley-Lieb
algebra TBn associated to the Coxeter graph Bn. With suitable parameters, the
algebras TE∗

n,1 and TBn are isomorphic. The algebra TBn uses bridges which
are symmetric with respect to a reflection in 0× IR. One can also consider pillar
bridges which have this symmetry. A certain algebra of this type is related to
the graph F4. Finally, one could use pillars of different type; this has applica-
tions to affine root systems. The usual closing procedure (braids to links) yields
when applied to pillar bridges a semi-geometric definition of Markov traces on
the family TEn,k for fixed k.
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